LightRAG/tests/test_workspace_isolation.py
clssck 69358d830d test(lightrag,examples,api): comprehensive ruff formatting and type hints
Format entire codebase with ruff and add type hints across all modules:
- Apply ruff formatting to all Python files (121 files, 17K insertions)
- Add type hints to function signatures throughout lightrag core and API
- Update test suite with improved type annotations and docstrings
- Add pyrightconfig.json for static type checking configuration
- Create prompt_optimized.py and test_extraction_prompt_ab.py test files
- Update ruff.toml and .gitignore for improved linting configuration
- Standardize code style across examples, reproduce scripts, and utilities
2025-12-05 15:17:06 +01:00

1111 lines
45 KiB
Python

#!/usr/bin/env python
"""
Test script for Workspace Isolation Feature
Comprehensive test suite covering workspace isolation in LightRAG:
1. Pipeline Status Isolation - Data isolation between workspaces
2. Lock Mechanism - Parallel execution for different workspaces, serial for same workspace
3. Backward Compatibility - Legacy code without workspace parameters
4. Multi-Workspace Concurrency - Concurrent operations on different workspaces
5. NamespaceLock Re-entrance Protection - Prevents deadlocks
6. Different Namespace Lock Isolation - Locks isolated by namespace
7. Error Handling - Invalid workspace configurations
8. Update Flags Workspace Isolation - Update flags properly isolated
9. Empty Workspace Standardization - Empty workspace handling
10. JsonKVStorage Workspace Isolation - Integration test for KV storage
11. LightRAG End-to-End Workspace Isolation - Complete E2E test with two instances
Total: 11 test scenarios
"""
import asyncio
import os
import shutil
import time
from pathlib import Path
import numpy as np
import pytest
from lightrag.kg.shared_storage import (
clear_all_update_flags,
finalize_share_data,
get_all_update_flags_status,
get_default_workspace,
get_final_namespace,
get_namespace_data,
get_namespace_lock,
get_update_flag,
initialize_pipeline_status,
initialize_share_data,
set_all_update_flags,
set_default_workspace,
)
from lightrag.utils import EmbeddingFunc
# =============================================================================
# Test Configuration
# =============================================================================
# Test configuration is handled via pytest fixtures in conftest.py
# - Use CLI options: --keep-artifacts, --stress-test, --test-workers=N
# - Or environment variables: LIGHTRAG_KEEP_ARTIFACTS, LIGHTRAG_STRESS_TEST, LIGHTRAG_TEST_WORKERS
# Priority: CLI options > Environment variables > Default values
# =============================================================================
# Pytest Fixtures
# =============================================================================
@pytest.fixture(autouse=True)
def setup_shared_data():
"""Initialize shared data before each test"""
initialize_share_data()
yield
finalize_share_data()
async def _measure_lock_parallelism(
workload: list[tuple[str, str, str]], hold_time: float = 0.05
) -> tuple[int, list[tuple[str, str]], dict[str, float]]:
"""Run lock acquisition workload and capture peak concurrency and timeline.
Args:
workload: List of (name, workspace, namespace) tuples
hold_time: How long each worker holds the lock (seconds)
Returns:
Tuple of (max_parallel, timeline, metrics) where:
- max_parallel: Peak number of concurrent lock holders
- timeline: List of (name, event) tuples tracking execution order
- metrics: Dict with performance metrics (total_duration, max_concurrency, etc.)
"""
running = 0
max_parallel = 0
timeline: list[tuple[str, str]] = []
start_time = time.time()
async def worker(name: str, workspace: str, namespace: str) -> None:
nonlocal running, max_parallel
lock = get_namespace_lock(namespace, workspace)
async with lock:
running += 1
max_parallel = max(max_parallel, running)
timeline.append((name, 'start'))
await asyncio.sleep(hold_time)
timeline.append((name, 'end'))
running -= 1
await asyncio.gather(*(worker(*args) for args in workload))
metrics = {
'total_duration': time.time() - start_time,
'max_concurrency': max_parallel,
'avg_hold_time': hold_time,
'num_workers': len(workload),
}
return max_parallel, timeline, metrics
def _assert_no_timeline_overlap(timeline: list[tuple[str, str]]) -> None:
"""Ensure that timeline events never overlap for sequential execution.
This function implements a finite state machine that validates:
- No overlapping lock acquisitions (only one task active at a time)
- Proper lock release order (task releases its own lock)
- All locks are properly released
Args:
timeline: List of (name, event) tuples where event is "start" or "end"
Raises:
AssertionError: If timeline shows overlapping execution or improper locking
"""
active_task = None
for name, event in timeline:
if event == 'start':
if active_task is not None:
raise AssertionError(f"Task '{name}' started before '{active_task}' released the lock")
active_task = name
else:
if active_task != name:
raise AssertionError(f"Task '{name}' finished while '{active_task}' was expected to hold the lock")
active_task = None
if active_task is not None:
raise AssertionError(f"Task '{active_task}' did not release the lock properly")
# =============================================================================
# Test 1: Pipeline Status Isolation Test
# =============================================================================
@pytest.mark.offline
@pytest.mark.asyncio
async def test_pipeline_status_isolation():
"""
Test that pipeline status is isolated between different workspaces.
"""
# Purpose: Ensure pipeline_status shared data remains unique per workspace.
# Scope: initialize_pipeline_status and get_namespace_data interactions.
print('\n' + '=' * 60)
print('TEST 1: Pipeline Status Isolation')
print('=' * 60)
# Initialize shared storage
initialize_share_data()
# Initialize pipeline status for two different workspaces
workspace1 = 'test_workspace_1'
workspace2 = 'test_workspace_2'
await initialize_pipeline_status(workspace1)
await initialize_pipeline_status(workspace2)
# Get pipeline status data for both workspaces
data1 = await get_namespace_data('pipeline_status', workspace=workspace1)
data2 = await get_namespace_data('pipeline_status', workspace=workspace2)
# Verify they are independent objects
assert data1 is not data2, 'Pipeline status data objects are the same (should be different)'
# Modify workspace1's data and verify workspace2 is not affected
data1['test_key'] = 'workspace1_value'
# Re-fetch to ensure we get the latest data
data1_check = await get_namespace_data('pipeline_status', workspace=workspace1)
data2_check = await get_namespace_data('pipeline_status', workspace=workspace2)
assert 'test_key' in data1_check, 'test_key not found in workspace1'
assert data1_check['test_key'] == 'workspace1_value', (
f'workspace1 test_key value incorrect: {data1_check.get("test_key")}'
)
assert 'test_key' not in data2_check, f'test_key leaked to workspace2: {data2_check.get("test_key")}'
print('✅ PASSED: Pipeline Status Isolation')
print(' Different workspaces have isolated pipeline status')
# =============================================================================
# Test 2: Lock Mechanism Test (No Deadlocks)
# =============================================================================
@pytest.mark.offline
@pytest.mark.asyncio
async def test_lock_mechanism(stress_test_mode, parallel_workers):
"""
Test that the new keyed lock mechanism works correctly without deadlocks.
Tests both parallel execution for different workspaces and serialization
for the same workspace.
"""
# Purpose: Validate that keyed locks isolate workspaces while serializing
# requests within the same workspace. Scope: get_namespace_lock scheduling
# semantics for both cross-workspace and single-workspace cases.
print('\n' + '=' * 60)
print('TEST 2: Lock Mechanism (No Deadlocks)')
print('=' * 60)
# Test 2.1: Different workspaces should run in parallel
print('\nTest 2.1: Different workspaces locks should be parallel')
# Support stress testing with configurable number of workers
num_workers = parallel_workers if stress_test_mode else 3
parallel_workload = [(f'ws_{chr(97 + i)}', f'ws_{chr(97 + i)}', 'test_namespace') for i in range(num_workers)]
max_parallel, timeline_parallel, metrics = await _measure_lock_parallelism(parallel_workload)
assert max_parallel >= 2, (
'Locks for distinct workspaces should overlap; '
f'observed max concurrency: {max_parallel}, timeline={timeline_parallel}'
)
print('✅ PASSED: Lock Mechanism - Parallel (Different Workspaces)')
print(f' Locks overlapped for different workspaces (max concurrency={max_parallel})')
print(f' Performance: {metrics["total_duration"]:.3f}s for {metrics["num_workers"]} workers')
# Test 2.2: Same workspace should serialize
print('\nTest 2.2: Same workspace locks should serialize')
serial_workload = [
('serial_run_1', 'ws_same', 'test_namespace'),
('serial_run_2', 'ws_same', 'test_namespace'),
]
(
max_parallel_serial,
timeline_serial,
metrics_serial,
) = await _measure_lock_parallelism(serial_workload)
assert max_parallel_serial == 1, (
f'Same workspace locks should not overlap; observed {max_parallel_serial} with timeline {timeline_serial}'
)
_assert_no_timeline_overlap(timeline_serial)
print('✅ PASSED: Lock Mechanism - Serial (Same Workspace)')
print(' Same workspace operations executed sequentially with no overlap')
print(f' Performance: {metrics_serial["total_duration"]:.3f}s for {metrics_serial["num_workers"]} tasks')
# =============================================================================
# Test 3: Backward Compatibility Test
# =============================================================================
@pytest.mark.offline
@pytest.mark.asyncio
async def test_backward_compatibility():
"""
Test that legacy code without workspace parameter still works correctly.
"""
# Purpose: Validate backward-compatible defaults when workspace arguments
# are omitted. Scope: get_final_namespace, set/get_default_workspace and
# initialize_pipeline_status fallback behavior.
print('\n' + '=' * 60)
print('TEST 3: Backward Compatibility')
print('=' * 60)
# Test 3.1: get_final_namespace with None should use default workspace
print('\nTest 3.1: get_final_namespace with workspace=None')
set_default_workspace('my_default_workspace')
final_ns = get_final_namespace('pipeline_status')
expected = 'my_default_workspace:pipeline_status'
assert final_ns == expected, f'Expected {expected}, got {final_ns}'
print('✅ PASSED: Backward Compatibility - get_final_namespace')
print(f' Correctly uses default workspace: {final_ns}')
# Test 3.2: get_default_workspace
print('\nTest 3.2: get/set default workspace')
set_default_workspace('test_default')
retrieved = get_default_workspace()
assert retrieved == 'test_default', f"Expected 'test_default', got {retrieved}"
print('✅ PASSED: Backward Compatibility - default workspace')
print(f' Default workspace set/get correctly: {retrieved}')
# Test 3.3: Empty workspace handling
print('\nTest 3.3: Empty workspace handling')
set_default_workspace('')
final_ns_empty = get_final_namespace('pipeline_status', workspace=None)
expected_empty = 'pipeline_status' # Should be just the namespace without ':'
assert final_ns_empty == expected_empty, f"Expected '{expected_empty}', got '{final_ns_empty}'"
print('✅ PASSED: Backward Compatibility - empty workspace')
print(f" Empty workspace handled correctly: '{final_ns_empty}'")
# Test 3.4: None workspace with default set
print('\nTest 3.4: initialize_pipeline_status with workspace=None')
set_default_workspace('compat_test_workspace')
initialize_share_data()
await initialize_pipeline_status(workspace=None) # Should use default
# Try to get data using the default workspace explicitly
data = await get_namespace_data('pipeline_status', workspace='compat_test_workspace')
assert data is not None, 'Failed to initialize pipeline status with default workspace'
print('✅ PASSED: Backward Compatibility - pipeline init with None')
print(' Pipeline status initialized with default workspace')
# =============================================================================
# Test 4: Multi-Workspace Concurrency Test
# =============================================================================
@pytest.mark.offline
@pytest.mark.asyncio
async def test_multi_workspace_concurrency():
"""
Test that multiple workspaces can operate concurrently without interference.
Simulates concurrent operations on different workspaces.
"""
# Purpose: Simulate concurrent workloads touching pipeline_status across
# workspaces. Scope: initialize_pipeline_status, get_namespace_lock, and
# shared dictionary mutation while ensuring isolation.
print('\n' + '=' * 60)
print('TEST 4: Multi-Workspace Concurrency')
print('=' * 60)
initialize_share_data()
async def workspace_operations(workspace_id):
"""Simulate operations on a specific workspace"""
print(f'\n [{workspace_id}] Starting operations')
# Initialize pipeline status
await initialize_pipeline_status(workspace_id)
# Get lock and perform operations
lock = get_namespace_lock('test_operations', workspace_id)
async with lock:
# Get workspace data
data = await get_namespace_data('pipeline_status', workspace=workspace_id)
# Modify data
data[f'{workspace_id}_key'] = f'{workspace_id}_value'
data['timestamp'] = time.time()
# Simulate some work
await asyncio.sleep(0.1)
print(f' [{workspace_id}] Completed operations')
return workspace_id
# Run multiple workspaces concurrently
workspaces = ['concurrent_ws_1', 'concurrent_ws_2', 'concurrent_ws_3']
start = time.time()
results_list = await asyncio.gather(*[workspace_operations(ws) for ws in workspaces])
elapsed = time.time() - start
print(f'\n All workspaces completed in {elapsed:.2f}s')
# Verify all workspaces completed
assert set(results_list) == set(workspaces), 'Not all workspaces completed'
print('✅ PASSED: Multi-Workspace Concurrency - Execution')
print(f' All {len(workspaces)} workspaces completed successfully in {elapsed:.2f}s')
# Verify data isolation - each workspace should have its own data
print('\n Verifying data isolation...')
for ws in workspaces:
data = await get_namespace_data('pipeline_status', workspace=ws)
expected_key = f'{ws}_key'
expected_value = f'{ws}_value'
assert expected_key in data, f'Data not properly isolated for {ws}: missing {expected_key}'
assert data[expected_key] == expected_value, (
f'Data not properly isolated for {ws}: {expected_key}={data[expected_key]} (expected {expected_value})'
)
print(f' [{ws}] Data correctly isolated: {expected_key}={data[expected_key]}')
print('✅ PASSED: Multi-Workspace Concurrency - Data Isolation')
print(' All workspaces have properly isolated data')
# =============================================================================
# Test 5: NamespaceLock Re-entrance Protection
# =============================================================================
@pytest.mark.offline
@pytest.mark.asyncio
async def test_namespace_lock_reentrance():
"""
Test that NamespaceLock prevents re-entrance in the same coroutine
and allows concurrent use in different coroutines.
"""
# Purpose: Ensure NamespaceLock enforces single entry per coroutine while
# allowing concurrent reuse through ContextVar isolation. Scope: lock
# re-entrance checks and concurrent gather semantics.
print('\n' + '=' * 60)
print('TEST 5: NamespaceLock Re-entrance Protection')
print('=' * 60)
# Test 5.1: Same coroutine re-entrance should fail
print('\nTest 5.1: Same coroutine re-entrance should raise RuntimeError')
lock = get_namespace_lock('test_reentrance', 'test_ws')
reentrance_failed_correctly = False
try:
async with lock:
print(' Acquired lock first time')
# Try to acquire the same lock again in the same coroutine
async with lock:
print(' ERROR: Should not reach here - re-entrance succeeded!')
except RuntimeError as e:
if 'already acquired' in str(e).lower():
print(f' ✓ Re-entrance correctly blocked: {e}')
reentrance_failed_correctly = True
else:
raise
assert reentrance_failed_correctly, 'Re-entrance protection not working'
print('✅ PASSED: NamespaceLock Re-entrance Protection')
print(' Re-entrance correctly raises RuntimeError')
# Test 5.2: Same NamespaceLock instance in different coroutines should succeed
print('\nTest 5.2: Same NamespaceLock instance in different coroutines')
shared_lock = get_namespace_lock('test_concurrent', 'test_ws')
concurrent_results = []
async def use_shared_lock(coroutine_id):
"""Use the same NamespaceLock instance"""
async with shared_lock:
concurrent_results.append(f'coroutine_{coroutine_id}_start')
await asyncio.sleep(0.1)
concurrent_results.append(f'coroutine_{coroutine_id}_end')
# This should work because each coroutine gets its own ContextVar
await asyncio.gather(
use_shared_lock(1),
use_shared_lock(2),
)
# Both coroutines should have completed
expected_entries = 4 # 2 starts + 2 ends
assert len(concurrent_results) == expected_entries, (
f'Expected {expected_entries} entries, got {len(concurrent_results)}'
)
print('✅ PASSED: NamespaceLock Concurrent Reuse')
print(f' Same NamespaceLock instance used successfully in {expected_entries // 2} concurrent coroutines')
# =============================================================================
# Test 6: Different Namespace Lock Isolation
# =============================================================================
@pytest.mark.offline
@pytest.mark.asyncio
async def test_different_namespace_lock_isolation():
"""
Test that locks for different namespaces (same workspace) are independent.
"""
# Purpose: Confirm that namespace isolation is enforced even when workspace
# is the same. Scope: get_namespace_lock behavior when namespaces differ.
print('\n' + '=' * 60)
print('TEST 6: Different Namespace Lock Isolation')
print('=' * 60)
print('\nTesting locks with same workspace but different namespaces')
workload = [
('ns_a', 'same_ws', 'namespace_a'),
('ns_b', 'same_ws', 'namespace_b'),
('ns_c', 'same_ws', 'namespace_c'),
]
max_parallel, timeline, metrics = await _measure_lock_parallelism(workload)
assert max_parallel >= 2, (
'Different namespaces within the same workspace should run concurrently; '
f'observed max concurrency {max_parallel} with timeline {timeline}'
)
print('✅ PASSED: Different Namespace Lock Isolation')
print(f' Different namespace locks ran in parallel (max concurrency={max_parallel})')
print(f' Performance: {metrics["total_duration"]:.3f}s for {metrics["num_workers"]} namespaces')
# =============================================================================
# Test 7: Error Handling
# =============================================================================
@pytest.mark.offline
@pytest.mark.asyncio
async def test_error_handling():
"""
Test error handling for invalid workspace configurations.
"""
# Purpose: Validate guardrails for workspace normalization and namespace
# derivation. Scope: set_default_workspace conversions and get_final_namespace
# failure paths when configuration is invalid.
print('\n' + '=' * 60)
print('TEST 7: Error Handling')
print('=' * 60)
# Test 7.0: Missing default workspace should raise ValueError
print('\nTest 7.0: Missing workspace raises ValueError')
with pytest.raises(ValueError):
get_final_namespace('test_namespace', workspace=None)
# Test 7.1: set_default_workspace(None) converts to empty string
print('\nTest 7.1: set_default_workspace(None) converts to empty string')
set_default_workspace(None)
default_ws = get_default_workspace()
# Should convert None to "" automatically
assert default_ws == '', f"Expected empty string, got: '{default_ws}'"
print('✅ PASSED: Error Handling - None to Empty String')
print(f" set_default_workspace(None) correctly converts to empty string: '{default_ws}'")
# Test 7.2: Empty string workspace behavior
print('\nTest 7.2: Empty string workspace creates valid namespace')
# With empty workspace, should create namespace without colon
final_ns = get_final_namespace('test_namespace', workspace='')
assert final_ns == 'test_namespace', f"Unexpected namespace: '{final_ns}'"
print('✅ PASSED: Error Handling - Empty Workspace Namespace')
print(f" Empty workspace creates valid namespace: '{final_ns}'")
# Restore default workspace for other tests
set_default_workspace('')
# =============================================================================
# Test 8: Update Flags Workspace Isolation
# =============================================================================
@pytest.mark.offline
@pytest.mark.asyncio
async def test_update_flags_workspace_isolation():
"""
Test that update flags are properly isolated between workspaces.
"""
# Purpose: Confirm update flag setters/readers respect workspace scoping.
# Scope: set_all_update_flags, clear_all_update_flags, get_all_update_flags_status,
# and get_update_flag interactions across namespaces.
print('\n' + '=' * 60)
print('TEST 8: Update Flags Workspace Isolation')
print('=' * 60)
initialize_share_data()
workspace1 = 'update_flags_ws1'
workspace2 = 'update_flags_ws2'
test_namespace = 'test_update_flags_ns'
# Initialize namespaces for both workspaces
await initialize_pipeline_status(workspace1)
await initialize_pipeline_status(workspace2)
# Test 8.1: set_all_update_flags isolation
print('\nTest 8.1: set_all_update_flags workspace isolation')
# Create flags for both workspaces (simulating workers)
flag1_obj = await get_update_flag(test_namespace, workspace=workspace1)
flag2_obj = await get_update_flag(test_namespace, workspace=workspace2)
# Initial state should be False
assert flag1_obj.value is False, 'Flag1 initial value should be False'
assert flag2_obj.value is False, 'Flag2 initial value should be False'
# Set all flags for workspace1
await set_all_update_flags(test_namespace, workspace=workspace1)
# Check that only workspace1's flags are set
assert flag1_obj.value is True, f'Flag1 should be True after set_all_update_flags, got {flag1_obj.value}'
assert flag2_obj.value is False, f'Flag2 should still be False, got {flag2_obj.value}'
print('✅ PASSED: Update Flags - set_all_update_flags Isolation')
print(f' set_all_update_flags isolated: ws1={flag1_obj.value}, ws2={flag2_obj.value}')
# Test 8.2: clear_all_update_flags isolation
print('\nTest 8.2: clear_all_update_flags workspace isolation')
# Set flags for both workspaces
await set_all_update_flags(test_namespace, workspace=workspace1)
await set_all_update_flags(test_namespace, workspace=workspace2)
# Verify both are set
assert flag1_obj.value is True, 'Flag1 should be True'
assert flag2_obj.value is True, 'Flag2 should be True'
# Clear only workspace1
await clear_all_update_flags(test_namespace, workspace=workspace1)
# Check that only workspace1's flags are cleared
assert flag1_obj.value is False, f'Flag1 should be False after clear, got {flag1_obj.value}'
assert flag2_obj.value is True, f'Flag2 should still be True, got {flag2_obj.value}'
print('✅ PASSED: Update Flags - clear_all_update_flags Isolation')
print(f' clear_all_update_flags isolated: ws1={flag1_obj.value}, ws2={flag2_obj.value}')
# Test 8.3: get_all_update_flags_status workspace filtering
print('\nTest 8.3: get_all_update_flags_status workspace filtering')
# Initialize more namespaces for testing
await get_update_flag('ns_a', workspace=workspace1)
await get_update_flag('ns_b', workspace=workspace1)
await get_update_flag('ns_c', workspace=workspace2)
# Set flags for workspace1
await set_all_update_flags('ns_a', workspace=workspace1)
await set_all_update_flags('ns_b', workspace=workspace1)
# Set flags for workspace2
await set_all_update_flags('ns_c', workspace=workspace2)
# Get status for workspace1 only
status1 = await get_all_update_flags_status(workspace=workspace1)
# Check that workspace1's namespaces are present
# The keys should include workspace1's namespaces but not workspace2's
workspace1_keys = [k for k in status1 if workspace1 in k]
workspace2_keys = [k for k in status1 if workspace2 in k]
assert len(workspace1_keys) > 0, f'workspace1 keys should be present, got {len(workspace1_keys)}'
assert len(workspace2_keys) == 0, f'workspace2 keys should not be present, got {len(workspace2_keys)}'
for key, values in status1.items():
assert all(values), f'All flags in {key} should be True, got {values}'
# Workspace2 query should only surface workspace2 namespaces
status2 = await get_all_update_flags_status(workspace=workspace2)
expected_ws2_keys = {
f'{workspace2}:{test_namespace}',
f'{workspace2}:ns_c',
}
assert set(status2.keys()) == expected_ws2_keys, f'Unexpected namespaces for workspace2: {status2.keys()}'
for key, values in status2.items():
assert all(values), f'All flags in {key} should be True, got {values}'
print('✅ PASSED: Update Flags - get_all_update_flags_status Filtering')
print(f' Status correctly filtered: ws1 keys={len(workspace1_keys)}, ws2 keys={len(workspace2_keys)}')
# =============================================================================
# Test 9: Empty Workspace Standardization
# =============================================================================
@pytest.mark.offline
@pytest.mark.asyncio
async def test_empty_workspace_standardization():
"""
Test that empty workspace is properly standardized to "" instead of "_".
"""
# Purpose: Verify namespace formatting when workspace is an empty string.
# Scope: get_final_namespace output and initialize_pipeline_status behavior
# between empty and non-empty workspaces.
print('\n' + '=' * 60)
print('TEST 9: Empty Workspace Standardization')
print('=' * 60)
# Test 9.1: Empty string workspace creates namespace without colon
print('\nTest 9.1: Empty string workspace namespace format')
set_default_workspace('')
final_ns = get_final_namespace('test_namespace', workspace=None)
# Should be just "test_namespace" without colon prefix
assert final_ns == 'test_namespace', f"Unexpected namespace format: '{final_ns}' (expected 'test_namespace')"
print('✅ PASSED: Empty Workspace Standardization - Format')
print(f" Empty workspace creates correct namespace: '{final_ns}'")
# Test 9.2: Empty workspace vs non-empty workspace behavior
print('\nTest 9.2: Empty vs non-empty workspace behavior')
initialize_share_data()
# Initialize with empty workspace
await initialize_pipeline_status(workspace='')
data_empty = await get_namespace_data('pipeline_status', workspace='')
# Initialize with non-empty workspace
await initialize_pipeline_status(workspace='test_ws')
data_nonempty = await get_namespace_data('pipeline_status', workspace='test_ws')
# They should be different objects
assert data_empty is not data_nonempty, 'Empty and non-empty workspaces share data (should be independent)'
print('✅ PASSED: Empty Workspace Standardization - Behavior')
print(' Empty and non-empty workspaces have independent data')
# =============================================================================
# Test 10: JsonKVStorage Workspace Isolation (Integration Test)
# =============================================================================
@pytest.mark.offline
@pytest.mark.asyncio
async def test_json_kv_storage_workspace_isolation(keep_test_artifacts):
"""
Integration test: Verify JsonKVStorage properly isolates data between workspaces.
Creates two JsonKVStorage instances with different workspaces, writes different data,
and verifies they don't mix.
"""
# Purpose: Ensure JsonKVStorage respects workspace-specific directories and data.
# Scope: storage initialization, upsert/get_by_id operations, and filesystem layout
# inside the temporary working directory.
print('\n' + '=' * 60)
print('TEST 10: JsonKVStorage Workspace Isolation (Integration)')
print('=' * 60)
# Create temporary test directory under project temp/
test_dir = str(Path(__file__).parent.parent / 'temp/test_json_kv_storage_workspace_isolation')
if os.path.exists(test_dir):
shutil.rmtree(test_dir)
os.makedirs(test_dir, exist_ok=True)
print(f'\n Using test directory: {test_dir}')
try:
initialize_share_data()
# Mock embedding function
async def mock_embedding_func(texts: list[str]) -> np.ndarray:
return np.random.rand(len(texts), 384) # 384-dimensional vectors
# Global config
global_config = {
'working_dir': test_dir,
'embedding_batch_num': 10,
}
# Test 10.1: Create two JsonKVStorage instances with different workspaces
print('\nTest 10.1: Create two JsonKVStorage instances with different workspaces')
from lightrag.kg.json_kv_impl import JsonKVStorage
storage1 = JsonKVStorage(
namespace='entities',
workspace='workspace1',
global_config=global_config,
embedding_func=EmbeddingFunc(embedding_dim=384, max_token_size=8192, func=mock_embedding_func),
)
storage2 = JsonKVStorage(
namespace='entities',
workspace='workspace2',
global_config=global_config,
embedding_func=EmbeddingFunc(embedding_dim=384, max_token_size=8192, func=mock_embedding_func),
)
# Initialize both storages
await storage1.initialize()
await storage2.initialize()
print(' Storage1 created: workspace=workspace1, namespace=entities')
print(' Storage2 created: workspace=workspace2, namespace=entities')
# Test 10.2: Write different data to each storage
print('\nTest 10.2: Write different data to each storage')
# Write to storage1 (upsert expects dict[str, dict])
await storage1.upsert(
{
'entity1': {
'content': 'Data from workspace1 - AI Research',
'type': 'entity',
},
'entity2': {
'content': 'Data from workspace1 - Machine Learning',
'type': 'entity',
},
}
)
print(' Written to storage1: entity1, entity2')
# Persist data to disk
await storage1.index_done_callback()
print(' Persisted storage1 data to disk')
# Write to storage2
await storage2.upsert(
{
'entity1': {
'content': 'Data from workspace2 - Deep Learning',
'type': 'entity',
},
'entity2': {
'content': 'Data from workspace2 - Neural Networks',
'type': 'entity',
},
}
)
print(' Written to storage2: entity1, entity2')
# Persist data to disk
await storage2.index_done_callback()
print(' Persisted storage2 data to disk')
# Test 10.3: Read data from each storage and verify isolation
print('\nTest 10.3: Read data and verify isolation')
# Read from storage1
result1_entity1 = await storage1.get_by_id('entity1')
result1_entity2 = await storage1.get_by_id('entity2')
# Read from storage2
result2_entity1 = await storage2.get_by_id('entity1')
result2_entity2 = await storage2.get_by_id('entity2')
print(f' Storage1 entity1: {result1_entity1}')
print(f' Storage1 entity2: {result1_entity2}')
print(f' Storage2 entity1: {result2_entity1}')
print(f' Storage2 entity2: {result2_entity2}')
# Verify isolation (get_by_id returns dict)
assert result1_entity1 is not None, 'Storage1 entity1 should not be None'
assert result1_entity2 is not None, 'Storage1 entity2 should not be None'
assert result2_entity1 is not None, 'Storage2 entity1 should not be None'
assert result2_entity2 is not None, 'Storage2 entity2 should not be None'
assert result1_entity1.get('content') == 'Data from workspace1 - AI Research', (
'Storage1 entity1 content mismatch'
)
assert result1_entity2.get('content') == 'Data from workspace1 - Machine Learning', (
'Storage1 entity2 content mismatch'
)
assert result2_entity1.get('content') == 'Data from workspace2 - Deep Learning', (
'Storage2 entity1 content mismatch'
)
assert result2_entity2.get('content') == 'Data from workspace2 - Neural Networks', (
'Storage2 entity2 content mismatch'
)
assert result1_entity1.get('content') != result2_entity1.get('content'), (
'Storage1 and Storage2 entity1 should have different content'
)
assert result1_entity2.get('content') != result2_entity2.get('content'), (
'Storage1 and Storage2 entity2 should have different content'
)
print('✅ PASSED: JsonKVStorage - Data Isolation')
print(' Two storage instances correctly isolated: ws1 and ws2 have different data')
# Test 10.4: Verify file structure
print('\nTest 10.4: Verify file structure')
ws1_dir = Path(test_dir) / 'workspace1'
ws2_dir = Path(test_dir) / 'workspace2'
ws1_exists = ws1_dir.exists()
ws2_exists = ws2_dir.exists()
print(f' workspace1 directory exists: {ws1_exists}')
print(f' workspace2 directory exists: {ws2_exists}')
assert ws1_exists, 'workspace1 directory should exist'
assert ws2_exists, 'workspace2 directory should exist'
print('✅ PASSED: JsonKVStorage - File Structure')
print(f' Workspace directories correctly created: {ws1_dir} and {ws2_dir}')
finally:
# Cleanup test directory (unless keep_test_artifacts is set)
if os.path.exists(test_dir) and not keep_test_artifacts:
shutil.rmtree(test_dir)
print(f'\n Cleaned up test directory: {test_dir}')
elif keep_test_artifacts:
print(f'\n Kept test directory for inspection: {test_dir}')
# =============================================================================
# Test 11: LightRAG End-to-End Integration Test
# =============================================================================
@pytest.mark.offline
@pytest.mark.asyncio
async def test_lightrag_end_to_end_workspace_isolation(keep_test_artifacts):
"""
End-to-end test: Create two LightRAG instances with different workspaces,
insert different data, and verify file separation.
Uses mock LLM and embedding functions to avoid external API calls.
"""
# Purpose: Validate that full LightRAG flows keep artifacts scoped per workspace.
# Scope: LightRAG.initialize_storages + ainsert side effects plus filesystem
# verification for generated storage files.
print('\n' + '=' * 60)
print('TEST 11: LightRAG End-to-End Workspace Isolation')
print('=' * 60)
# Create temporary test directory under project temp/
test_dir = str(Path(__file__).parent.parent / 'temp/test_lightrag_end_to_end_workspace_isolation')
if os.path.exists(test_dir):
shutil.rmtree(test_dir)
os.makedirs(test_dir, exist_ok=True)
print(f'\n Using test directory: {test_dir}')
try:
# Factory function to create different mock LLM functions for each workspace
def create_mock_llm_func(workspace_name):
"""Create a mock LLM function that returns different content based on workspace"""
async def mock_llm_func(prompt, system_prompt=None, history_messages=None, **kwargs) -> str:
if history_messages is None:
history_messages = []
# Add coroutine switching to simulate async I/O and allow concurrent execution
await asyncio.sleep(0)
# Return different responses based on workspace
# Format: entity<|#|>entity_name<|#|>entity_type<|#|>entity_description
# Format: relation<|#|>source_entity<|#|>target_entity<|#|>keywords<|#|>description
if workspace_name == 'project_a':
return """entity<|#|>Artificial Intelligence<|#|>concept<|#|>AI is a field of computer science focused on creating intelligent machines.
entity<|#|>Machine Learning<|#|>concept<|#|>Machine Learning is a subset of AI that enables systems to learn from data.
relation<|#|>Machine Learning<|#|>Artificial Intelligence<|#|>subset, related field<|#|>Machine Learning is a key component and subset of Artificial Intelligence.
<|COMPLETE|>"""
else: # project_b
return """entity<|#|>Deep Learning<|#|>concept<|#|>Deep Learning is a subset of machine learning using neural networks with multiple layers.
entity<|#|>Neural Networks<|#|>concept<|#|>Neural Networks are computing systems inspired by biological neural networks.
relation<|#|>Deep Learning<|#|>Neural Networks<|#|>uses, composed of<|#|>Deep Learning uses multiple layers of Neural Networks to learn representations.
<|COMPLETE|>"""
return mock_llm_func
# Mock embedding function
async def mock_embedding_func(texts: list[str]) -> np.ndarray:
# Add coroutine switching to simulate async I/O and allow concurrent execution
await asyncio.sleep(0)
return np.random.rand(len(texts), 384) # 384-dimensional vectors
# Test 11.1: Create two LightRAG instances with different workspaces
print('\nTest 11.1: Create two LightRAG instances with different workspaces')
from lightrag import LightRAG
from lightrag.utils import EmbeddingFunc, Tokenizer
# Create different mock LLM functions for each workspace
mock_llm_func_a = create_mock_llm_func('project_a')
mock_llm_func_b = create_mock_llm_func('project_b')
class _SimpleTokenizerImpl:
def encode(self, content: str) -> list[int]:
return [ord(ch) for ch in content]
def decode(self, tokens: list[int]) -> str:
return ''.join(chr(t) for t in tokens)
tokenizer = Tokenizer('mock-tokenizer', _SimpleTokenizerImpl())
rag1 = LightRAG(
working_dir=test_dir,
workspace='project_a',
llm_model_func=mock_llm_func_a,
embedding_func=EmbeddingFunc(
embedding_dim=384,
max_token_size=8192,
func=mock_embedding_func,
),
tokenizer=tokenizer,
)
rag2 = LightRAG(
working_dir=test_dir,
workspace='project_b',
llm_model_func=mock_llm_func_b,
embedding_func=EmbeddingFunc(
embedding_dim=384,
max_token_size=8192,
func=mock_embedding_func,
),
tokenizer=tokenizer,
)
# Initialize storages
await rag1.initialize_storages()
await rag2.initialize_storages()
print(' RAG1 created: workspace=project_a')
print(' RAG2 created: workspace=project_b')
# Test 11.2: Insert different data to each RAG instance (CONCURRENTLY)
print('\nTest 11.2: Insert different data to each RAG instance (concurrently)')
text_for_project_a = (
'This document is about Artificial Intelligence and Machine Learning. AI is transforming the world.'
)
text_for_project_b = (
'This document is about Deep Learning and Neural Networks. Deep learning uses multiple layers.'
)
# Insert to both projects concurrently to test workspace isolation under concurrent load
print(' Starting concurrent insert operations...')
start_time = time.time()
await asyncio.gather(rag1.ainsert(text_for_project_a), rag2.ainsert(text_for_project_b))
elapsed_time = time.time() - start_time
print(f' Inserted to project_a: {len(text_for_project_a)} chars (concurrent)')
print(f' Inserted to project_b: {len(text_for_project_b)} chars (concurrent)')
print(f' Total concurrent execution time: {elapsed_time:.3f}s')
# Test 11.3: Verify file structure
print('\nTest 11.3: Verify workspace directory structure')
project_a_dir = Path(test_dir) / 'project_a'
project_b_dir = Path(test_dir) / 'project_b'
project_a_exists = project_a_dir.exists()
project_b_exists = project_b_dir.exists()
print(f' project_a directory: {project_a_dir}')
print(f' project_a exists: {project_a_exists}')
print(f' project_b directory: {project_b_dir}')
print(f' project_b exists: {project_b_exists}')
assert project_a_exists, 'project_a directory should exist'
assert project_b_exists, 'project_b directory should exist'
# List files in each directory
print('\n Files in project_a/:')
for file in sorted(project_a_dir.glob('*')):
if file.is_file():
size = file.stat().st_size
print(f' - {file.name} ({size} bytes)')
print('\n Files in project_b/:')
for file in sorted(project_b_dir.glob('*')):
if file.is_file():
size = file.stat().st_size
print(f' - {file.name} ({size} bytes)')
print('✅ PASSED: LightRAG E2E - File Structure')
print(' Workspace directories correctly created and separated')
# Test 11.4: Verify data isolation by checking file contents
print('\nTest 11.4: Verify data isolation (check file contents)')
# Check if full_docs storage files exist and contain different content
docs_a_file = project_a_dir / 'kv_store_full_docs.json'
docs_b_file = project_b_dir / 'kv_store_full_docs.json'
if docs_a_file.exists() and docs_b_file.exists():
import json
with open(docs_a_file) as f:
docs_a_content = json.load(f)
with open(docs_b_file) as f:
docs_b_content = json.load(f)
print(f' project_a doc count: {len(docs_a_content)}')
print(f' project_b doc count: {len(docs_b_content)}')
# Verify they contain different data
assert docs_a_content != docs_b_content, 'Document storage not properly isolated'
# Verify each workspace contains its own text content
docs_a_str = json.dumps(docs_a_content)
docs_b_str = json.dumps(docs_b_content)
# Check project_a contains its text and NOT project_b's text
assert 'Artificial Intelligence' in docs_a_str, "project_a should contain 'Artificial Intelligence'"
assert 'Machine Learning' in docs_a_str, "project_a should contain 'Machine Learning'"
assert 'Deep Learning' not in docs_a_str, "project_a should NOT contain 'Deep Learning' from project_b"
assert 'Neural Networks' not in docs_a_str, "project_a should NOT contain 'Neural Networks' from project_b"
# Check project_b contains its text and NOT project_a's text
assert 'Deep Learning' in docs_b_str, "project_b should contain 'Deep Learning'"
assert 'Neural Networks' in docs_b_str, "project_b should contain 'Neural Networks'"
assert 'Artificial Intelligence' not in docs_b_str, (
"project_b should NOT contain 'Artificial Intelligence' from project_a"
)
# Note: "Machine Learning" might appear in project_b's text, so we skip that check
print('✅ PASSED: LightRAG E2E - Data Isolation')
print(' Document storage correctly isolated between workspaces')
print(' project_a contains only its own data')
print(' project_b contains only its own data')
else:
print(' Document storage files not found (may not be created yet)')
print('✅ PASSED: LightRAG E2E - Data Isolation')
print(' Skipped file content check (files not created)')
print('\n ✓ Test complete - workspace isolation verified at E2E level')
finally:
# Cleanup test directory (unless keep_test_artifacts is set)
if os.path.exists(test_dir) and not keep_test_artifacts:
shutil.rmtree(test_dir)
print(f'\n Cleaned up test directory: {test_dir}')
elif keep_test_artifacts:
print(f'\n Kept test directory for inspection: {test_dir}')