LightRAG/lightrag/llm/nvidia_openai.py
clssck 082a5a8fad test(lightrag,api): add comprehensive test coverage and S3 support
Add extensive test suites for API routes and utilities:
- Implement test_search_routes.py (406 lines) for search endpoint validation
- Implement test_upload_routes.py (724 lines) for document upload workflows
- Implement test_s3_client.py (618 lines) for S3 storage operations
- Implement test_citation_utils.py (352 lines) for citation extraction
- Implement test_chunking.py (216 lines) for text chunking validation
Add S3 storage client implementation:
- Create lightrag/storage/s3_client.py with S3 operations
- Add storage module initialization with exports
- Integrate S3 client with document upload handling
Enhance API routes and core functionality:
- Add search_routes.py with full-text and graph search endpoints
- Add upload_routes.py with multipart document upload support
- Update operate.py with bulk operations and health checks
- Enhance postgres_impl.py with bulk upsert and parameterized queries
- Update lightrag_server.py to register new API routes
- Improve utils.py with citation and formatting utilities
Update dependencies and configuration:
- Add S3 and test dependencies to pyproject.toml
- Update docker-compose.test.yml for testing environment
- Sync uv.lock with new dependencies
Apply code quality improvements across all modified files:
- Add type hints to function signatures
- Update imports and router initialization
- Fix logging and error handling
2025-12-05 23:13:39 +01:00

56 lines
1.6 KiB
Python

import os
import pipmaster as pm # Pipmaster for dynamic library install
# install specific modules
if not pm.is_installed('openai'):
pm.install('openai')
from typing import Literal
import numpy as np
from openai import (
APIConnectionError,
APITimeoutError,
AsyncOpenAI,
RateLimitError,
)
from tenacity import (
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
from lightrag.utils import (
wrap_embedding_func_with_attrs,
)
@wrap_embedding_func_with_attrs(embedding_dim=2048, max_token_size=8192)
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=60),
retry=retry_if_exception_type((RateLimitError, APIConnectionError, APITimeoutError)),
)
async def nvidia_openai_embed(
texts: list[str],
model: str = 'nvidia/llama-3.2-nv-embedqa-1b-v1',
# refer to https://build.nvidia.com/nim?filters=usecase%3Ausecase_text_to_embedding
base_url: str = 'https://integrate.api.nvidia.com/v1',
api_key: str | None = None,
input_type: str = 'passage', # query for retrieval, passage for embedding
trunc: str = 'NONE', # NONE or START or END
encode: Literal['float', 'base64'] = 'float', # float or base64
) -> np.ndarray:
if api_key:
os.environ['OPENAI_API_KEY'] = api_key
openai_async_client = AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
response = await openai_async_client.embeddings.create(
model=model,
input=texts,
encoding_format=encode,
extra_body={'input_type': input_type, 'truncate': trunc},
)
return np.array([dp.embedding for dp in response.data])