Add comprehensive test suites for prompt evaluation: - test_prompt_accuracy.py: 365 lines testing prompt extraction accuracy - test_prompt_quality_deep.py: 672 lines for deep quality analysis - Refactor prompt.py to consolidate optimized variants (removed prompt_optimized.py) - Apply ruff formatting and type hints across 30 files - Update pyrightconfig.json for static type checking - Modernize reproduce scripts and examples with improved type annotations - Sync uv.lock dependencies
167 lines
5.3 KiB
Python
167 lines
5.3 KiB
Python
import asyncio
|
|
from collections.abc import AsyncIterator
|
|
|
|
import pipmaster as pm # Pipmaster for dynamic library install
|
|
|
|
if not pm.is_installed('aiohttp'):
|
|
pm.install('aiohttp')
|
|
|
|
|
|
import aiohttp
|
|
import numpy as np
|
|
from tenacity import (
|
|
retry,
|
|
retry_if_exception_type,
|
|
stop_after_attempt,
|
|
wait_exponential,
|
|
)
|
|
|
|
from lightrag.exceptions import (
|
|
APIConnectionError,
|
|
APITimeoutError,
|
|
RateLimitError,
|
|
)
|
|
from lightrag.utils import (
|
|
wrap_embedding_func_with_attrs,
|
|
)
|
|
|
|
|
|
@retry(
|
|
stop=stop_after_attempt(3),
|
|
wait=wait_exponential(multiplier=1, min=4, max=10),
|
|
retry=retry_if_exception_type((RateLimitError, APIConnectionError, APITimeoutError)),
|
|
)
|
|
async def lollms_model_if_cache(
|
|
model,
|
|
prompt,
|
|
system_prompt=None,
|
|
history_messages=None,
|
|
enable_cot: bool = False,
|
|
base_url='http://localhost:9600',
|
|
**kwargs,
|
|
) -> str | AsyncIterator[str]:
|
|
"""Client implementation for lollms generation."""
|
|
if history_messages is None:
|
|
history_messages = []
|
|
if enable_cot:
|
|
from lightrag.utils import logger
|
|
|
|
logger.debug('enable_cot=True is not supported for lollms and will be ignored.')
|
|
|
|
stream = bool(kwargs.get('stream'))
|
|
api_key = kwargs.pop('api_key', None)
|
|
headers = (
|
|
{'Content-Type': 'application/json', 'Authorization': f'Bearer {api_key}'}
|
|
if api_key
|
|
else {'Content-Type': 'application/json'}
|
|
)
|
|
|
|
# Extract lollms specific parameters
|
|
request_data = {
|
|
'prompt': prompt,
|
|
'model_name': model,
|
|
'personality': kwargs.get('personality', -1),
|
|
'n_predict': kwargs.get('n_predict'),
|
|
'stream': stream,
|
|
'temperature': kwargs.get('temperature', 1.0),
|
|
'top_k': kwargs.get('top_k', 50),
|
|
'top_p': kwargs.get('top_p', 0.95),
|
|
'repeat_penalty': kwargs.get('repeat_penalty', 0.8),
|
|
'repeat_last_n': kwargs.get('repeat_last_n', 40),
|
|
'seed': kwargs.get('seed'),
|
|
'n_threads': kwargs.get('n_threads', 8),
|
|
}
|
|
|
|
# Prepare the full prompt including history
|
|
prompt_parts = []
|
|
if system_prompt:
|
|
prompt_parts.append(f'{system_prompt}\n')
|
|
for msg in history_messages:
|
|
prompt_parts.append(f'{msg["role"]}: {msg["content"]}\n')
|
|
prompt_parts.append(prompt)
|
|
full_prompt = ''.join(prompt_parts)
|
|
|
|
request_data['prompt'] = full_prompt
|
|
timeout = aiohttp.ClientTimeout(total=kwargs.get('timeout', 300))
|
|
|
|
async with aiohttp.ClientSession(timeout=timeout, headers=headers) as session:
|
|
if stream:
|
|
|
|
async def inner():
|
|
async with session.post(f'{base_url}/lollms_generate', json=request_data) as response:
|
|
async for line in response.content:
|
|
yield line.decode().strip()
|
|
|
|
return inner()
|
|
else:
|
|
async with session.post(f'{base_url}/lollms_generate', json=request_data) as response:
|
|
return await response.text()
|
|
|
|
|
|
async def lollms_model_complete(
|
|
prompt,
|
|
system_prompt=None,
|
|
history_messages=None,
|
|
enable_cot: bool = False,
|
|
keyword_extraction=False,
|
|
**kwargs,
|
|
) -> str | AsyncIterator[str]:
|
|
"""Complete function for lollms model generation."""
|
|
|
|
if history_messages is None:
|
|
history_messages = []
|
|
|
|
# Get model name from config
|
|
try:
|
|
model_name = kwargs['hashing_kv'].global_config['llm_model_name']
|
|
except (KeyError, AttributeError) as exc:
|
|
raise ValueError('Missing required configuration: hashing_kv.global_config.llm_model_name') from exc
|
|
|
|
# If keyword extraction is needed, we might need to modify the prompt
|
|
# or add specific parameters for JSON output (if lollms supports it)
|
|
if keyword_extraction:
|
|
# Note: You might need to adjust this based on how lollms handles structured output
|
|
pass
|
|
|
|
return await lollms_model_if_cache(
|
|
model_name,
|
|
prompt,
|
|
system_prompt=system_prompt,
|
|
history_messages=history_messages,
|
|
enable_cot=enable_cot,
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
@wrap_embedding_func_with_attrs(embedding_dim=1024, max_token_size=8192)
|
|
async def lollms_embed(texts: list[str], embed_model=None, base_url='http://localhost:9600', **kwargs) -> np.ndarray:
|
|
"""
|
|
Generate embeddings for a list of texts using lollms server.
|
|
|
|
Args:
|
|
texts: List of strings to embed
|
|
embed_model: Model name (not used directly as lollms uses configured vectorizer)
|
|
base_url: URL of the lollms server
|
|
**kwargs: Additional arguments passed to the request
|
|
|
|
Returns:
|
|
np.ndarray: Array of embeddings
|
|
"""
|
|
api_key = kwargs.pop('api_key', None)
|
|
headers = (
|
|
{'Content-Type': 'application/json', 'Authorization': f'Bearer {api_key}'}
|
|
if api_key
|
|
else {'Content-Type': 'application/json'}
|
|
)
|
|
async with aiohttp.ClientSession(headers=headers) as session:
|
|
async def fetch_embedding(text: str):
|
|
request_data = {'text': text}
|
|
async with session.post(f'{base_url}/lollms_embed', json=request_data) as response:
|
|
result = await response.json()
|
|
if 'vector' not in result:
|
|
raise ValueError(f'Unexpected embedding response format: {result}')
|
|
return result['vector']
|
|
|
|
embeddings = await asyncio.gather(*[fetch_embedding(text) for text in texts])
|
|
|
|
return np.array(embeddings)
|