LightRAG/lightrag/llm/lmdeploy.py
clssck 69358d830d test(lightrag,examples,api): comprehensive ruff formatting and type hints
Format entire codebase with ruff and add type hints across all modules:
- Apply ruff formatting to all Python files (121 files, 17K insertions)
- Add type hints to function signatures throughout lightrag core and API
- Update test suite with improved type annotations and docstrings
- Add pyrightconfig.json for static type checking configuration
- Create prompt_optimized.py and test_extraction_prompt_ab.py test files
- Update ruff.toml and .gitignore for improved linting configuration
- Standardize code style across examples, reproduce scripts, and utilities
2025-12-05 15:17:06 +01:00

148 lines
4.9 KiB
Python

import pipmaster as pm # Pipmaster for dynamic library install
# install specific modules
if not pm.is_installed('lmdeploy'):
pm.install('lmdeploy[all]')
from functools import lru_cache
from tenacity import (
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
from lightrag.exceptions import (
APIConnectionError,
APITimeoutError,
RateLimitError,
)
@lru_cache(maxsize=1)
def initialize_lmdeploy_pipeline(
model,
tp=1,
chat_template=None,
log_level='WARNING',
model_format='hf',
quant_policy=0,
):
from lmdeploy import ChatTemplateConfig, TurbomindEngineConfig, pipeline
lmdeploy_pipe = pipeline(
model_path=model,
backend_config=TurbomindEngineConfig(tp=tp, model_format=model_format, quant_policy=quant_policy),
chat_template_config=(ChatTemplateConfig(model_name=chat_template) if chat_template else None),
log_level='WARNING',
)
return lmdeploy_pipe
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10),
retry=retry_if_exception_type((RateLimitError, APIConnectionError, APITimeoutError)),
)
async def lmdeploy_model_if_cache(
model,
prompt,
system_prompt=None,
history_messages=None,
enable_cot: bool = False,
chat_template=None,
model_format='hf',
quant_policy=0,
**kwargs,
) -> str:
"""
Args:
model (str): The path to the model.
It could be one of the following options:
- i) A local directory path of a turbomind model which is
converted by `lmdeploy convert` command or download
from ii) and iii).
- ii) The model_id of a lmdeploy-quantized model hosted
inside a model repo on huggingface.co, such as
"InternLM/internlm-chat-20b-4bit",
"lmdeploy/llama2-chat-70b-4bit", etc.
- iii) The model_id of a model hosted inside a model repo
on huggingface.co, such as "internlm/internlm-chat-7b",
"Qwen/Qwen-7B-Chat ", "baichuan-inc/Baichuan2-7B-Chat"
and so on.
chat_template (str): needed when model is a pytorch model on
huggingface.co, such as "internlm-chat-7b",
"Qwen-7B-Chat ", "Baichuan2-7B-Chat" and so on,
and when the model name of local path did not match the original model name in HF.
tp (int): tensor parallel
prompt (Union[str, List[str]]): input texts to be completed.
do_preprocess (bool): whether pre-process the messages. Default to
True, which means chat_template will be applied.
skip_special_tokens (bool): Whether or not to remove special tokens
in the decoding. Default to be True.
do_sample (bool): Whether or not to use sampling, use greedy decoding otherwise.
Default to be False, which means greedy decoding will be applied.
"""
if history_messages is None:
history_messages = []
if enable_cot:
from lightrag.utils import logger
logger.debug('enable_cot=True is not supported for lmdeploy and will be ignored.')
try:
import lmdeploy
from lmdeploy import GenerationConfig, version_info
except Exception as e:
raise ImportError('Please install lmdeploy before initialize lmdeploy backend.') from e
kwargs.pop('hashing_kv', None)
kwargs.pop('response_format', None)
max_new_tokens = kwargs.pop('max_tokens', 512)
tp = kwargs.pop('tp', 1)
skip_special_tokens = kwargs.pop('skip_special_tokens', True)
do_preprocess = kwargs.pop('do_preprocess', True)
do_sample = kwargs.pop('do_sample', False)
gen_params = kwargs
version = version_info
if do_sample is not None and version < (0, 6, 0):
raise RuntimeError(
'`do_sample` parameter is not supported by lmdeploy until '
f'v0.6.0, but currently using lmdeloy {lmdeploy.__version__}'
)
else:
do_sample = True
gen_params.update(do_sample=do_sample)
lmdeploy_pipe = initialize_lmdeploy_pipeline(
model=model,
tp=tp,
chat_template=chat_template,
model_format=model_format,
quant_policy=quant_policy,
log_level='WARNING',
)
messages = []
if system_prompt:
messages.append({'role': 'system', 'content': system_prompt})
messages.extend(history_messages)
messages.append({'role': 'user', 'content': prompt})
gen_config = GenerationConfig(
skip_special_tokens=skip_special_tokens,
max_new_tokens=max_new_tokens,
**gen_params,
)
response = ''
async for res in lmdeploy_pipe.generate(
messages,
gen_config=gen_config,
do_preprocess=do_preprocess,
stream_response=False,
session_id=1,
):
response += res.response
return response