Add comprehensive test suites for prompt evaluation: - test_prompt_accuracy.py: 365 lines testing prompt extraction accuracy - test_prompt_quality_deep.py: 672 lines for deep quality analysis - Refactor prompt.py to consolidate optimized variants (removed prompt_optimized.py) - Apply ruff formatting and type hints across 30 files - Update pyrightconfig.json for static type checking - Modernize reproduce scripts and examples with improved type annotations - Sync uv.lock dependencies
143 lines
5.5 KiB
Python
143 lines
5.5 KiB
Python
import os
|
|
|
|
import pipmaster as pm # Pipmaster for dynamic library install
|
|
|
|
# install specific modules
|
|
if not pm.is_installed('aiohttp'):
|
|
pm.install('aiohttp')
|
|
if not pm.is_installed('tenacity'):
|
|
pm.install('tenacity')
|
|
|
|
import base64
|
|
|
|
import aiohttp
|
|
import numpy as np
|
|
from tenacity import (
|
|
retry,
|
|
retry_if_exception_type,
|
|
stop_after_attempt,
|
|
wait_exponential,
|
|
)
|
|
|
|
from lightrag.utils import logger, wrap_embedding_func_with_attrs
|
|
|
|
|
|
async def fetch_data(url, headers, data):
|
|
async with (
|
|
aiohttp.ClientSession() as session,
|
|
session.post(url, headers=headers, json=data) as response,
|
|
):
|
|
if response.status != 200:
|
|
error_text = await response.text()
|
|
|
|
# Check if the error response is HTML (common for 502, 503, etc.)
|
|
content_type = response.headers.get('content-type', '').lower()
|
|
is_html_error = error_text.strip().startswith('<!DOCTYPE html>') or 'text/html' in content_type
|
|
|
|
if is_html_error:
|
|
# Provide clean, user-friendly error messages for HTML error pages
|
|
if response.status == 502:
|
|
clean_error = 'Bad Gateway (502) - Jina AI service temporarily unavailable. Please try again in a few minutes.'
|
|
elif response.status == 503:
|
|
clean_error = (
|
|
'Service Unavailable (503) - Jina AI service is temporarily overloaded. Please try again later.'
|
|
)
|
|
elif response.status == 504:
|
|
clean_error = 'Gateway Timeout (504) - Jina AI service request timed out. Please try again.'
|
|
else:
|
|
clean_error = f'HTTP {response.status} - Jina AI service error. Please try again later.'
|
|
else:
|
|
# Use original error text if it's not HTML
|
|
clean_error = error_text
|
|
|
|
logger.error(f'Jina API error {response.status}: {clean_error}')
|
|
raise aiohttp.ClientResponseError(
|
|
request_info=response.request_info,
|
|
history=response.history,
|
|
status=response.status,
|
|
message=f'Jina API error: {clean_error}',
|
|
)
|
|
response_json = await response.json()
|
|
data_list = response_json.get('data', [])
|
|
return data_list
|
|
|
|
|
|
@wrap_embedding_func_with_attrs(embedding_dim=2048, max_token_size=8192)
|
|
@retry(
|
|
stop=stop_after_attempt(3),
|
|
wait=wait_exponential(multiplier=1, min=4, max=60),
|
|
retry=(retry_if_exception_type(aiohttp.ClientError) | retry_if_exception_type(aiohttp.ClientResponseError)),
|
|
)
|
|
async def jina_embed(
|
|
texts: list[str],
|
|
model: str = 'jina-embeddings-v4',
|
|
embedding_dim: int = 2048,
|
|
late_chunking: bool = False,
|
|
base_url: str | None = None,
|
|
api_key: str | None = None,
|
|
) -> np.ndarray:
|
|
"""Generate embeddings for a list of texts using Jina AI's API.
|
|
|
|
Args:
|
|
texts: List of texts to embed.
|
|
model: The Jina embedding model to use (default: jina-embeddings-v4).
|
|
Supported models: jina-embeddings-v3, jina-embeddings-v4, etc.
|
|
embedding_dim: The embedding dimensions (default: 2048 for jina-embeddings-v4).
|
|
**IMPORTANT**: This parameter is automatically injected by the EmbeddingFunc wrapper.
|
|
Do NOT manually pass this parameter when calling the function directly.
|
|
The dimension is controlled by the @wrap_embedding_func_with_attrs decorator.
|
|
Manually passing a different value will trigger a warning and be ignored.
|
|
When provided (by EmbeddingFunc), it will be passed to the Jina API for dimension reduction.
|
|
late_chunking: Whether to use late chunking.
|
|
base_url: Optional base URL for the Jina API.
|
|
api_key: Optional Jina API key. If None, uses the JINA_API_KEY environment variable.
|
|
|
|
Returns:
|
|
A numpy array of embeddings, one per input text.
|
|
|
|
Raises:
|
|
aiohttp.ClientError: If there is a connection error with the Jina API.
|
|
aiohttp.ClientResponseError: If the Jina API returns an error response.
|
|
"""
|
|
effective_api_key = api_key or os.environ.get('JINA_API_KEY')
|
|
if not effective_api_key:
|
|
raise ValueError('JINA_API_KEY environment variable is required')
|
|
|
|
url = base_url or 'https://api.jina.ai/v1/embeddings'
|
|
headers = {
|
|
'Content-Type': 'application/json',
|
|
'Authorization': f'Bearer {effective_api_key}',
|
|
}
|
|
data = {
|
|
'model': model,
|
|
'task': 'text-matching',
|
|
'dimensions': embedding_dim,
|
|
'embedding_type': 'base64',
|
|
'input': texts,
|
|
}
|
|
|
|
# Only add optional parameters if they have non-default values
|
|
if late_chunking:
|
|
data['late_chunking'] = late_chunking
|
|
|
|
logger.debug(f'Jina embedding request: {len(texts)} texts, dimensions: {embedding_dim}')
|
|
|
|
try:
|
|
data_list = await fetch_data(url, headers, data)
|
|
|
|
if not data_list:
|
|
logger.error('Jina API returned empty data list')
|
|
raise ValueError('Jina API returned empty data list')
|
|
|
|
if len(data_list) != len(texts):
|
|
logger.error(f'Jina API returned {len(data_list)} embeddings for {len(texts)} texts')
|
|
raise ValueError(f'Jina API returned {len(data_list)} embeddings for {len(texts)} texts')
|
|
|
|
embeddings = np.array([np.frombuffer(base64.b64decode(dp['embedding']), dtype=np.float32) for dp in data_list])
|
|
logger.debug(f'Jina embeddings generated: shape {embeddings.shape}')
|
|
|
|
return embeddings
|
|
|
|
except Exception as e:
|
|
logger.error(f'Jina embedding error: {e}')
|
|
raise
|