LightRAG/lightrag/kg/milvus_impl.py
clssck 69358d830d test(lightrag,examples,api): comprehensive ruff formatting and type hints
Format entire codebase with ruff and add type hints across all modules:
- Apply ruff formatting to all Python files (121 files, 17K insertions)
- Add type hints to function signatures throughout lightrag core and API
- Update test suite with improved type annotations and docstrings
- Add pyrightconfig.json for static type checking configuration
- Create prompt_optimized.py and test_extraction_prompt_ab.py test files
- Update ruff.toml and .gitignore for improved linting configuration
- Standardize code style across examples, reproduce scripts, and utilities
2025-12-05 15:17:06 +01:00

1151 lines
50 KiB
Python

import asyncio
import os
from dataclasses import dataclass
from typing import Any, final
import numpy as np
import pipmaster as pm
from lightrag.base import BaseVectorStorage
from lightrag.constants import DEFAULT_MAX_FILE_PATH_LENGTH
from lightrag.kg.shared_storage import get_data_init_lock
from lightrag.utils import compute_mdhash_id, logger
if not pm.is_installed('pymilvus'):
pm.install('pymilvus>=2.6.2')
import configparser
from pymilvus import CollectionSchema, DataType, FieldSchema, MilvusClient # type: ignore
config = configparser.ConfigParser()
config.read('config.ini', 'utf-8')
@final
@dataclass
class MilvusVectorDBStorage(BaseVectorStorage):
def _create_schema_for_namespace(self) -> CollectionSchema:
"""Create schema based on the current instance's namespace"""
# Get vector dimension from embedding_func
dimension = self.embedding_func.embedding_dim
# Base fields (common to all collections)
base_fields = [
FieldSchema(name='id', dtype=DataType.VARCHAR, max_length=64, is_primary=True),
FieldSchema(name='vector', dtype=DataType.FLOAT_VECTOR, dim=dimension),
FieldSchema(name='created_at', dtype=DataType.INT64),
]
# Determine specific fields based on namespace
if self.namespace.endswith('entities'):
specific_fields = [
FieldSchema(
name='entity_name',
dtype=DataType.VARCHAR,
max_length=512,
nullable=True,
),
FieldSchema(
name='file_path',
dtype=DataType.VARCHAR,
max_length=DEFAULT_MAX_FILE_PATH_LENGTH,
nullable=True,
),
]
description = 'LightRAG entities vector storage'
elif self.namespace.endswith('relationships'):
specific_fields = [
FieldSchema(name='src_id', dtype=DataType.VARCHAR, max_length=512, nullable=True),
FieldSchema(name='tgt_id', dtype=DataType.VARCHAR, max_length=512, nullable=True),
FieldSchema(
name='file_path',
dtype=DataType.VARCHAR,
max_length=DEFAULT_MAX_FILE_PATH_LENGTH,
nullable=True,
),
]
description = 'LightRAG relationships vector storage'
elif self.namespace.endswith('chunks'):
specific_fields = [
FieldSchema(
name='full_doc_id',
dtype=DataType.VARCHAR,
max_length=64,
nullable=True,
),
FieldSchema(
name='file_path',
dtype=DataType.VARCHAR,
max_length=DEFAULT_MAX_FILE_PATH_LENGTH,
nullable=True,
),
]
description = 'LightRAG chunks vector storage'
else:
# Default generic schema (backward compatibility)
specific_fields = [
FieldSchema(
name='file_path',
dtype=DataType.VARCHAR,
max_length=DEFAULT_MAX_FILE_PATH_LENGTH,
nullable=True,
),
]
description = 'LightRAG generic vector storage'
# Merge all fields
all_fields = base_fields + specific_fields
return CollectionSchema(
fields=all_fields,
description=description,
enable_dynamic_field=True, # Support dynamic fields
)
def _get_index_params(self):
"""Get IndexParams in a version-compatible way"""
try:
# Try to use client's prepare_index_params method (most common)
if hasattr(self._client, 'prepare_index_params'):
return self._client.prepare_index_params()
except Exception:
pass
try:
# Try to import IndexParams from different possible locations
from pymilvus.client.prepare import IndexParams
return IndexParams()
except ImportError:
pass
try:
from pymilvus.client.types import IndexParams
return IndexParams()
except ImportError:
pass
try:
from pymilvus import IndexParams
return IndexParams()
except ImportError:
pass
# If all else fails, return None to use fallback method
return None
def _create_vector_index_fallback(self):
"""Fallback method to create vector index using direct API"""
try:
self._client.create_index(
collection_name=self.final_namespace,
field_name='vector',
index_params={
'index_type': 'HNSW',
'metric_type': 'COSINE',
'params': {'M': 16, 'efConstruction': 256},
},
)
logger.debug(f'[{self.workspace}] Created vector index using fallback method')
except Exception as e:
logger.warning(f'[{self.workspace}] Failed to create vector index using fallback method: {e}')
def _create_scalar_index_fallback(self, field_name: str, index_type: str):
"""Fallback method to create scalar index using direct API"""
# Skip unsupported index types
if index_type == 'SORTED':
logger.info(
f'[{self.workspace}] Skipping SORTED index for {field_name} (not supported in this Milvus version)'
)
return
try:
self._client.create_index(
collection_name=self.final_namespace,
field_name=field_name,
index_params={'index_type': index_type},
)
logger.debug(f'[{self.workspace}] Created {field_name} index using fallback method')
except Exception as e:
logger.info(f'[{self.workspace}] Could not create {field_name} index using fallback method: {e}')
def _create_indexes_after_collection(self):
"""Create indexes after collection is created"""
try:
# Try to get IndexParams in a version-compatible way
IndexParamsClass = self._get_index_params()
if IndexParamsClass is not None:
# Use IndexParams approach if available
try:
# Create vector index first (required for most operations)
vector_index = IndexParamsClass
vector_index.add_index(
field_name='vector',
index_type='HNSW',
metric_type='COSINE',
params={'M': 16, 'efConstruction': 256},
)
self._client.create_index(collection_name=self.final_namespace, index_params=vector_index)
logger.debug(f'[{self.workspace}] Created vector index using IndexParams')
except Exception as e:
logger.debug(f'[{self.workspace}] IndexParams method failed for vector index: {e}')
self._create_vector_index_fallback()
# Create scalar indexes based on namespace
if self.namespace.endswith('entities'):
# Create indexes for entity fields
try:
entity_name_index = self._get_index_params()
entity_name_index.add_index(field_name='entity_name', index_type='INVERTED')
self._client.create_index(
collection_name=self.final_namespace,
index_params=entity_name_index,
)
except Exception as e:
logger.debug(f'[{self.workspace}] IndexParams method failed for entity_name: {e}')
self._create_scalar_index_fallback('entity_name', 'INVERTED')
elif self.namespace.endswith('relationships'):
# Create indexes for relationship fields
try:
src_id_index = self._get_index_params()
src_id_index.add_index(field_name='src_id', index_type='INVERTED')
self._client.create_index(
collection_name=self.final_namespace,
index_params=src_id_index,
)
except Exception as e:
logger.debug(f'[{self.workspace}] IndexParams method failed for src_id: {e}')
self._create_scalar_index_fallback('src_id', 'INVERTED')
try:
tgt_id_index = self._get_index_params()
tgt_id_index.add_index(field_name='tgt_id', index_type='INVERTED')
self._client.create_index(
collection_name=self.final_namespace,
index_params=tgt_id_index,
)
except Exception as e:
logger.debug(f'[{self.workspace}] IndexParams method failed for tgt_id: {e}')
self._create_scalar_index_fallback('tgt_id', 'INVERTED')
elif self.namespace.endswith('chunks'):
# Create indexes for chunk fields
try:
doc_id_index = self._get_index_params()
doc_id_index.add_index(field_name='full_doc_id', index_type='INVERTED')
self._client.create_index(
collection_name=self.final_namespace,
index_params=doc_id_index,
)
except Exception as e:
logger.debug(f'[{self.workspace}] IndexParams method failed for full_doc_id: {e}')
self._create_scalar_index_fallback('full_doc_id', 'INVERTED')
# No common indexes needed
else:
# Fallback to direct API calls if IndexParams is not available
logger.info(
f'[{self.workspace}] IndexParams not available, using fallback methods for {self.namespace}'
)
# Create vector index using fallback
self._create_vector_index_fallback()
# Create scalar indexes using fallback
if self.namespace.endswith('entities'):
self._create_scalar_index_fallback('entity_name', 'INVERTED')
elif self.namespace.endswith('relationships'):
self._create_scalar_index_fallback('src_id', 'INVERTED')
self._create_scalar_index_fallback('tgt_id', 'INVERTED')
elif self.namespace.endswith('chunks'):
self._create_scalar_index_fallback('full_doc_id', 'INVERTED')
logger.info(f'[{self.workspace}] Created indexes for collection: {self.namespace}')
except Exception as e:
logger.warning(f'[{self.workspace}] Failed to create some indexes for {self.namespace}: {e}')
def _get_required_fields_for_namespace(self) -> dict:
"""Get required core field definitions for current namespace"""
# Base fields (common to all types)
base_fields = {
'id': {'type': 'VarChar', 'is_primary': True},
'vector': {'type': 'FloatVector'},
'created_at': {'type': 'Int64'},
}
# Add specific fields based on namespace
if self.namespace.endswith('entities'):
specific_fields = {
'entity_name': {'type': 'VarChar'},
'file_path': {'type': 'VarChar'},
}
elif self.namespace.endswith('relationships'):
specific_fields = {
'src_id': {'type': 'VarChar'},
'tgt_id': {'type': 'VarChar'},
'file_path': {'type': 'VarChar'},
}
elif self.namespace.endswith('chunks'):
specific_fields = {
'full_doc_id': {'type': 'VarChar'},
'file_path': {'type': 'VarChar'},
}
else:
specific_fields = {
'file_path': {'type': 'VarChar'},
}
return {**base_fields, **specific_fields}
def _is_field_compatible(self, existing_field: dict, expected_config: dict) -> bool:
"""Check compatibility of a single field"""
field_name = existing_field.get('name', 'unknown')
existing_type = existing_field.get('type')
expected_type = expected_config.get('type')
logger.debug(
f"[{self.workspace}] Checking field '{field_name}': existing_type={existing_type} (type={type(existing_type)}), expected_type={expected_type}"
)
# Convert DataType enum values to string names if needed
original_existing_type = existing_type
if hasattr(existing_type, 'name'):
existing_type = existing_type.name
logger.debug(f'[{self.workspace}] Converted enum to name: {original_existing_type} -> {existing_type}')
elif isinstance(existing_type, int):
# Map common Milvus internal type codes to type names for backward compatibility
type_mapping = {
21: 'VarChar',
101: 'FloatVector',
5: 'Int64',
9: 'Double',
}
mapped_type = type_mapping.get(existing_type, str(existing_type))
logger.debug(f'[{self.workspace}] Mapped numeric type: {existing_type} -> {mapped_type}')
existing_type = mapped_type
# Normalize type names for comparison
type_aliases = {
'VARCHAR': 'VarChar',
'String': 'VarChar',
'FLOAT_VECTOR': 'FloatVector',
'INT64': 'Int64',
'BigInt': 'Int64',
'DOUBLE': 'Double',
'Float': 'Double',
}
original_existing = existing_type
original_expected = expected_type
existing_type = type_aliases.get(existing_type, existing_type)
expected_type = type_aliases.get(expected_type, expected_type)
if original_existing != existing_type or original_expected != expected_type:
logger.debug(
f'[{self.workspace}] Applied aliases: {original_existing} -> {existing_type}, {original_expected} -> {expected_type}'
)
# Basic type compatibility check
type_compatible = existing_type == expected_type
logger.debug(
f"[{self.workspace}] Type compatibility for '{field_name}': {existing_type} == {expected_type} -> {type_compatible}"
)
if not type_compatible:
logger.warning(
f"[{self.workspace}] Type mismatch for field '{field_name}': expected {expected_type}, got {existing_type}"
)
return False
# Primary key check - be more flexible about primary key detection
if expected_config.get('is_primary'):
# Check multiple possible field names for primary key status
is_primary = (
existing_field.get('is_primary_key', False)
or existing_field.get('is_primary', False)
or existing_field.get('primary_key', False)
)
logger.debug(f"[{self.workspace}] Primary key check for '{field_name}': expected=True, actual={is_primary}")
logger.debug(f"[{self.workspace}] Raw field data for '{field_name}': {existing_field}")
# For ID field, be more lenient - if it's the ID field, assume it should be primary
if field_name == 'id' and not is_primary:
logger.info(
f"[{self.workspace}] ID field '{field_name}' not marked as primary in existing collection, but treating as compatible"
)
# Don't fail for ID field primary key mismatch
elif not is_primary:
logger.warning(
f"[{self.workspace}] Primary key mismatch for field '{field_name}': expected primary key, but field is not primary"
)
return False
logger.debug(f"[{self.workspace}] Field '{field_name}' is compatible")
return True
def _check_vector_dimension(self, collection_info: dict):
"""Check vector dimension compatibility"""
current_dimension = self.embedding_func.embedding_dim
# Find vector field dimension
for field in collection_info.get('fields', []):
if field.get('name') == 'vector':
field_type = field.get('type')
# Extract type name from DataType enum or string
type_name = None
if hasattr(field_type, 'name'):
type_name = field_type.name
elif isinstance(field_type, str):
type_name = field_type
else:
type_name = str(field_type)
# Check if it's a vector type (supports multiple formats)
if type_name in ['FloatVector', 'FLOAT_VECTOR']:
existing_dimension = field.get('params', {}).get('dim')
# Convert both to int for comparison to handle type mismatches
# (Milvus API may return string "1024" vs int 1024)
try:
existing_dim_int = int(existing_dimension) if existing_dimension is not None else None
current_dim_int = int(current_dimension) if current_dimension is not None else None
except (TypeError, ValueError) as e:
logger.error(
f'[{self.workspace}] Failed to parse dimensions: existing={existing_dimension} (type={type(existing_dimension)}), '
f'current={current_dimension} (type={type(current_dimension)}), error={e}'
)
raise ValueError(
f"Invalid dimension values for collection '{self.final_namespace}': "
f'existing={existing_dimension}, current={current_dimension}'
) from e
if existing_dim_int != current_dim_int:
raise ValueError(
f"Vector dimension mismatch for collection '{self.final_namespace}': "
f'existing={existing_dim_int}, current={current_dim_int}'
)
logger.debug(f'[{self.workspace}] Vector dimension check passed: {current_dim_int}')
return
# If no vector field found, this might be an old collection created with simple schema
logger.warning(
f"[{self.workspace}] Vector field not found in collection '{self.namespace}'. This might be an old collection created with simple schema."
)
logger.warning(f'[{self.workspace}] Consider recreating the collection for optimal performance.')
return
def _check_file_path_length_restriction(self, collection_info: dict) -> bool:
"""Check if collection has file_path length restrictions that need migration
Returns:
bool: True if migration is needed, False otherwise
"""
existing_fields = {field['name']: field for field in collection_info.get('fields', [])}
# Check if file_path field exists and has length restrictions
if 'file_path' in existing_fields:
file_path_field = existing_fields['file_path']
# Get max_length from field params
max_length = file_path_field.get('params', {}).get('max_length')
if max_length and max_length < DEFAULT_MAX_FILE_PATH_LENGTH:
logger.info(
f'[{self.workspace}] Collection {self.namespace} has file_path max_length={max_length}, '
f'needs migration to {DEFAULT_MAX_FILE_PATH_LENGTH}'
)
return True
return False
def _check_schema_compatibility(self, collection_info: dict):
"""Check schema field compatibility and detect migration needs"""
existing_fields = {field['name']: field for field in collection_info.get('fields', [])}
# Check if this is an old collection created with simple schema
has_vector_field = any(field.get('name') == 'vector' for field in collection_info.get('fields', []))
if not has_vector_field:
logger.warning(
f'[{self.workspace}] Collection {self.namespace} appears to be created with old simple schema (no vector field)'
)
logger.warning(f'[{self.workspace}] This collection will work but may have suboptimal performance')
logger.warning(f'[{self.workspace}] Consider recreating the collection for optimal performance')
return
# Check if migration is needed for file_path length restrictions
if self._check_file_path_length_restriction(collection_info):
logger.info(f'[{self.workspace}] Starting automatic migration for collection {self.namespace}')
self._migrate_collection_schema()
return
# For collections with vector field, check basic compatibility
# Only check for critical incompatibilities, not missing optional fields
critical_fields = {'id': {'type': 'VarChar', 'is_primary': True}}
incompatible_fields = []
for field_name, expected_config in critical_fields.items():
if field_name in existing_fields:
existing_field = existing_fields[field_name]
if not self._is_field_compatible(existing_field, expected_config):
incompatible_fields.append(
f'{field_name}: expected {expected_config["type"]}, got {existing_field.get("type")}'
)
if incompatible_fields:
raise ValueError(
f"Critical schema incompatibility in collection '{self.final_namespace}': {incompatible_fields}"
)
# Get all expected fields for informational purposes
expected_fields = self._get_required_fields_for_namespace()
missing_fields = [field for field in expected_fields if field not in existing_fields]
if missing_fields:
logger.info(f'[{self.workspace}] Collection {self.namespace} missing optional fields: {missing_fields}')
logger.info('These fields would be available in a newly created collection for better performance')
logger.debug(f'[{self.workspace}] Schema compatibility check passed for {self.namespace}')
def _migrate_collection_schema(self):
"""Migrate collection schema using query_iterator - completely solves query window limitations"""
original_collection_name = self.final_namespace
temp_collection_name = f'{self.final_namespace}_temp'
iterator = None
try:
logger.info(f'[{self.workspace}] Starting iterator-based schema migration for {self.namespace}')
# Step 1: Create temporary collection with new schema
logger.info(f'[{self.workspace}] Step 1: Creating temporary collection: {temp_collection_name}')
# Temporarily update final_namespace for index creation
self.final_namespace = temp_collection_name
new_schema = self._create_schema_for_namespace()
self._client.create_collection(collection_name=temp_collection_name, schema=new_schema)
try:
self._create_indexes_after_collection()
except Exception as index_error:
logger.warning(f'[{self.workspace}] Failed to create indexes for new collection: {index_error}')
# Continue with migration even if index creation fails
# Load the new collection
self._client.load_collection(temp_collection_name)
# Step 2: Copy data using query_iterator (solves query window limitation)
logger.info(
f'[{self.workspace}] Step 2: Copying data using query_iterator from: {original_collection_name}'
)
# Create query iterator
try:
iterator = self._client.query_iterator(
collection_name=original_collection_name,
batch_size=2000, # Adjustable batch size for optimal performance
output_fields=['*'], # Get all fields
)
logger.debug(f'[{self.workspace}] Query iterator created successfully')
except Exception as iterator_error:
logger.error(f'[{self.workspace}] Failed to create query iterator: {iterator_error}')
raise
# Iterate through all data
total_migrated = 0
batch_number = 1
while True:
try:
batch_data = iterator.next()
if not batch_data:
# No more data available
break
# Insert batch data to new collection
try:
self._client.insert(collection_name=temp_collection_name, data=batch_data)
total_migrated += len(batch_data)
logger.info(
f'[{self.workspace}] Iterator batch {batch_number}: '
f'processed {len(batch_data)} records, total migrated: {total_migrated}'
)
batch_number += 1
except Exception as batch_error:
logger.error(
f'[{self.workspace}] Failed to insert iterator batch {batch_number}: {batch_error}'
)
raise
except Exception as next_error:
logger.error(f'[{self.workspace}] Iterator next() failed at batch {batch_number}: {next_error}')
raise
if total_migrated > 0:
logger.info(f'[{self.workspace}] Successfully migrated {total_migrated} records using iterator')
else:
logger.info(f'[{self.workspace}] No data found in original collection, migration completed')
# Step 3: Rename origin collection (keep for safety)
logger.info(f'[{self.workspace}] Step 3: Rename origin collection to {original_collection_name}_old')
try:
self._client.rename_collection(original_collection_name, f'{original_collection_name}_old')
except Exception as rename_error:
try:
logger.warning(f'[{self.workspace}] Try to drop origin collection instead')
self._client.drop_collection(original_collection_name)
except Exception as e:
logger.error(f'[{self.workspace}] Rename operation failed: {rename_error}')
raise e
# Step 4: Rename temporary collection to original name
logger.info(
f'[{self.workspace}] Step 4: Renaming collection {temp_collection_name} -> {original_collection_name}'
)
try:
self._client.rename_collection(temp_collection_name, original_collection_name)
logger.info(f'[{self.workspace}] Rename operation completed')
except Exception as rename_error:
logger.error(f'[{self.workspace}] Rename operation failed: {rename_error}')
raise RuntimeError(f'Failed to rename collection: {rename_error}') from rename_error
# Restore final_namespace
self.final_namespace = original_collection_name
except Exception as e:
logger.error(f'[{self.workspace}] Iterator-based migration failed for {self.namespace}: {e}')
# Attempt cleanup of temporary collection if it exists
try:
if self._client and self._client.has_collection(temp_collection_name):
logger.info(f'[{self.workspace}] Cleaning up failed migration temporary collection')
self._client.drop_collection(temp_collection_name)
except Exception as cleanup_error:
logger.warning(f'[{self.workspace}] Failed to cleanup temporary collection: {cleanup_error}')
# Re-raise the original error
raise RuntimeError(f'Iterator-based migration failed for collection {self.namespace}: {e}') from e
finally:
# Ensure iterator is properly closed
if iterator:
try:
iterator.close()
logger.debug(f'[{self.workspace}] Query iterator closed successfully')
except Exception as close_error:
logger.warning(f'[{self.workspace}] Failed to close query iterator: {close_error}')
def _validate_collection_compatibility(self):
"""Validate existing collection's dimension and schema compatibility"""
try:
collection_info = self._client.describe_collection(self.final_namespace)
# 1. Check vector dimension
self._check_vector_dimension(collection_info)
# 2. Check schema compatibility
self._check_schema_compatibility(collection_info)
logger.info(f"[{self.workspace}] VectorDB Collection '{self.namespace}' compatibility validation passed")
except Exception as e:
logger.error(f'[{self.workspace}] Collection compatibility validation failed for {self.namespace}: {e}')
raise
def _ensure_collection_loaded(self):
"""Ensure the collection is loaded into memory for search operations"""
try:
# Check if collection exists first
if not self._client.has_collection(self.final_namespace):
logger.error(f'[{self.workspace}] Collection {self.namespace} does not exist')
raise ValueError(f'Collection {self.final_namespace} does not exist')
# Load the collection if it's not already loaded
# In Milvus, collections need to be loaded before they can be searched
self._client.load_collection(self.final_namespace)
# logger.debug(f"[{self.workspace}] Collection {self.namespace} loaded successfully")
except Exception as e:
logger.error(f'[{self.workspace}] Failed to load collection {self.namespace}: {e}')
raise
def _create_collection_if_not_exist(self):
"""Create collection if not exists and check existing collection compatibility"""
try:
# Check if our specific collection exists
collection_exists = self._client.has_collection(self.final_namespace)
logger.info(f"[{self.workspace}] VectorDB collection '{self.namespace}' exists check: {collection_exists}")
if collection_exists:
# Double-check by trying to describe the collection
try:
self._client.describe_collection(self.final_namespace)
self._validate_collection_compatibility()
# Ensure the collection is loaded after validation
self._ensure_collection_loaded()
return
except Exception as validation_error:
# CRITICAL: Collection exists but validation failed
# This indicates potential data migration failure or incompatible schema
# Stop execution to prevent data loss and require manual intervention
logger.error(
f"[{self.workspace}] CRITICAL ERROR: Collection '{self.namespace}' exists but validation failed!"
)
logger.error(
f'[{self.workspace}] This indicates potential data migration failure or schema incompatibility.'
)
logger.error(f'[{self.workspace}] Validation error: {validation_error}')
logger.error(f'[{self.workspace}] MANUAL INTERVENTION REQUIRED:')
logger.error(f'[{self.workspace}] 1. Check the existing collection schema and data integrity')
logger.error(f'[{self.workspace}] 2. Backup existing data if needed')
logger.error(f'[{self.workspace}] 3. Manually resolve schema compatibility issues')
logger.error(
f'[{self.workspace}] 4. Consider dropping and recreating the collection if data is not critical'
)
logger.error(f'[{self.workspace}] Program execution stopped to prevent potential data loss.')
# Raise a specific exception to stop execution
raise RuntimeError(
f"Collection validation failed for '{self.final_namespace}'. "
f'Data migration failure detected. Manual intervention required to prevent data loss. '
f'Original error: {validation_error}'
) from validation_error
# Collection doesn't exist, create new collection
logger.info(f'[{self.workspace}] Creating new collection: {self.namespace}')
schema = self._create_schema_for_namespace()
# Create collection with schema only first
self._client.create_collection(collection_name=self.final_namespace, schema=schema)
# Then create indexes
self._create_indexes_after_collection()
# Load the newly created collection
self._ensure_collection_loaded()
logger.info(f'[{self.workspace}] Successfully created Milvus collection: {self.namespace}')
except RuntimeError:
# Re-raise RuntimeError (validation failures) without modification
# These are critical errors that should stop execution
raise
except Exception as e:
logger.error(f'[{self.workspace}] Error in _create_collection_if_not_exist for {self.namespace}: {e}')
# If there's any error (other than validation failure), try to force create the collection
logger.info(f'[{self.workspace}] Attempting to force create collection {self.namespace}...')
try:
# Try to drop the collection first if it exists in a bad state
try:
if self._client.has_collection(self.final_namespace):
logger.info(f'[{self.workspace}] Dropping potentially corrupted collection {self.namespace}')
self._client.drop_collection(self.final_namespace)
except Exception as drop_error:
logger.warning(f'[{self.workspace}] Could not drop collection {self.namespace}: {drop_error}')
# Create fresh collection
schema = self._create_schema_for_namespace()
self._client.create_collection(collection_name=self.final_namespace, schema=schema)
self._create_indexes_after_collection()
# Load the newly created collection
self._ensure_collection_loaded()
logger.info(f'[{self.workspace}] Successfully force-created collection {self.namespace}')
except Exception as create_error:
logger.error(f'[{self.workspace}] Failed to force-create collection {self.namespace}: {create_error}')
raise
def __post_init__(self):
# Check for MILVUS_WORKSPACE environment variable first (higher priority)
# This allows administrators to force a specific workspace for all Milvus storage instances
milvus_workspace = os.environ.get('MILVUS_WORKSPACE')
if milvus_workspace and milvus_workspace.strip():
# Use environment variable value, overriding the passed workspace parameter
effective_workspace = milvus_workspace.strip()
logger.info(
f"Using MILVUS_WORKSPACE environment variable: '{effective_workspace}' (overriding passed workspace: '{self.workspace}')"
)
else:
# Use the workspace parameter passed during initialization
effective_workspace = self.workspace
if effective_workspace:
logger.debug(f"Using passed workspace parameter: '{effective_workspace}'")
# Build final_namespace with workspace prefix for data isolation
# Keep original namespace unchanged for type detection logic
if effective_workspace:
self.final_namespace = f'{effective_workspace}_{self.namespace}'
logger.debug(f"Final namespace with workspace prefix: '{self.final_namespace}'")
else:
# When workspace is empty, final_namespace equals original namespace
self.final_namespace = self.namespace
self.workspace = ''
logger.debug(f"Final namespace (no workspace): '{self.final_namespace}'")
kwargs = self.global_config.get('vector_db_storage_cls_kwargs', {})
cosine_threshold = kwargs.get('cosine_better_than_threshold')
if cosine_threshold is None:
raise ValueError('cosine_better_than_threshold must be specified in vector_db_storage_cls_kwargs')
self.cosine_better_than_threshold = cosine_threshold
# Ensure created_at is in meta_fields
if 'created_at' not in self.meta_fields:
self.meta_fields.add('created_at')
# Initialize client as None - will be created in initialize() method
self._client = None
self._max_batch_size = self.global_config['embedding_batch_num']
self._initialized = False
async def initialize(self):
"""Initialize Milvus collection"""
async with get_data_init_lock():
if self._initialized:
return
try:
# Create MilvusClient if not already created
if self._client is None:
self._client = MilvusClient(
uri=os.environ.get(
'MILVUS_URI',
config.get(
'milvus',
'uri',
fallback=os.path.join(self.global_config['working_dir'], 'milvus_lite.db'),
),
),
user=os.environ.get('MILVUS_USER', config.get('milvus', 'user', fallback=None)),
password=os.environ.get(
'MILVUS_PASSWORD',
config.get('milvus', 'password', fallback=None),
),
token=os.environ.get('MILVUS_TOKEN', config.get('milvus', 'token', fallback=None)),
db_name=os.environ.get(
'MILVUS_DB_NAME',
config.get('milvus', 'db_name', fallback=None),
),
)
logger.debug(f'[{self.workspace}] MilvusClient created successfully')
# Create collection and check compatibility
self._create_collection_if_not_exist()
self._initialized = True
logger.info(f"[{self.workspace}] Milvus collection '{self.namespace}' initialized successfully")
except Exception as e:
logger.error(f"[{self.workspace}] Failed to initialize Milvus collection '{self.namespace}': {e}")
raise
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
# logger.debug(f"[{self.workspace}] Inserting {len(data)} to {self.namespace}")
if not data:
return
# Ensure collection is loaded before upserting
self._ensure_collection_loaded()
import time
current_time = int(time.time())
list_data: list[dict[str, Any]] = [
{
'id': k,
'created_at': current_time,
**{k1: v1 for k1, v1 in v.items() if k1 in self.meta_fields},
}
for k, v in data.items()
]
contents = [v['content'] for v in data.values()]
batches = [contents[i : i + self._max_batch_size] for i in range(0, len(contents), self._max_batch_size)]
embedding_tasks = [self.embedding_func(batch) for batch in batches]
embeddings_list = await asyncio.gather(*embedding_tasks)
embeddings = np.concatenate(embeddings_list)
for i, d in enumerate(list_data):
d['vector'] = embeddings[i]
results = self._client.upsert(collection_name=self.final_namespace, data=list_data)
return results
async def query(self, query: str, top_k: int, query_embedding: list[float] | None = None) -> list[dict[str, Any]]:
# Ensure collection is loaded before querying
self._ensure_collection_loaded()
# Use provided embedding or compute it
if query_embedding is not None:
embedding = [query_embedding] # Milvus expects a list of embeddings
else:
embedding = await self.embedding_func([query], _priority=5) # higher priority for query
# Include all meta_fields (created_at is now always included)
output_fields = list(self.meta_fields)
results = self._client.search(
collection_name=self.final_namespace,
data=embedding,
limit=top_k,
output_fields=output_fields,
search_params={
'metric_type': 'COSINE',
'params': {'radius': self.cosine_better_than_threshold},
},
)
return [
{
**dp['entity'],
'id': dp['id'],
'distance': dp['distance'],
'created_at': dp.get('created_at'),
}
for dp in results[0]
]
async def index_done_callback(self) -> None:
# Milvus handles persistence automatically
pass
async def delete_entity(self, entity_name: str) -> None:
"""Delete an entity from the vector database
Args:
entity_name: The name of the entity to delete
"""
try:
# Compute entity ID from name
entity_id = compute_mdhash_id(entity_name, prefix='ent-')
logger.debug(f'[{self.workspace}] Attempting to delete entity {entity_name} with ID {entity_id}')
# Delete the entity from Milvus collection
result = self._client.delete(collection_name=self.final_namespace, pks=[entity_id])
if result and result.get('delete_count', 0) > 0:
logger.debug(f'[{self.workspace}] Successfully deleted entity {entity_name}')
else:
logger.debug(f'[{self.workspace}] Entity {entity_name} not found in storage')
except Exception as e:
logger.error(f'[{self.workspace}] Error deleting entity {entity_name}: {e}')
async def delete_entity_relation(self, entity_name: str) -> None:
"""Delete all relations associated with an entity
Args:
entity_name: The name of the entity whose relations should be deleted
"""
try:
# Ensure collection is loaded before querying
self._ensure_collection_loaded()
# Search for relations where entity is either source or target
expr = f'src_id == "{entity_name}" or tgt_id == "{entity_name}"'
# Find all relations involving this entity
results = self._client.query(collection_name=self.final_namespace, filter=expr, output_fields=['id'])
if not results or len(results) == 0:
logger.debug(f'[{self.workspace}] No relations found for entity {entity_name}')
return
# Extract IDs of relations to delete
relation_ids = [item['id'] for item in results]
logger.debug(f'[{self.workspace}] Found {len(relation_ids)} relations for entity {entity_name}')
# Delete the relations
if relation_ids:
delete_result = self._client.delete(collection_name=self.final_namespace, pks=relation_ids)
logger.debug(
f'[{self.workspace}] Deleted {delete_result.get("delete_count", 0)} relations for {entity_name}'
)
except Exception as e:
logger.error(f'[{self.workspace}] Error deleting relations for {entity_name}: {e}')
async def delete(self, ids: list[str]) -> None:
"""Delete vectors with specified IDs
Args:
ids: List of vector IDs to be deleted
"""
try:
# Ensure collection is loaded before deleting
self._ensure_collection_loaded()
# Delete vectors by IDs
result = self._client.delete(collection_name=self.final_namespace, pks=ids)
if result and result.get('delete_count', 0) > 0:
logger.debug(
f'[{self.workspace}] Successfully deleted {result.get("delete_count", 0)} vectors from {self.namespace}'
)
else:
logger.debug(f'[{self.workspace}] No vectors were deleted from {self.namespace}')
except Exception as e:
logger.error(f'[{self.workspace}] Error while deleting vectors from {self.namespace}: {e}')
async def get_by_id(self, id: str) -> dict[str, Any] | None:
"""Get vector data by its ID
Args:
id: The unique identifier of the vector
Returns:
The vector data if found, or None if not found
"""
try:
# Ensure collection is loaded before querying
self._ensure_collection_loaded()
# Include all meta_fields (created_at is now always included) plus id
output_fields = [*list(self.meta_fields), 'id']
# Query Milvus for a specific ID
result = self._client.query(
collection_name=self.final_namespace,
filter=f'id == "{id}"',
output_fields=output_fields,
)
if not result or len(result) == 0:
return None
return result[0]
except Exception as e:
logger.error(f'[{self.workspace}] Error retrieving vector data for ID {id}: {e}')
return None
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
"""Get multiple vector data by their IDs
Args:
ids: List of unique identifiers
Returns:
List of vector data objects that were found
"""
if not ids:
return []
try:
# Ensure collection is loaded before querying
self._ensure_collection_loaded()
# Include all meta_fields (created_at is now always included) plus id
output_fields = [*list(self.meta_fields), 'id']
# Prepare the ID filter expression
id_list = '", "'.join(ids)
filter_expr = f'id in ["{id_list}"]'
# Query Milvus with the filter
result = self._client.query(
collection_name=self.final_namespace,
filter=filter_expr,
output_fields=output_fields,
)
if not result:
return []
result_map: dict[str, dict[str, Any]] = {}
for row in result:
if not row:
continue
row_id = row.get('id')
if row_id is not None:
result_map[str(row_id)] = row
ordered_results: list[dict[str, Any] | None] = []
for requested_id in ids:
ordered_results.append(result_map.get(str(requested_id)))
return ordered_results
except Exception as e:
logger.error(f'[{self.workspace}] Error retrieving vector data for IDs {ids}: {e}')
return []
async def get_vectors_by_ids(self, ids: list[str]) -> dict[str, list[float]]:
"""Get vectors by their IDs, returning only ID and vector data for efficiency
Args:
ids: List of unique identifiers
Returns:
Dictionary mapping IDs to their vector embeddings
Format: {id: [vector_values], ...}
"""
if not ids:
return {}
try:
# Ensure collection is loaded before querying
self._ensure_collection_loaded()
# Prepare the ID filter expression
id_list = '", "'.join(ids)
filter_expr = f'id in ["{id_list}"]'
# Query Milvus with the filter, requesting only vector field
result = self._client.query(
collection_name=self.final_namespace,
filter=filter_expr,
output_fields=['vector'],
)
vectors_dict = {}
for item in result:
if item and 'vector' in item and 'id' in item:
# Convert numpy array to list if needed
vector_data = item['vector']
if isinstance(vector_data, np.ndarray):
vector_data = vector_data.tolist()
vectors_dict[item['id']] = vector_data
return vectors_dict
except Exception as e:
logger.error(f'[{self.workspace}] Error retrieving vectors by IDs from {self.namespace}: {e}')
return {}
async def drop(self) -> dict[str, str]:
"""Drop all vector data from storage and clean up resources
This method will delete all data from the Milvus collection.
Returns:
dict[str, str]: Operation status and message
- On success: {"status": "success", "message": "data dropped"}
- On failure: {"status": "error", "message": "<error details>"}
"""
try:
# Drop the collection and recreate it
if self._client.has_collection(self.final_namespace):
self._client.drop_collection(self.final_namespace)
# Recreate the collection
self._create_collection_if_not_exist()
logger.info(f'[{self.workspace}] Process {os.getpid()} drop Milvus collection {self.namespace}')
return {'status': 'success', 'message': 'data dropped'}
except Exception as e:
logger.error(f'[{self.workspace}] Error dropping Milvus collection {self.namespace}: {e}')
return {'status': 'error', 'message': str(e)}