LightRAG/lightrag/kg/json_kv_impl.py
clssck 69358d830d test(lightrag,examples,api): comprehensive ruff formatting and type hints
Format entire codebase with ruff and add type hints across all modules:
- Apply ruff formatting to all Python files (121 files, 17K insertions)
- Add type hints to function signatures throughout lightrag core and API
- Update test suite with improved type annotations and docstrings
- Add pyrightconfig.json for static type checking configuration
- Create prompt_optimized.py and test_extraction_prompt_ab.py test files
- Update ruff.toml and .gitignore for improved linting configuration
- Standardize code style across examples, reproduce scripts, and utilities
2025-12-05 15:17:06 +01:00

278 lines
11 KiB
Python

import os
from dataclasses import dataclass
from typing import Any, final
from lightrag.base import (
BaseKVStorage,
)
from lightrag.exceptions import StorageNotInitializedError
from lightrag.utils import (
load_json,
logger,
write_json,
)
from .shared_storage import (
clear_all_update_flags,
get_data_init_lock,
get_namespace_data,
get_namespace_lock,
get_update_flag,
set_all_update_flags,
try_initialize_namespace,
)
@final
@dataclass
class JsonKVStorage(BaseKVStorage):
def __post_init__(self):
working_dir = self.global_config['working_dir']
if self.workspace:
# Include workspace in the file path for data isolation
workspace_dir = os.path.join(working_dir, self.workspace)
else:
# Default behavior when workspace is empty
workspace_dir = working_dir
self.workspace = ''
os.makedirs(workspace_dir, exist_ok=True)
self._file_name = os.path.join(workspace_dir, f'kv_store_{self.namespace}.json')
self._data = None
self._storage_lock = None
self.storage_updated = None
async def initialize(self):
"""Initialize storage data"""
self._storage_lock = get_namespace_lock(self.namespace, workspace=self.workspace)
self.storage_updated = await get_update_flag(self.namespace, workspace=self.workspace)
async with get_data_init_lock():
# check need_init must before get_namespace_data
need_init = await try_initialize_namespace(self.namespace, workspace=self.workspace)
self._data = await get_namespace_data(self.namespace, workspace=self.workspace)
if need_init:
loaded_data = load_json(self._file_name) or {}
async with self._storage_lock:
# Migrate legacy cache structure if needed
if self.namespace.endswith('_cache'):
loaded_data = await self._migrate_legacy_cache_structure(loaded_data)
self._data.update(loaded_data)
data_count = len(loaded_data)
logger.info(
f'[{self.workspace}] Process {os.getpid()} KV load {self.namespace} with {data_count} records'
)
async def index_done_callback(self) -> None:
async with self._storage_lock:
if self.storage_updated.value:
data_dict = dict(self._data) if hasattr(self._data, '_getvalue') else self._data
# Calculate data count - all data is now flattened
data_count = len(data_dict)
logger.debug(
f'[{self.workspace}] Process {os.getpid()} KV writting {data_count} records to {self.namespace}'
)
# Write JSON and check if sanitization was applied
needs_reload = write_json(data_dict, self._file_name)
# If data was sanitized, reload cleaned data to update shared memory
if needs_reload:
logger.info(f'[{self.workspace}] Reloading sanitized data into shared memory for {self.namespace}')
cleaned_data = load_json(self._file_name)
if cleaned_data is not None:
self._data.clear()
self._data.update(cleaned_data)
await clear_all_update_flags(self.namespace, workspace=self.workspace)
async def get_by_id(self, id: str) -> dict[str, Any] | None:
async with self._storage_lock:
result = self._data.get(id)
if result:
# Create a copy to avoid modifying the original data
result = dict(result)
# Ensure time fields are present, provide default values for old data
result.setdefault('create_time', 0)
result.setdefault('update_time', 0)
# Ensure _id field contains the clean ID
result['_id'] = id
return result
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
async with self._storage_lock:
results = []
for id in ids:
data = self._data.get(id, None)
if data:
# Create a copy to avoid modifying the original data
result = dict(data.items())
# Ensure time fields are present, provide default values for old data
result.setdefault('create_time', 0)
result.setdefault('update_time', 0)
# Ensure _id field contains the clean ID
result['_id'] = id
results.append(result)
else:
results.append(None)
return results
async def filter_keys(self, keys: set[str]) -> set[str]:
async with self._storage_lock:
return set(keys) - set(self._data.keys())
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
"""
Importance notes for in-memory storage:
1. Changes will be persisted to disk during the next index_done_callback
2. update flags to notify other processes that data persistence is needed
"""
if not data:
return
import time
current_time = int(time.time()) # Get current Unix timestamp
logger.debug(f'[{self.workspace}] Inserting {len(data)} records to {self.namespace}')
if self._storage_lock is None:
raise StorageNotInitializedError('JsonKVStorage')
async with self._storage_lock:
# Add timestamps to data based on whether key exists
for k, v in data.items():
# For text_chunks namespace, ensure llm_cache_list field exists
if self.namespace.endswith('text_chunks') and 'llm_cache_list' not in v:
v['llm_cache_list'] = []
# Add timestamps based on whether key exists
if k in self._data: # Key exists, only update update_time
v['update_time'] = current_time
else: # New key, set both create_time and update_time
v['create_time'] = current_time
v['update_time'] = current_time
v['_id'] = k
self._data.update(data)
await set_all_update_flags(self.namespace, workspace=self.workspace)
async def delete(self, ids: list[str]) -> None:
"""Delete specific records from storage by their IDs
Importance notes for in-memory storage:
1. Changes will be persisted to disk during the next index_done_callback
2. update flags to notify other processes that data persistence is needed
Args:
ids (list[str]): List of document IDs to be deleted from storage
Returns:
None
"""
async with self._storage_lock:
any_deleted = False
for doc_id in ids:
result = self._data.pop(doc_id, None)
if result is not None:
any_deleted = True
if any_deleted:
await set_all_update_flags(self.namespace, workspace=self.workspace)
async def is_empty(self) -> bool:
"""Check if the storage is empty
Returns:
bool: True if storage contains no data, False otherwise
"""
async with self._storage_lock:
return len(self._data) == 0
async def drop(self) -> dict[str, str]:
"""Drop all data from storage and clean up resources
This action will persistent the data to disk immediately.
This method will:
1. Clear all data from memory
2. Update flags to notify other processes
3. Trigger index_done_callback to save the empty state
Returns:
dict[str, str]: Operation status and message
- On success: {"status": "success", "message": "data dropped"}
- On failure: {"status": "error", "message": "<error details>"}
"""
try:
async with self._storage_lock:
self._data.clear()
await set_all_update_flags(self.namespace, workspace=self.workspace)
await self.index_done_callback()
logger.info(f'[{self.workspace}] Process {os.getpid()} drop {self.namespace}')
return {'status': 'success', 'message': 'data dropped'}
except Exception as e:
logger.error(f'[{self.workspace}] Error dropping {self.namespace}: {e}')
return {'status': 'error', 'message': str(e)}
async def _migrate_legacy_cache_structure(self, data: dict) -> dict:
"""Migrate legacy nested cache structure to flattened structure
Args:
data: Original data dictionary that may contain legacy structure
Returns:
Migrated data dictionary with flattened cache keys (sanitized if needed)
"""
from lightrag.utils import generate_cache_key
# Early return if data is empty
if not data:
return data
# Check first entry to see if it's already in new format
first_key = next(iter(data.keys()))
if ':' in first_key and len(first_key.split(':')) == 3:
# Already in flattened format, return as-is
return data
migrated_data = {}
migration_count = 0
for key, value in data.items():
# Check if this is a legacy nested cache structure
if isinstance(value, dict) and all(isinstance(v, dict) and 'return' in v for v in value.values()):
# This looks like a legacy cache mode with nested structure
mode = key
for cache_hash, cache_entry in value.items():
cache_type = cache_entry.get('cache_type', 'extract')
flattened_key = generate_cache_key(mode, cache_type, cache_hash)
migrated_data[flattened_key] = cache_entry
migration_count += 1
else:
# Keep non-cache data or already flattened cache data as-is
migrated_data[key] = value
if migration_count > 0:
logger.info(f'[{self.workspace}] Migrated {migration_count} legacy cache entries to flattened structure')
# Persist migrated data immediately and check if sanitization was applied
needs_reload = write_json(migrated_data, self._file_name)
# If data was sanitized during write, reload cleaned data
if needs_reload:
logger.info(f'[{self.workspace}] Reloading sanitized migration data for {self.namespace}')
cleaned_data = load_json(self._file_name)
if cleaned_data is not None:
return cleaned_data # Return cleaned data to update shared memory
return migrated_data
async def finalize(self):
"""Finalize storage resources
Persistence cache data to disk before exiting
"""
if self.namespace.endswith('_cache'):
await self.index_done_callback()