LightRAG/lightrag/kg/deprecated/chroma_impl.py
clssck 082a5a8fad test(lightrag,api): add comprehensive test coverage and S3 support
Add extensive test suites for API routes and utilities:
- Implement test_search_routes.py (406 lines) for search endpoint validation
- Implement test_upload_routes.py (724 lines) for document upload workflows
- Implement test_s3_client.py (618 lines) for S3 storage operations
- Implement test_citation_utils.py (352 lines) for citation extraction
- Implement test_chunking.py (216 lines) for text chunking validation
Add S3 storage client implementation:
- Create lightrag/storage/s3_client.py with S3 operations
- Add storage module initialization with exports
- Integrate S3 client with document upload handling
Enhance API routes and core functionality:
- Add search_routes.py with full-text and graph search endpoints
- Add upload_routes.py with multipart document upload support
- Update operate.py with bulk operations and health checks
- Enhance postgres_impl.py with bulk upsert and parameterized queries
- Update lightrag_server.py to register new API routes
- Improve utils.py with citation and formatting utilities
Update dependencies and configuration:
- Add S3 and test dependencies to pyproject.toml
- Update docker-compose.test.yml for testing environment
- Sync uv.lock with new dependencies
Apply code quality improvements across all modified files:
- Add type hints to function signatures
- Update imports and router initialization
- Fix logging and error handling
2025-12-05 23:13:39 +01:00

307 lines
12 KiB
Python

import asyncio
import os
from dataclasses import dataclass
from typing import Any, final
import numpy as np
from chromadb import HttpClient, PersistentClient # type: ignore
from chromadb.config import Settings # type: ignore
from lightrag.base import BaseVectorStorage
from lightrag.utils import logger
@final
@dataclass
class ChromaVectorDBStorage(BaseVectorStorage):
"""ChromaDB vector storage implementation."""
def __post_init__(self):
try:
config = self.global_config.get('vector_db_storage_cls_kwargs', {})
cosine_threshold = config.get('cosine_better_than_threshold')
if cosine_threshold is None:
raise ValueError('cosine_better_than_threshold must be specified in vector_db_storage_cls_kwargs')
self.cosine_better_than_threshold = cosine_threshold
user_collection_settings = config.get('collection_settings', {})
# Default HNSW index settings for ChromaDB
default_collection_settings = {
# Distance metric used for similarity search (cosine similarity)
'hnsw:space': 'cosine',
# Number of nearest neighbors to explore during index construction
# Higher values = better recall but slower indexing
'hnsw:construction_ef': 128,
# Number of nearest neighbors to explore during search
# Higher values = better recall but slower search
'hnsw:search_ef': 128,
# Number of connections per node in the HNSW graph
# Higher values = better recall but more memory usage
'hnsw:M': 16,
# Number of vectors to process in one batch during indexing
'hnsw:batch_size': 100,
# Number of updates before forcing index synchronization
# Lower values = more frequent syncs but slower indexing
'hnsw:sync_threshold': 1000,
}
collection_settings = {
**default_collection_settings,
**user_collection_settings,
}
local_path = config.get('local_path', None)
if local_path:
self._client = PersistentClient(
path=local_path,
settings=Settings(
allow_reset=True,
anonymized_telemetry=False,
),
)
else:
auth_provider = config.get('auth_provider', 'chromadb.auth.token_authn.TokenAuthClientProvider')
auth_credentials = config.get('auth_token', 'secret-token')
headers = {}
if 'token_authn' in auth_provider:
headers = {config.get('auth_header_name', 'X-Chroma-Token'): auth_credentials}
elif 'basic_authn' in auth_provider:
auth_credentials = config.get('auth_credentials', 'admin:admin')
self._client = HttpClient(
host=config.get('host', 'localhost'),
port=config.get('port', 8000),
headers=headers,
settings=Settings(
chroma_api_impl='rest',
chroma_client_auth_provider=auth_provider,
chroma_client_auth_credentials=auth_credentials,
allow_reset=True,
anonymized_telemetry=False,
),
)
self._collection = self._client.get_or_create_collection(
name=self.namespace,
metadata={
**collection_settings,
'dimension': self.embedding_func.embedding_dim,
},
)
# Use batch size from collection settings if specified
self._max_batch_size = self.global_config.get(
'embedding_batch_num', collection_settings.get('hnsw:batch_size', 32)
)
except Exception as e:
logger.error(f'ChromaDB initialization failed: {e!s}')
raise
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
logger.debug(f'Inserting {len(data)} to {self.namespace}')
if not data:
return
try:
import time
current_time = int(time.time())
ids = list(data.keys())
documents = [v['content'] for v in data.values()]
metadatas = [
{**{k: v for k, v in item.items() if k in self.meta_fields}, 'created_at': current_time}
for item in data.values()
]
# Process in batches
batches = [documents[i : i + self._max_batch_size] for i in range(0, len(documents), self._max_batch_size)]
embedding_tasks = [self.embedding_func(batch) for batch in batches]
embeddings_list = []
# Pre-allocate embeddings_list with known size
embeddings_list = [None] * len(embedding_tasks)
# Use asyncio.gather instead of as_completed if order doesn't matter
embeddings_results = await asyncio.gather(*embedding_tasks)
embeddings_list = list(embeddings_results)
embeddings = np.concatenate(embeddings_list)
# Upsert in batches
for i in range(0, len(ids), self._max_batch_size):
batch_slice = slice(i, i + self._max_batch_size)
self._collection.upsert(
ids=ids[batch_slice],
embeddings=embeddings[batch_slice].tolist(),
documents=documents[batch_slice],
metadatas=metadatas[batch_slice],
)
return ids
except Exception as e:
logger.error(f'Error during ChromaDB upsert: {e!s}')
raise
async def query(self, query: str, top_k: int) -> list[dict[str, Any]]:
try:
embedding = await self.embedding_func([query], _priority=5) # higher priority for query
results = self._collection.query(
query_embeddings=embedding.tolist() if not isinstance(embedding, list) else embedding,
n_results=top_k * 2, # Request more results to allow for filtering
include=['metadatas', 'distances', 'documents'],
)
# Filter results by cosine similarity threshold and take top k
# We request 2x results initially to have enough after filtering
# ChromaDB returns cosine similarity (1 = identical, 0 = orthogonal)
# We convert to distance (0 = identical, 1 = orthogonal) via (1 - similarity)
# Only keep results with distance below threshold, then take top k
return [
{
'id': results['ids'][0][i],
'distance': 1 - results['distances'][0][i],
'content': results['documents'][0][i],
'created_at': results['metadatas'][0][i].get('created_at'),
**results['metadatas'][0][i],
}
for i in range(len(results['ids'][0]))
if (1 - results['distances'][0][i]) >= self.cosine_better_than_threshold
][:top_k]
except Exception as e:
logger.error(f'Error during ChromaDB query: {e!s}')
raise
async def index_done_callback(self) -> None:
# ChromaDB handles persistence automatically
pass
async def delete_entity(self, entity_name: str) -> None:
"""Delete an entity by its ID.
Args:
entity_name: The ID of the entity to delete
"""
try:
logger.info(f'Deleting entity with ID {entity_name} from {self.namespace}')
self._collection.delete(ids=[entity_name])
except Exception as e:
logger.error(f'Error during entity deletion: {e!s}')
raise
async def delete_entity_relation(self, entity_name: str) -> None:
"""Delete an entity and its relations by ID.
In vector DB context, this is equivalent to delete_entity.
Args:
entity_name: The ID of the entity to delete
"""
await self.delete_entity(entity_name)
async def delete(self, ids: list[str]) -> None:
"""Delete vectors with specified IDs
Args:
ids: List of vector IDs to be deleted
"""
try:
self._collection.delete(ids=ids)
logger.debug(f'Successfully deleted {len(ids)} vectors from {self.namespace}')
except Exception as e:
logger.error(f'Error while deleting vectors from {self.namespace}: {e!s}')
raise
async def get_by_id(self, id: str) -> dict[str, Any] | None:
"""Get vector data by its ID
Args:
id: The unique identifier of the vector
Returns:
The vector data if found, or None if not found
"""
try:
# Query the collection for a single vector by ID
result = self._collection.get(ids=[id], include=['metadatas', 'embeddings', 'documents'])
if not result or not result['ids'] or len(result['ids']) == 0:
return None
# Format the result to match the expected structure
return {
'id': result['ids'][0],
'vector': result['embeddings'][0],
'content': result['documents'][0],
'created_at': result['metadatas'][0].get('created_at'),
**result['metadatas'][0],
}
except Exception as e:
logger.error(f'Error retrieving vector data for ID {id}: {e!s}')
return None
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
"""Get multiple vector data by their IDs
Args:
ids: List of unique identifiers
Returns:
List of vector data objects that were found
"""
if not ids:
return []
try:
# Query the collection for multiple vectors by IDs
result = self._collection.get(ids=ids, include=['metadatas', 'embeddings', 'documents'])
if not result or not result['ids'] or len(result['ids']) == 0:
return []
# Format the results to match the expected structure and preserve ordering
formatted_map: dict[str, dict[str, Any]] = {}
for i, result_id in enumerate(result['ids']):
record = {
'id': result_id,
'vector': result['embeddings'][i],
'content': result['documents'][i],
'created_at': result['metadatas'][i].get('created_at'),
**result['metadatas'][i],
}
formatted_map[str(result_id)] = record
ordered_results: list[dict[str, Any] | None] = []
for requested_id in ids:
ordered_results.append(formatted_map.get(str(requested_id)))
return ordered_results
except Exception as e:
logger.error(f'Error retrieving vector data for IDs {ids}: {e}')
return []
async def drop(self) -> dict[str, str]:
"""Drop all vector data from storage and clean up resources
This method will delete all documents from the ChromaDB collection.
Returns:
dict[str, str]: Operation status and message
- On success: {"status": "success", "message": "data dropped"}
- On failure: {"status": "error", "message": "<error details>"}
"""
try:
# Get all IDs in the collection
result = self._collection.get(include=[])
if result and result['ids'] and len(result['ids']) > 0:
# Delete all documents
self._collection.delete(ids=result['ids'])
logger.info(f'Process {os.getpid()} drop ChromaDB collection {self.namespace}')
return {'status': 'success', 'message': 'data dropped'}
except Exception as e:
logger.error(f'Error dropping ChromaDB collection {self.namespace}: {e}')
return {'status': 'error', 'message': str(e)}