LightRAG/examples/unofficial-sample/lightrag_lmdeploy_demo.py
clssck 69358d830d test(lightrag,examples,api): comprehensive ruff formatting and type hints
Format entire codebase with ruff and add type hints across all modules:
- Apply ruff formatting to all Python files (121 files, 17K insertions)
- Add type hints to function signatures throughout lightrag core and API
- Update test suite with improved type annotations and docstrings
- Add pyrightconfig.json for static type checking configuration
- Create prompt_optimized.py and test_extraction_prompt_ab.py test files
- Update ruff.toml and .gitignore for improved linting configuration
- Standardize code style across examples, reproduce scripts, and utilities
2025-12-05 15:17:06 +01:00

89 lines
2.8 KiB
Python

import asyncio
import os
import nest_asyncio
from transformers import AutoModel, AutoTokenizer
from lightrag import LightRAG, QueryParam
from lightrag.llm.hf import hf_embed
from lightrag.llm.lmdeploy import lmdeploy_model_if_cache
from lightrag.utils import EmbeddingFunc
nest_asyncio.apply()
WORKING_DIR = './dickens'
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
async def lmdeploy_model_complete(
prompt=None,
system_prompt=None,
history_messages=None,
keyword_extraction=False,
**kwargs,
) -> str:
if history_messages is None:
history_messages = []
model_name = kwargs['hashing_kv'].global_config['llm_model_name']
return await lmdeploy_model_if_cache(
model_name,
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
## please specify chat_template if your local path does not follow original HF file name,
## or model_name is a pytorch model on huggingface.co,
## you can refer to https://github.com/InternLM/lmdeploy/blob/main/lmdeploy/model.py
## for a list of chat_template available in lmdeploy.
chat_template='llama3',
# model_format ='awq', # if you are using awq quantization model.
# quant_policy=8, # if you want to use online kv cache, 4=kv int4, 8=kv int8.
**kwargs,
)
async def initialize_rag():
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=lmdeploy_model_complete,
llm_model_name='meta-llama/Llama-3.1-8B-Instruct', # please use definite path for local model
embedding_func=EmbeddingFunc(
embedding_dim=384,
max_token_size=5000,
func=lambda texts: hf_embed(
texts,
tokenizer=AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2'),
embed_model=AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2'),
),
),
)
await rag.initialize_storages() # Auto-initializes pipeline_status
return rag
def main():
# Initialize RAG instance
rag = asyncio.run(initialize_rag())
# Insert example text
with open('./book.txt', encoding='utf-8') as f:
rag.insert(f.read())
# Test different query modes
print('\nNaive Search:')
print(rag.query('What are the top themes in this story?', param=QueryParam(mode='naive')))
print('\nLocal Search:')
print(rag.query('What are the top themes in this story?', param=QueryParam(mode='local')))
print('\nGlobal Search:')
print(rag.query('What are the top themes in this story?', param=QueryParam(mode='global')))
print('\nHybrid Search:')
print(rag.query('What are the top themes in this story?', param=QueryParam(mode='hybrid')))
if __name__ == '__main__':
main()