Format entire codebase with ruff and add type hints across all modules: - Apply ruff formatting to all Python files (121 files, 17K insertions) - Add type hints to function signatures throughout lightrag core and API - Update test suite with improved type annotations and docstrings - Add pyrightconfig.json for static type checking configuration - Create prompt_optimized.py and test_extraction_prompt_ab.py test files - Update ruff.toml and .gitignore for improved linting configuration - Standardize code style across examples, reproduce scripts, and utilities
351 lines
11 KiB
Python
351 lines
11 KiB
Python
import asyncio
|
|
import inspect
|
|
import logging
|
|
import logging.config
|
|
import os
|
|
|
|
import numpy as np
|
|
import requests
|
|
from dotenv import load_dotenv
|
|
|
|
from lightrag import LightRAG, QueryParam
|
|
from lightrag.utils import EmbeddingFunc, logger, set_verbose_debug
|
|
|
|
"""This code is a modified version of lightrag_openai_demo.py"""
|
|
|
|
# ideally, as always, env!
|
|
load_dotenv(dotenv_path='.env', override=False)
|
|
|
|
|
|
""" ----========= IMPORTANT CHANGE THIS! =========---- """
|
|
cloudflare_api_key = 'YOUR_API_KEY'
|
|
account_id = 'YOUR_ACCOUNT ID' # This is unique to your Cloudflare account
|
|
|
|
# Authomatically changes
|
|
api_base_url = f'https://api.cloudflare.com/client/v4/accounts/{account_id}/ai/run/'
|
|
|
|
|
|
# choose an embedding model
|
|
EMBEDDING_MODEL = '@cf/baai/bge-m3'
|
|
# choose a generative model
|
|
LLM_MODEL = '@cf/meta/llama-3.2-3b-instruct'
|
|
|
|
WORKING_DIR = '../dickens' # you can change output as desired
|
|
|
|
|
|
# Cloudflare init
|
|
class CloudflareWorker:
|
|
def __init__(
|
|
self,
|
|
cloudflare_api_key: str,
|
|
api_base_url: str,
|
|
llm_model_name: str,
|
|
embedding_model_name: str,
|
|
max_tokens: int = 4080,
|
|
max_response_tokens: int = 4080,
|
|
):
|
|
self.cloudflare_api_key = cloudflare_api_key
|
|
self.api_base_url = api_base_url
|
|
self.llm_model_name = llm_model_name
|
|
self.embedding_model_name = embedding_model_name
|
|
self.max_tokens = max_tokens
|
|
self.max_response_tokens = max_response_tokens
|
|
|
|
async def _send_request(self, model_name: str, input_: dict, debug_log: str):
|
|
headers = {'Authorization': f'Bearer {self.cloudflare_api_key}'}
|
|
|
|
print(f"""
|
|
data sent to Cloudflare
|
|
~~~~~~~~~~~
|
|
{debug_log}
|
|
""")
|
|
|
|
try:
|
|
response_raw = requests.post(f'{self.api_base_url}{model_name}', headers=headers, json=input_).json()
|
|
print(f"""
|
|
Cloudflare worker responded with:
|
|
~~~~~~~~~~~
|
|
{response_raw!s}
|
|
""")
|
|
result = response_raw.get('result', {})
|
|
|
|
if 'data' in result: # Embedding case
|
|
return np.array(result['data'])
|
|
|
|
if 'response' in result: # LLM response
|
|
return result['response']
|
|
|
|
raise ValueError('Unexpected Cloudflare response format')
|
|
|
|
except Exception as e:
|
|
print(f"""
|
|
Cloudflare API returned:
|
|
~~~~~~~~~
|
|
Error: {e}
|
|
""")
|
|
input('Press Enter to continue...')
|
|
return None
|
|
|
|
async def query(self, prompt, system_prompt: str = '', **kwargs) -> str:
|
|
# since no caching is used and we don't want to mess with everything lightrag, pop the kwarg it is
|
|
kwargs.pop('hashing_kv', None)
|
|
|
|
message = [
|
|
{'role': 'system', 'content': system_prompt},
|
|
{'role': 'user', 'content': prompt},
|
|
]
|
|
|
|
input_ = {
|
|
'messages': message,
|
|
'max_tokens': self.max_tokens,
|
|
'response_token_limit': self.max_response_tokens,
|
|
}
|
|
|
|
return await self._send_request(
|
|
self.llm_model_name,
|
|
input_,
|
|
debug_log=f'\n- model used {self.llm_model_name}\n- system prompt: {system_prompt}\n- query: {prompt}',
|
|
)
|
|
|
|
async def embedding_chunk(self, texts: list[str]) -> np.ndarray:
|
|
print(f"""
|
|
TEXT inputted
|
|
~~~~~
|
|
{texts}
|
|
""")
|
|
|
|
input_ = {
|
|
'text': texts,
|
|
'max_tokens': self.max_tokens,
|
|
'response_token_limit': self.max_response_tokens,
|
|
}
|
|
|
|
return await self._send_request(
|
|
self.embedding_model_name,
|
|
input_,
|
|
debug_log=f'\n-llm model name {self.embedding_model_name}\n- texts: {texts}',
|
|
)
|
|
|
|
|
|
def configure_logging():
|
|
"""Configure logging for the application"""
|
|
|
|
# Reset any existing handlers to ensure clean configuration
|
|
for logger_name in ['uvicorn', 'uvicorn.access', 'uvicorn.error', 'lightrag']:
|
|
logger_instance = logging.getLogger(logger_name)
|
|
logger_instance.handlers = []
|
|
logger_instance.filters = []
|
|
|
|
# Get log directory path from environment variable or use current directory
|
|
log_dir = os.getenv('LOG_DIR', os.getcwd())
|
|
log_file_path = os.path.abspath(os.path.join(log_dir, 'lightrag_cloudflare_worker_demo.log'))
|
|
|
|
print(f'\nLightRAG compatible demo log file: {log_file_path}\n')
|
|
os.makedirs(os.path.dirname(log_file_path), exist_ok=True)
|
|
|
|
# Get log file max size and backup count from environment variables
|
|
log_max_bytes = int(os.getenv('LOG_MAX_BYTES', 10485760)) # Default 10MB
|
|
log_backup_count = int(os.getenv('LOG_BACKUP_COUNT', 5)) # Default 5 backups
|
|
|
|
logging.config.dictConfig(
|
|
{
|
|
'version': 1,
|
|
'disable_existing_loggers': False,
|
|
'formatters': {
|
|
'default': {
|
|
'format': '%(levelname)s: %(message)s',
|
|
},
|
|
'detailed': {
|
|
'format': '%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
|
},
|
|
},
|
|
'handlers': {
|
|
'console': {
|
|
'formatter': 'default',
|
|
'class': 'logging.StreamHandler',
|
|
'stream': 'ext://sys.stderr',
|
|
},
|
|
'file': {
|
|
'formatter': 'detailed',
|
|
'class': 'logging.handlers.RotatingFileHandler',
|
|
'filename': log_file_path,
|
|
'maxBytes': log_max_bytes,
|
|
'backupCount': log_backup_count,
|
|
'encoding': 'utf-8',
|
|
},
|
|
},
|
|
'loggers': {
|
|
'lightrag': {
|
|
'handlers': ['console', 'file'],
|
|
'level': 'INFO',
|
|
'propagate': False,
|
|
},
|
|
},
|
|
}
|
|
)
|
|
|
|
# Set the logger level to INFO
|
|
logger.setLevel(logging.INFO)
|
|
# Enable verbose debug if needed
|
|
set_verbose_debug(os.getenv('VERBOSE_DEBUG', 'false').lower() == 'true')
|
|
|
|
|
|
if not os.path.exists(WORKING_DIR):
|
|
os.mkdir(WORKING_DIR)
|
|
|
|
|
|
async def initialize_rag():
|
|
cloudflare_worker = CloudflareWorker(
|
|
cloudflare_api_key=cloudflare_api_key,
|
|
api_base_url=api_base_url,
|
|
embedding_model_name=EMBEDDING_MODEL,
|
|
llm_model_name=LLM_MODEL,
|
|
)
|
|
|
|
rag = LightRAG(
|
|
working_dir=WORKING_DIR,
|
|
max_parallel_insert=2,
|
|
llm_model_func=cloudflare_worker.query,
|
|
llm_model_name=os.getenv('LLM_MODEL', LLM_MODEL),
|
|
summary_max_tokens=4080,
|
|
embedding_func=EmbeddingFunc(
|
|
embedding_dim=int(os.getenv('EMBEDDING_DIM', '1024')),
|
|
max_token_size=int(os.getenv('MAX_EMBED_TOKENS', '2048')),
|
|
func=lambda texts: cloudflare_worker.embedding_chunk(
|
|
texts,
|
|
),
|
|
),
|
|
)
|
|
|
|
await rag.initialize_storages() # Auto-initializes pipeline_status
|
|
return rag
|
|
|
|
|
|
async def print_stream(stream):
|
|
async for chunk in stream:
|
|
print(chunk, end='', flush=True)
|
|
|
|
|
|
async def main():
|
|
try:
|
|
# Clear old data files
|
|
files_to_delete = [
|
|
'graph_chunk_entity_relation.graphml',
|
|
'kv_store_doc_status.json',
|
|
'kv_store_full_docs.json',
|
|
'kv_store_text_chunks.json',
|
|
'vdb_chunks.json',
|
|
'vdb_entities.json',
|
|
'vdb_relationships.json',
|
|
]
|
|
|
|
for file in files_to_delete:
|
|
file_path = os.path.join(WORKING_DIR, file)
|
|
if os.path.exists(file_path):
|
|
os.remove(file_path)
|
|
print(f'Deleting old file:: {file_path}')
|
|
|
|
# Initialize RAG instance
|
|
rag = await initialize_rag()
|
|
|
|
# Test embedding function
|
|
test_text = ['This is a test string for embedding.']
|
|
embedding = await rag.embedding_func(test_text)
|
|
embedding_dim = embedding.shape[1]
|
|
print('\n=======================')
|
|
print('Test embedding function')
|
|
print('========================')
|
|
print(f'Test dict: {test_text}')
|
|
print(f'Detected embedding dimension: {embedding_dim}\n\n')
|
|
|
|
# Locate the location of what is needed to be added to the knowledge
|
|
# Can add several simultaneously by modifying code
|
|
with open('./book.txt', encoding='utf-8') as f:
|
|
await rag.ainsert(f.read())
|
|
|
|
# Perform naive search
|
|
print('\n=====================')
|
|
print('Query mode: naive')
|
|
print('=====================')
|
|
resp = await rag.aquery(
|
|
'What are the top themes in this story?',
|
|
param=QueryParam(mode='naive', stream=True),
|
|
)
|
|
if inspect.isasyncgen(resp):
|
|
await print_stream(resp)
|
|
else:
|
|
print(resp)
|
|
|
|
# Perform local search
|
|
print('\n=====================')
|
|
print('Query mode: local')
|
|
print('=====================')
|
|
resp = await rag.aquery(
|
|
'What are the top themes in this story?',
|
|
param=QueryParam(mode='local', stream=True),
|
|
)
|
|
if inspect.isasyncgen(resp):
|
|
await print_stream(resp)
|
|
else:
|
|
print(resp)
|
|
|
|
# Perform global search
|
|
print('\n=====================')
|
|
print('Query mode: global')
|
|
print('=====================')
|
|
resp = await rag.aquery(
|
|
'What are the top themes in this story?',
|
|
param=QueryParam(mode='global', stream=True),
|
|
)
|
|
if inspect.isasyncgen(resp):
|
|
await print_stream(resp)
|
|
else:
|
|
print(resp)
|
|
|
|
# Perform hybrid search
|
|
print('\n=====================')
|
|
print('Query mode: hybrid')
|
|
print('=====================')
|
|
resp = await rag.aquery(
|
|
'What are the top themes in this story?',
|
|
param=QueryParam(mode='hybrid', stream=True),
|
|
)
|
|
if inspect.isasyncgen(resp):
|
|
await print_stream(resp)
|
|
else:
|
|
print(resp)
|
|
|
|
""" FOR TESTING (if you want to test straight away, after building. Uncomment this part"""
|
|
|
|
"""
|
|
print("\n" + "=" * 60)
|
|
print("AI ASSISTANT READY!")
|
|
print("Ask questions about (your uploaded) regulations")
|
|
print("Type 'quit' to exit")
|
|
print("=" * 60)
|
|
|
|
while True:
|
|
question = input("\n🔥 Your question: ")
|
|
|
|
if question.lower() in ['quit', 'exit', 'bye']:
|
|
break
|
|
|
|
print("\nThinking...")
|
|
response = await rag.aquery(question, param=QueryParam(mode="hybrid"))
|
|
print(f"\nAnswer: {response}")
|
|
|
|
"""
|
|
|
|
except Exception as e:
|
|
print(f'An error occurred: {e}')
|
|
finally:
|
|
if rag:
|
|
await rag.llm_response_cache.index_done_callback()
|
|
await rag.finalize_storages()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
# Configure logging before running the main function
|
|
configure_logging()
|
|
asyncio.run(main())
|
|
print('\nDone!')
|