LightRAG/examples/unofficial-sample/lightrag_cloudflare_demo.py
clssck 69358d830d test(lightrag,examples,api): comprehensive ruff formatting and type hints
Format entire codebase with ruff and add type hints across all modules:
- Apply ruff formatting to all Python files (121 files, 17K insertions)
- Add type hints to function signatures throughout lightrag core and API
- Update test suite with improved type annotations and docstrings
- Add pyrightconfig.json for static type checking configuration
- Create prompt_optimized.py and test_extraction_prompt_ab.py test files
- Update ruff.toml and .gitignore for improved linting configuration
- Standardize code style across examples, reproduce scripts, and utilities
2025-12-05 15:17:06 +01:00

351 lines
11 KiB
Python

import asyncio
import inspect
import logging
import logging.config
import os
import numpy as np
import requests
from dotenv import load_dotenv
from lightrag import LightRAG, QueryParam
from lightrag.utils import EmbeddingFunc, logger, set_verbose_debug
"""This code is a modified version of lightrag_openai_demo.py"""
# ideally, as always, env!
load_dotenv(dotenv_path='.env', override=False)
""" ----========= IMPORTANT CHANGE THIS! =========---- """
cloudflare_api_key = 'YOUR_API_KEY'
account_id = 'YOUR_ACCOUNT ID' # This is unique to your Cloudflare account
# Authomatically changes
api_base_url = f'https://api.cloudflare.com/client/v4/accounts/{account_id}/ai/run/'
# choose an embedding model
EMBEDDING_MODEL = '@cf/baai/bge-m3'
# choose a generative model
LLM_MODEL = '@cf/meta/llama-3.2-3b-instruct'
WORKING_DIR = '../dickens' # you can change output as desired
# Cloudflare init
class CloudflareWorker:
def __init__(
self,
cloudflare_api_key: str,
api_base_url: str,
llm_model_name: str,
embedding_model_name: str,
max_tokens: int = 4080,
max_response_tokens: int = 4080,
):
self.cloudflare_api_key = cloudflare_api_key
self.api_base_url = api_base_url
self.llm_model_name = llm_model_name
self.embedding_model_name = embedding_model_name
self.max_tokens = max_tokens
self.max_response_tokens = max_response_tokens
async def _send_request(self, model_name: str, input_: dict, debug_log: str):
headers = {'Authorization': f'Bearer {self.cloudflare_api_key}'}
print(f"""
data sent to Cloudflare
~~~~~~~~~~~
{debug_log}
""")
try:
response_raw = requests.post(f'{self.api_base_url}{model_name}', headers=headers, json=input_).json()
print(f"""
Cloudflare worker responded with:
~~~~~~~~~~~
{response_raw!s}
""")
result = response_raw.get('result', {})
if 'data' in result: # Embedding case
return np.array(result['data'])
if 'response' in result: # LLM response
return result['response']
raise ValueError('Unexpected Cloudflare response format')
except Exception as e:
print(f"""
Cloudflare API returned:
~~~~~~~~~
Error: {e}
""")
input('Press Enter to continue...')
return None
async def query(self, prompt, system_prompt: str = '', **kwargs) -> str:
# since no caching is used and we don't want to mess with everything lightrag, pop the kwarg it is
kwargs.pop('hashing_kv', None)
message = [
{'role': 'system', 'content': system_prompt},
{'role': 'user', 'content': prompt},
]
input_ = {
'messages': message,
'max_tokens': self.max_tokens,
'response_token_limit': self.max_response_tokens,
}
return await self._send_request(
self.llm_model_name,
input_,
debug_log=f'\n- model used {self.llm_model_name}\n- system prompt: {system_prompt}\n- query: {prompt}',
)
async def embedding_chunk(self, texts: list[str]) -> np.ndarray:
print(f"""
TEXT inputted
~~~~~
{texts}
""")
input_ = {
'text': texts,
'max_tokens': self.max_tokens,
'response_token_limit': self.max_response_tokens,
}
return await self._send_request(
self.embedding_model_name,
input_,
debug_log=f'\n-llm model name {self.embedding_model_name}\n- texts: {texts}',
)
def configure_logging():
"""Configure logging for the application"""
# Reset any existing handlers to ensure clean configuration
for logger_name in ['uvicorn', 'uvicorn.access', 'uvicorn.error', 'lightrag']:
logger_instance = logging.getLogger(logger_name)
logger_instance.handlers = []
logger_instance.filters = []
# Get log directory path from environment variable or use current directory
log_dir = os.getenv('LOG_DIR', os.getcwd())
log_file_path = os.path.abspath(os.path.join(log_dir, 'lightrag_cloudflare_worker_demo.log'))
print(f'\nLightRAG compatible demo log file: {log_file_path}\n')
os.makedirs(os.path.dirname(log_file_path), exist_ok=True)
# Get log file max size and backup count from environment variables
log_max_bytes = int(os.getenv('LOG_MAX_BYTES', 10485760)) # Default 10MB
log_backup_count = int(os.getenv('LOG_BACKUP_COUNT', 5)) # Default 5 backups
logging.config.dictConfig(
{
'version': 1,
'disable_existing_loggers': False,
'formatters': {
'default': {
'format': '%(levelname)s: %(message)s',
},
'detailed': {
'format': '%(asctime)s - %(name)s - %(levelname)s - %(message)s',
},
},
'handlers': {
'console': {
'formatter': 'default',
'class': 'logging.StreamHandler',
'stream': 'ext://sys.stderr',
},
'file': {
'formatter': 'detailed',
'class': 'logging.handlers.RotatingFileHandler',
'filename': log_file_path,
'maxBytes': log_max_bytes,
'backupCount': log_backup_count,
'encoding': 'utf-8',
},
},
'loggers': {
'lightrag': {
'handlers': ['console', 'file'],
'level': 'INFO',
'propagate': False,
},
},
}
)
# Set the logger level to INFO
logger.setLevel(logging.INFO)
# Enable verbose debug if needed
set_verbose_debug(os.getenv('VERBOSE_DEBUG', 'false').lower() == 'true')
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
async def initialize_rag():
cloudflare_worker = CloudflareWorker(
cloudflare_api_key=cloudflare_api_key,
api_base_url=api_base_url,
embedding_model_name=EMBEDDING_MODEL,
llm_model_name=LLM_MODEL,
)
rag = LightRAG(
working_dir=WORKING_DIR,
max_parallel_insert=2,
llm_model_func=cloudflare_worker.query,
llm_model_name=os.getenv('LLM_MODEL', LLM_MODEL),
summary_max_tokens=4080,
embedding_func=EmbeddingFunc(
embedding_dim=int(os.getenv('EMBEDDING_DIM', '1024')),
max_token_size=int(os.getenv('MAX_EMBED_TOKENS', '2048')),
func=lambda texts: cloudflare_worker.embedding_chunk(
texts,
),
),
)
await rag.initialize_storages() # Auto-initializes pipeline_status
return rag
async def print_stream(stream):
async for chunk in stream:
print(chunk, end='', flush=True)
async def main():
try:
# Clear old data files
files_to_delete = [
'graph_chunk_entity_relation.graphml',
'kv_store_doc_status.json',
'kv_store_full_docs.json',
'kv_store_text_chunks.json',
'vdb_chunks.json',
'vdb_entities.json',
'vdb_relationships.json',
]
for file in files_to_delete:
file_path = os.path.join(WORKING_DIR, file)
if os.path.exists(file_path):
os.remove(file_path)
print(f'Deleting old file:: {file_path}')
# Initialize RAG instance
rag = await initialize_rag()
# Test embedding function
test_text = ['This is a test string for embedding.']
embedding = await rag.embedding_func(test_text)
embedding_dim = embedding.shape[1]
print('\n=======================')
print('Test embedding function')
print('========================')
print(f'Test dict: {test_text}')
print(f'Detected embedding dimension: {embedding_dim}\n\n')
# Locate the location of what is needed to be added to the knowledge
# Can add several simultaneously by modifying code
with open('./book.txt', encoding='utf-8') as f:
await rag.ainsert(f.read())
# Perform naive search
print('\n=====================')
print('Query mode: naive')
print('=====================')
resp = await rag.aquery(
'What are the top themes in this story?',
param=QueryParam(mode='naive', stream=True),
)
if inspect.isasyncgen(resp):
await print_stream(resp)
else:
print(resp)
# Perform local search
print('\n=====================')
print('Query mode: local')
print('=====================')
resp = await rag.aquery(
'What are the top themes in this story?',
param=QueryParam(mode='local', stream=True),
)
if inspect.isasyncgen(resp):
await print_stream(resp)
else:
print(resp)
# Perform global search
print('\n=====================')
print('Query mode: global')
print('=====================')
resp = await rag.aquery(
'What are the top themes in this story?',
param=QueryParam(mode='global', stream=True),
)
if inspect.isasyncgen(resp):
await print_stream(resp)
else:
print(resp)
# Perform hybrid search
print('\n=====================')
print('Query mode: hybrid')
print('=====================')
resp = await rag.aquery(
'What are the top themes in this story?',
param=QueryParam(mode='hybrid', stream=True),
)
if inspect.isasyncgen(resp):
await print_stream(resp)
else:
print(resp)
""" FOR TESTING (if you want to test straight away, after building. Uncomment this part"""
"""
print("\n" + "=" * 60)
print("AI ASSISTANT READY!")
print("Ask questions about (your uploaded) regulations")
print("Type 'quit' to exit")
print("=" * 60)
while True:
question = input("\n🔥 Your question: ")
if question.lower() in ['quit', 'exit', 'bye']:
break
print("\nThinking...")
response = await rag.aquery(question, param=QueryParam(mode="hybrid"))
print(f"\nAnswer: {response}")
"""
except Exception as e:
print(f'An error occurred: {e}')
finally:
if rag:
await rag.llm_response_cache.index_done_callback()
await rag.finalize_storages()
if __name__ == '__main__':
# Configure logging before running the main function
configure_logging()
asyncio.run(main())
print('\nDone!')