LightRAG/examples/lightrag_openai_mongodb_graph_demo.py
clssck 69358d830d test(lightrag,examples,api): comprehensive ruff formatting and type hints
Format entire codebase with ruff and add type hints across all modules:
- Apply ruff formatting to all Python files (121 files, 17K insertions)
- Add type hints to function signatures throughout lightrag core and API
- Update test suite with improved type annotations and docstrings
- Add pyrightconfig.json for static type checking configuration
- Create prompt_optimized.py and test_extraction_prompt_ab.py test files
- Update ruff.toml and .gitignore for improved linting configuration
- Standardize code style across examples, reproduce scripts, and utilities
2025-12-05 15:17:06 +01:00

90 lines
2.6 KiB
Python

import asyncio
import os
import numpy as np
from lightrag import LightRAG, QueryParam
from lightrag.llm.openai import gpt_4o_mini_complete, openai_embed
from lightrag.utils import EmbeddingFunc
#########
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
# import nest_asyncio
# nest_asyncio.apply()
#########
WORKING_DIR = './mongodb_test_dir'
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
os.environ['OPENAI_API_KEY'] = 'sk-'
os.environ['MONGO_URI'] = 'mongodb://0.0.0.0:27017/?directConnection=true'
os.environ['MONGO_DATABASE'] = 'LightRAG'
os.environ['MONGO_KG_COLLECTION'] = 'MDB_KG'
# Embedding Configuration and Functions
EMBEDDING_MODEL = os.environ.get('EMBEDDING_MODEL', 'text-embedding-3-large')
EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get('EMBEDDING_MAX_TOKEN_SIZE', 8192))
async def embedding_func(texts: list[str]) -> np.ndarray:
return await openai_embed(
texts,
model=EMBEDDING_MODEL,
)
async def get_embedding_dimension():
test_text = ['This is a test sentence.']
embedding = await embedding_func(test_text)
return embedding.shape[1]
async def create_embedding_function_instance():
# Get embedding dimension
embedding_dimension = await get_embedding_dimension()
# Create embedding function instance
return EmbeddingFunc(
embedding_dim=embedding_dimension,
max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
func=embedding_func,
)
async def initialize_rag():
embedding_func_instance = await create_embedding_function_instance()
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=gpt_4o_mini_complete,
embedding_func=embedding_func_instance,
graph_storage='MongoGraphStorage',
log_level='DEBUG',
)
await rag.initialize_storages() # Auto-initializes pipeline_status
return rag
def main():
# Initialize RAG instance
rag = asyncio.run(initialize_rag())
with open('./book.txt', encoding='utf-8') as f:
rag.insert(f.read())
# Perform naive search
print(rag.query('What are the top themes in this story?', param=QueryParam(mode='naive')))
# Perform local search
print(rag.query('What are the top themes in this story?', param=QueryParam(mode='local')))
# Perform global search
print(rag.query('What are the top themes in this story?', param=QueryParam(mode='global')))
# Perform hybrid search
print(rag.query('What are the top themes in this story?', param=QueryParam(mode='hybrid')))
if __name__ == '__main__':
main()