LightRAG/examples/lightrag_openai_demo.py
clssck 65d2cd16b1 feat(examples, lightrag): fix logging and code improvements
Fix logging output in evaluation test harness and examples:
- Replace print() statements with logger calls in e2e_test_harness.py
- Update copy_llm_cache_to_another_storage.py to use logger instead of print
- Remove redundant logging configuration in copy_llm_cache_to_another_storage.py
Fix path handling and typos:
- Correct makedirs() call in lightrag_openai_demo.py to create log_dir directly
- Update constants.py comments to clarify SOURCE_IDS_LIMIT_METHOD options
- Remove duplicate return statement in utils.py normalize_extracted_info()
- Fix error string formatting in chroma_impl.py with !s conversion
- Remove unused pipmaster import from chroma_impl.py
2025-12-05 18:10:19 +01:00

180 lines
5.8 KiB
Python

import asyncio
import logging
import logging.config
import os
from lightrag import LightRAG, QueryParam
from lightrag.llm.openai import gpt_4o_mini_complete, openai_embed
from lightrag.utils import logger, set_verbose_debug
WORKING_DIR = './dickens'
def configure_logging():
"""Configure logging for the application"""
# Reset any existing handlers to ensure clean configuration
for logger_name in ['uvicorn', 'uvicorn.access', 'uvicorn.error', 'lightrag']:
logger_instance = logging.getLogger(logger_name)
logger_instance.handlers = []
logger_instance.filters = []
# Get log directory path from environment variable or use current directory
log_dir = os.getenv('LOG_DIR', os.getcwd())
log_file_path = os.path.abspath(os.path.join(log_dir, 'lightrag_demo.log'))
print(f'\nLightRAG demo log file: {log_file_path}\n')
os.makedirs(log_dir, exist_ok=True)
# Get log file max size and backup count from environment variables
log_max_bytes = int(os.getenv('LOG_MAX_BYTES', 10485760)) # Default 10MB
log_backup_count = int(os.getenv('LOG_BACKUP_COUNT', 5)) # Default 5 backups
logging.config.dictConfig(
{
'version': 1,
'disable_existing_loggers': False,
'formatters': {
'default': {
'format': '%(levelname)s: %(message)s',
},
'detailed': {
'format': '%(asctime)s - %(name)s - %(levelname)s - %(message)s',
},
},
'handlers': {
'console': {
'formatter': 'default',
'class': 'logging.StreamHandler',
'stream': 'ext://sys.stderr',
},
'file': {
'formatter': 'detailed',
'class': 'logging.handlers.RotatingFileHandler',
'filename': log_file_path,
'maxBytes': log_max_bytes,
'backupCount': log_backup_count,
'encoding': 'utf-8',
},
},
'loggers': {
'lightrag': {
'handlers': ['console', 'file'],
'level': 'INFO',
'propagate': False,
},
},
}
)
# Set the logger level to INFO
logger.setLevel(logging.INFO)
# Enable verbose debug if needed
set_verbose_debug(os.getenv('VERBOSE_DEBUG', 'false').lower() == 'true')
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
async def initialize_rag():
rag = LightRAG(
working_dir=WORKING_DIR,
embedding_func=openai_embed,
llm_model_func=gpt_4o_mini_complete,
)
await rag.initialize_storages() # Auto-initializes pipeline_status
return rag
async def main():
# Check if OPENAI_API_KEY environment variable exists
if not os.getenv('OPENAI_API_KEY'):
print(
'Error: OPENAI_API_KEY environment variable is not set. Please set this variable before running the program.'
)
print('You can set the environment variable by running:')
print(" export OPENAI_API_KEY='your-openai-api-key'")
return # Exit the async function
try:
# Clear old data files
files_to_delete = [
'graph_chunk_entity_relation.graphml',
'kv_store_doc_status.json',
'kv_store_full_docs.json',
'kv_store_text_chunks.json',
'vdb_chunks.json',
'vdb_entities.json',
'vdb_relationships.json',
]
for file in files_to_delete:
file_path = os.path.join(WORKING_DIR, file)
if os.path.exists(file_path):
os.remove(file_path)
print(f'Deleting old file:: {file_path}')
# Initialize RAG instance
rag = await initialize_rag()
# Test embedding function
test_text = ['This is a test string for embedding.']
embedding = await rag.embedding_func(test_text)
embedding_dim = embedding.shape[1]
print('\n=======================')
print('Test embedding function')
print('========================')
print(f'Test dict: {test_text}')
print(f'Detected embedding dimension: {embedding_dim}\n\n')
with open('./book.txt', encoding='utf-8') as f:
await rag.ainsert(f.read())
# Perform naive search
print('\n=====================')
print('Query mode: naive')
print('=====================')
print(await rag.aquery('What are the top themes in this story?', param=QueryParam(mode='naive')))
# Perform local search
print('\n=====================')
print('Query mode: local')
print('=====================')
print(await rag.aquery('What are the top themes in this story?', param=QueryParam(mode='local')))
# Perform global search
print('\n=====================')
print('Query mode: global')
print('=====================')
print(
await rag.aquery(
'What are the top themes in this story?',
param=QueryParam(mode='global'),
)
)
# Perform hybrid search
print('\n=====================')
print('Query mode: hybrid')
print('=====================')
print(
await rag.aquery(
'What are the top themes in this story?',
param=QueryParam(mode='hybrid'),
)
)
except Exception as e:
print(f'An error occurred: {e}')
finally:
if rag:
await rag.finalize_storages()
if __name__ == '__main__':
# Configure logging before running the main function
configure_logging()
asyncio.run(main())
print('\nDone!')