Add comprehensive test suites for prompt evaluation: - test_prompt_accuracy.py: 365 lines testing prompt extraction accuracy - test_prompt_quality_deep.py: 672 lines for deep quality analysis - Refactor prompt.py to consolidate optimized variants (removed prompt_optimized.py) - Apply ruff formatting and type hints across 30 files - Update pyrightconfig.json for static type checking - Modernize reproduce scripts and examples with improved type annotations - Sync uv.lock dependencies
224 lines
7.1 KiB
Python
224 lines
7.1 KiB
Python
import asyncio
|
|
import inspect
|
|
import logging
|
|
import logging.config
|
|
import os
|
|
|
|
from dotenv import load_dotenv
|
|
|
|
from lightrag import LightRAG, QueryParam
|
|
from lightrag.llm.ollama import ollama_embed
|
|
from lightrag.llm.openai import openai_complete_if_cache
|
|
from lightrag.utils import EmbeddingFunc, logger, set_verbose_debug
|
|
|
|
load_dotenv(dotenv_path='.env', override=False)
|
|
|
|
WORKING_DIR = './dickens'
|
|
|
|
|
|
def configure_logging():
|
|
"""Configure logging for the application"""
|
|
|
|
# Reset any existing handlers to ensure clean configuration
|
|
for logger_name in ['uvicorn', 'uvicorn.access', 'uvicorn.error', 'lightrag']:
|
|
logger_instance = logging.getLogger(logger_name)
|
|
logger_instance.handlers = []
|
|
logger_instance.filters = []
|
|
|
|
# Get log directory path from environment variable or use current directory
|
|
log_dir = os.getenv('LOG_DIR', os.getcwd())
|
|
log_file_path = os.path.abspath(os.path.join(log_dir, 'lightrag_compatible_demo.log'))
|
|
|
|
print(f'\nLightRAG compatible demo log file: {log_file_path}\n')
|
|
os.makedirs(log_dir, exist_ok=True)
|
|
|
|
# Get log file max size and backup count from environment variables
|
|
log_max_bytes = int(os.getenv('LOG_MAX_BYTES', 10485760)) # Default 10MB
|
|
log_backup_count = int(os.getenv('LOG_BACKUP_COUNT', 5)) # Default 5 backups
|
|
|
|
logging.config.dictConfig(
|
|
{
|
|
'version': 1,
|
|
'disable_existing_loggers': False,
|
|
'formatters': {
|
|
'default': {
|
|
'format': '%(levelname)s: %(message)s',
|
|
},
|
|
'detailed': {
|
|
'format': '%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
|
},
|
|
},
|
|
'handlers': {
|
|
'console': {
|
|
'formatter': 'default',
|
|
'class': 'logging.StreamHandler',
|
|
'stream': 'ext://sys.stderr',
|
|
},
|
|
'file': {
|
|
'formatter': 'detailed',
|
|
'class': 'logging.handlers.RotatingFileHandler',
|
|
'filename': log_file_path,
|
|
'maxBytes': log_max_bytes,
|
|
'backupCount': log_backup_count,
|
|
'encoding': 'utf-8',
|
|
},
|
|
},
|
|
'loggers': {
|
|
'lightrag': {
|
|
'handlers': ['console', 'file'],
|
|
'level': 'INFO',
|
|
'propagate': False,
|
|
},
|
|
},
|
|
}
|
|
)
|
|
|
|
# Set the logger level to INFO
|
|
logger.setLevel(logging.INFO)
|
|
# Enable verbose debug if needed
|
|
set_verbose_debug(os.getenv('VERBOSE_DEBUG', 'false').lower() == 'true')
|
|
|
|
|
|
if not os.path.exists(WORKING_DIR):
|
|
os.mkdir(WORKING_DIR)
|
|
|
|
|
|
async def llm_model_func(prompt, system_prompt=None, history_messages=None, keyword_extraction=False, **kwargs) -> str:
|
|
if history_messages is None:
|
|
history_messages = []
|
|
return await openai_complete_if_cache(
|
|
os.getenv('LLM_MODEL', 'deepseek-chat'),
|
|
prompt,
|
|
system_prompt=system_prompt,
|
|
history_messages=history_messages,
|
|
api_key=os.getenv('LLM_BINDING_API_KEY') or os.getenv('OPENAI_API_KEY'),
|
|
base_url=os.getenv('LLM_BINDING_HOST', 'https://api.deepseek.com'),
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
async def print_stream(stream):
|
|
async for chunk in stream:
|
|
if chunk:
|
|
print(chunk, end='', flush=True)
|
|
|
|
|
|
async def initialize_rag():
|
|
rag = LightRAG(
|
|
working_dir=WORKING_DIR,
|
|
llm_model_func=llm_model_func,
|
|
embedding_func=EmbeddingFunc(
|
|
embedding_dim=int(os.getenv('EMBEDDING_DIM', '1024')),
|
|
max_token_size=int(os.getenv('MAX_EMBED_TOKENS', '8192')),
|
|
func=lambda texts: ollama_embed(
|
|
texts,
|
|
embed_model=os.getenv('EMBEDDING_MODEL', 'bge-m3:latest'),
|
|
host=os.getenv('EMBEDDING_BINDING_HOST', 'http://localhost:11434'),
|
|
),
|
|
),
|
|
)
|
|
|
|
await rag.initialize_storages() # Auto-initializes pipeline_status
|
|
return rag
|
|
|
|
|
|
async def main():
|
|
rag = None
|
|
try:
|
|
# Clear old data files
|
|
files_to_delete = [
|
|
'graph_chunk_entity_relation.graphml',
|
|
'kv_store_doc_status.json',
|
|
'kv_store_full_docs.json',
|
|
'kv_store_text_chunks.json',
|
|
'vdb_chunks.json',
|
|
'vdb_entities.json',
|
|
'vdb_relationships.json',
|
|
]
|
|
|
|
for file in files_to_delete:
|
|
file_path = os.path.join(WORKING_DIR, file)
|
|
if os.path.exists(file_path):
|
|
os.remove(file_path)
|
|
print(f'Deleting old file:: {file_path}')
|
|
|
|
# Initialize RAG instance
|
|
rag = await initialize_rag()
|
|
|
|
# Test embedding function
|
|
test_text = ['This is a test string for embedding.']
|
|
embedding = await rag.embedding_func(test_text)
|
|
embedding_dim = embedding.shape[1]
|
|
print('\n=======================')
|
|
print('Test embedding function')
|
|
print('========================')
|
|
print(f'Test dict: {test_text}')
|
|
print(f'Detected embedding dimension: {embedding_dim}\n\n')
|
|
|
|
with open('./book.txt', encoding='utf-8') as f:
|
|
await rag.ainsert(f.read())
|
|
|
|
# Perform naive search
|
|
print('\n=====================')
|
|
print('Query mode: naive')
|
|
print('=====================')
|
|
resp = await rag.aquery(
|
|
'What are the top themes in this story?',
|
|
param=QueryParam(mode='naive', stream=True),
|
|
)
|
|
if inspect.isasyncgen(resp):
|
|
await print_stream(resp)
|
|
else:
|
|
print(resp)
|
|
|
|
# Perform local search
|
|
print('\n=====================')
|
|
print('Query mode: local')
|
|
print('=====================')
|
|
resp = await rag.aquery(
|
|
'What are the top themes in this story?',
|
|
param=QueryParam(mode='local', stream=True),
|
|
)
|
|
if inspect.isasyncgen(resp):
|
|
await print_stream(resp)
|
|
else:
|
|
print(resp)
|
|
|
|
# Perform global search
|
|
print('\n=====================')
|
|
print('Query mode: global')
|
|
print('=====================')
|
|
resp = await rag.aquery(
|
|
'What are the top themes in this story?',
|
|
param=QueryParam(mode='global', stream=True),
|
|
)
|
|
if inspect.isasyncgen(resp):
|
|
await print_stream(resp)
|
|
else:
|
|
print(resp)
|
|
|
|
# Perform hybrid search
|
|
print('\n=====================')
|
|
print('Query mode: hybrid')
|
|
print('=====================')
|
|
resp = await rag.aquery(
|
|
'What are the top themes in this story?',
|
|
param=QueryParam(mode='hybrid', stream=True),
|
|
)
|
|
if inspect.isasyncgen(resp):
|
|
await print_stream(resp)
|
|
else:
|
|
print(resp)
|
|
|
|
except Exception as e:
|
|
print(f'An error occurred: {e}')
|
|
finally:
|
|
if rag:
|
|
await rag.finalize_storages()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
# Configure logging before running the main function
|
|
configure_logging()
|
|
asyncio.run(main())
|
|
print('\nDone!')
|