LightRAG/examples/lightrag_ollama_demo.py
clssck 69358d830d test(lightrag,examples,api): comprehensive ruff formatting and type hints
Format entire codebase with ruff and add type hints across all modules:
- Apply ruff formatting to all Python files (121 files, 17K insertions)
- Add type hints to function signatures throughout lightrag core and API
- Update test suite with improved type annotations and docstrings
- Add pyrightconfig.json for static type checking configuration
- Create prompt_optimized.py and test_extraction_prompt_ab.py test files
- Update ruff.toml and .gitignore for improved linting configuration
- Standardize code style across examples, reproduce scripts, and utilities
2025-12-05 15:17:06 +01:00

215 lines
6.9 KiB
Python

import asyncio
import inspect
import logging
import logging.config
import os
from dotenv import load_dotenv
from lightrag import LightRAG, QueryParam
from lightrag.llm.ollama import ollama_embed, ollama_model_complete
from lightrag.utils import EmbeddingFunc, logger, set_verbose_debug
load_dotenv(dotenv_path='.env', override=False)
WORKING_DIR = './dickens'
def configure_logging():
"""Configure logging for the application"""
# Reset any existing handlers to ensure clean configuration
for logger_name in ['uvicorn', 'uvicorn.access', 'uvicorn.error', 'lightrag']:
logger_instance = logging.getLogger(logger_name)
logger_instance.handlers = []
logger_instance.filters = []
# Get log directory path from environment variable or use current directory
log_dir = os.getenv('LOG_DIR', os.getcwd())
log_file_path = os.path.abspath(os.path.join(log_dir, 'lightrag_ollama_demo.log'))
print(f'\nLightRAG compatible demo log file: {log_file_path}\n')
os.makedirs(os.path.dirname(log_file_path), exist_ok=True)
# Get log file max size and backup count from environment variables
log_max_bytes = int(os.getenv('LOG_MAX_BYTES', 10485760)) # Default 10MB
log_backup_count = int(os.getenv('LOG_BACKUP_COUNT', 5)) # Default 5 backups
logging.config.dictConfig(
{
'version': 1,
'disable_existing_loggers': False,
'formatters': {
'default': {
'format': '%(levelname)s: %(message)s',
},
'detailed': {
'format': '%(asctime)s - %(name)s - %(levelname)s - %(message)s',
},
},
'handlers': {
'console': {
'formatter': 'default',
'class': 'logging.StreamHandler',
'stream': 'ext://sys.stderr',
},
'file': {
'formatter': 'detailed',
'class': 'logging.handlers.RotatingFileHandler',
'filename': log_file_path,
'maxBytes': log_max_bytes,
'backupCount': log_backup_count,
'encoding': 'utf-8',
},
},
'loggers': {
'lightrag': {
'handlers': ['console', 'file'],
'level': 'INFO',
'propagate': False,
},
},
}
)
# Set the logger level to INFO
logger.setLevel(logging.INFO)
# Enable verbose debug if needed
set_verbose_debug(os.getenv('VERBOSE_DEBUG', 'false').lower() == 'true')
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
async def initialize_rag():
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=ollama_model_complete,
llm_model_name=os.getenv('LLM_MODEL', 'qwen2.5-coder:7b'),
summary_max_tokens=8192,
llm_model_kwargs={
'host': os.getenv('LLM_BINDING_HOST', 'http://localhost:11434'),
'options': {'num_ctx': 8192},
'timeout': int(os.getenv('TIMEOUT', '300')),
},
embedding_func=EmbeddingFunc(
embedding_dim=int(os.getenv('EMBEDDING_DIM', '1024')),
max_token_size=int(os.getenv('MAX_EMBED_TOKENS', '8192')),
func=lambda texts: ollama_embed(
texts,
embed_model=os.getenv('EMBEDDING_MODEL', 'bge-m3:latest'),
host=os.getenv('EMBEDDING_BINDING_HOST', 'http://localhost:11434'),
),
),
)
await rag.initialize_storages() # Auto-initializes pipeline_status
return rag
async def print_stream(stream):
async for chunk in stream:
print(chunk, end='', flush=True)
async def main():
try:
# Clear old data files
files_to_delete = [
'graph_chunk_entity_relation.graphml',
'kv_store_doc_status.json',
'kv_store_full_docs.json',
'kv_store_text_chunks.json',
'vdb_chunks.json',
'vdb_entities.json',
'vdb_relationships.json',
]
for file in files_to_delete:
file_path = os.path.join(WORKING_DIR, file)
if os.path.exists(file_path):
os.remove(file_path)
print(f'Deleting old file:: {file_path}')
# Initialize RAG instance
rag = await initialize_rag()
# Test embedding function
test_text = ['This is a test string for embedding.']
embedding = await rag.embedding_func(test_text)
embedding_dim = embedding.shape[1]
print('\n=======================')
print('Test embedding function')
print('========================')
print(f'Test dict: {test_text}')
print(f'Detected embedding dimension: {embedding_dim}\n\n')
with open('./book.txt', encoding='utf-8') as f:
await rag.ainsert(f.read())
# Perform naive search
print('\n=====================')
print('Query mode: naive')
print('=====================')
resp = await rag.aquery(
'What are the top themes in this story?',
param=QueryParam(mode='naive', stream=True),
)
if inspect.isasyncgen(resp):
await print_stream(resp)
else:
print(resp)
# Perform local search
print('\n=====================')
print('Query mode: local')
print('=====================')
resp = await rag.aquery(
'What are the top themes in this story?',
param=QueryParam(mode='local', stream=True),
)
if inspect.isasyncgen(resp):
await print_stream(resp)
else:
print(resp)
# Perform global search
print('\n=====================')
print('Query mode: global')
print('=====================')
resp = await rag.aquery(
'What are the top themes in this story?',
param=QueryParam(mode='global', stream=True),
)
if inspect.isasyncgen(resp):
await print_stream(resp)
else:
print(resp)
# Perform hybrid search
print('\n=====================')
print('Query mode: hybrid')
print('=====================')
resp = await rag.aquery(
'What are the top themes in this story?',
param=QueryParam(mode='hybrid', stream=True),
)
if inspect.isasyncgen(resp):
await print_stream(resp)
else:
print(resp)
except Exception as e:
print(f'An error occurred: {e}')
finally:
if rag:
await rag.llm_response_cache.index_done_callback()
await rag.finalize_storages()
if __name__ == '__main__':
# Configure logging before running the main function
configure_logging()
asyncio.run(main())
print('\nDone!')