| .. | ||
| __init__.py | ||
| conftest.py | ||
| README.md | ||
| test_direct_gpt5nano.py | ||
| test_env_config.py | ||
| test_gpt5_nano_compatibility.py | ||
| test_gpt5_reasoning.py | ||
GPT-5-Nano Compatibility Tests
This directory contains comprehensive tests for ensuring LightRAG's compatibility with OpenAI's gpt-5-nano model, including its specific API constraints and parameter requirements.
Overview
gpt-5-nano is a cost-optimized reasoning model that differs from traditional LLMs in important ways:
- Uses
max_completion_tokensinstead ofmax_tokens - Does NOT support custom
temperatureparameter - Has built-in reasoning that consumes tokens from the completion budget
- Requires token budget adjustments to account for reasoning overhead
These tests validate that LightRAG handles these constraints correctly.
Test Files
1. test_gpt5_nano_compatibility.py ⭐ Primary Test Suite
Purpose: Comprehensive compatibility validation Tests:
- Test 1: Parameter normalization (max_tokens → max_completion_tokens conversion)
- Test 2: Configuration loading from .env
- Test 3: Embeddings generation with gpt-5-nano
- Test 4: Simple LLM completion
- Test 5: Entity extraction tasks
Run: python test_gpt5_nano_compatibility.py
Expected Output:
✅ Parameter Normalization: PASSED
✅ Configuration Loading: PASSED
✅ Embeddings: PASSED
✅ Simple Completion: PASSED
✅ Entity Extraction: PASSED
🎉 ALL TESTS PASSED
2. test_env_config.py
Purpose: Validate .env configuration is properly respected Tests:
- Part 1: .env file loading
- Part 2: Config parser respects .env variables
- Part 3: OpenAI API connectivity
- Part 4: Embeddings generation with configured model
- Part 5: LLM extraction with configured model
- Part 6: Full RAG pipeline integration
Run: python test_env_config.py
Expected Output:
✅ .env Loading: PASSED
✅ Config Parser: PASSED
✅ OpenAI Connectivity: PASSED
✅ Embeddings: PASSED
✅ LLM Extraction: PASSED
✅ Full Integration: PASSED
OVERALL: 6/6 tests passed
3. test_direct_gpt5nano.py
Purpose: Direct API testing without LightRAG abstraction Validates: Raw gpt-5-nano API behavior with proper parameters
Run: python test_direct_gpt5nano.py
What it does:
- Sends direct API request to gpt-5-nano
- Uses
max_completion_tokensparameter - Prints raw response and token usage
4. test_gpt5_reasoning.py
Purpose: Understand gpt-5-nano's reasoning token overhead Tests: Token allocation with different reasoning effort levels
Run: python test_gpt5_reasoning.py
What it does:
- Test 1: 200 token budget
- Test 2: 50 token budget with
reasoning_effort="low" - Outputs actual reasoning tokens consumed
Prerequisites
Environment Variables
Create a .env file in the repository root with:
# Required for all tests
OPENAI_API_KEY=sk-...
# For LLM tests
LLM_BINDING=openai
LLM_MODEL=gpt-5-nano
LLM_BINDING_API_KEY=sk-...
# For embedding tests
EMBEDDING_BINDING=openai
EMBEDDING_MODEL=text-embedding-3-small
EMBEDDING_BINDING_API_KEY=sk-...
EMBEDDING_DIM=1536
Or use existing .env configuration if already set up.
Python Dependencies
pip install openai
pip install python-dotenv
pip install lightrag # for integration tests
Running All Tests
From this directory:
# Run individual test
python test_gpt5_nano_compatibility.py
# Or run all tests
for test in test_*.py; do
echo "Running $test..."
python "$test"
done
From repository root:
# Run specific test
python -m pytest tests/gpt5_nano_compatibility/test_gpt5_nano_compatibility.py -v
# Or run all tests in this directory
python -m pytest tests/gpt5_nano_compatibility/ -v
Key Findings & Implementation
Problem: Parameter Incompatibility
gpt-5-nano requires different parameter names and constraints than other OpenAI models.
Issue:
- Other models use
max_tokens - gpt-5-nano requires
max_completion_tokens
Solution:
A normalization function _normalize_openai_kwargs_for_model() in /lightrag/llm/openai.py that:
- Detects gpt-5 models
- Converts
max_tokens→max_completion_tokens - Applies 2.5x token multiplier (minimum 300 tokens) to account for reasoning overhead
- Removes unsupported
temperatureparameter
Problem: Empty Responses
gpt-5-nano was returning empty responses despite successful API calls.
Root Cause: Internal reasoning consumes tokens from the completion budget. With insufficient token budget, all tokens were consumed by reasoning, leaving nothing for actual output.
Solution: Empirical testing showed that:
- 200 tokens: Often empty responses
- 300+ tokens: Consistent full responses
- 2.5x multiplier: Provides adequate margin for reasoning
Parameter Handling
For gpt-5-nano models:
# Before normalization:
{"max_tokens": 500, "temperature": 0.7}
# After normalization:
{"max_completion_tokens": 1250} # 500 * 2.5, min 300
For other models:
# Unchanged
{"max_tokens": 500, "temperature": 0.7}
Test Results Summary
All tests validate:
- ✅ Parameter normalization works correctly
- ✅ gpt-5-nano parameter constraints are handled
- ✅ Backward compatibility maintained (other models unaffected)
- ✅ Configuration from .env is respected
- ✅ OpenAI API integration functions properly
- ✅ Embeddings generation works
- ✅ Entity extraction works with gpt-5-nano
- ✅ Full RAG pipeline integration successful
Troubleshooting
"OPENAI_API_KEY not set"
- Ensure
.envfile exists in repository root - Verify
OPENAI_API_KEYis set:echo $OPENAI_API_KEY
"max_tokens unsupported with this model"
- This error means parameter normalization isn't being called
- Check that you're using LightRAG functions (not direct OpenAI client)
- Verify the normalization function is in
/lightrag/llm/openai.py
"Empty API responses"
- Increase token budget (tests use 100+ tokens)
- If using custom token limits, multiply by 2.5 minimum
"temperature does not support 0.7"
- gpt-5-nano doesn't accept custom temperature
- The normalization function removes it automatically
- No action needed if using LightRAG functions
Documentation
For more details, see:
/docs/GPT5_NANO_COMPATIBILITY.md- User guide/docs/GPT5_NANO_COMPATIBILITY_IMPLEMENTATION.md- Technical implementation details
Related Files
/lightrag/llm/openai.py- Contains parameter normalization logic/lightrag/llm/azure_openai.py- Azure OpenAI integration with same normalization/.env- Configuration file (use.env.exampleas template)
Maintenance Notes
When updating LightRAG's OpenAI integration:
- Run all tests to ensure backward compatibility
- If adding new OpenAI models, test with gpt-5-nano constraints
- Update parameter normalization logic if OpenAI adds new gpt-5 variants
- Keep
max_tokens * 2.5strategy unless OpenAI documents different reasoning overhead
Last Updated: 2024 Status: All tests passing ✅ Model Tested: gpt-5-nano OpenAI SDK: Latest (with max_completion_tokens support)