LightRAG/tests/gpt5_nano_compatibility
2025-12-05 14:31:13 +08:00
..
__init__.py
conftest.py ci: fix lint/pre-commit issues and apply autoformat 2025-12-05 14:31:13 +08:00
README.md ci: fix lint/pre-commit issues and apply autoformat 2025-12-05 14:31:13 +08:00
test_direct_gpt5nano.py ci: fix lint/pre-commit issues and apply autoformat 2025-12-05 14:31:13 +08:00
test_env_config.py ci: fix lint/pre-commit issues and apply autoformat 2025-12-05 14:31:13 +08:00
test_gpt5_nano_compatibility.py ci: fix lint/pre-commit issues and apply autoformat 2025-12-05 14:31:13 +08:00
test_gpt5_reasoning.py ci: fix lint/pre-commit issues and apply autoformat 2025-12-05 14:31:13 +08:00

GPT-5-Nano Compatibility Tests

This directory contains comprehensive tests for ensuring LightRAG's compatibility with OpenAI's gpt-5-nano model, including its specific API constraints and parameter requirements.

Overview

gpt-5-nano is a cost-optimized reasoning model that differs from traditional LLMs in important ways:

  • Uses max_completion_tokens instead of max_tokens
  • Does NOT support custom temperature parameter
  • Has built-in reasoning that consumes tokens from the completion budget
  • Requires token budget adjustments to account for reasoning overhead

These tests validate that LightRAG handles these constraints correctly.

Test Files

1. test_gpt5_nano_compatibility.py Primary Test Suite

Purpose: Comprehensive compatibility validation Tests:

  • Test 1: Parameter normalization (max_tokens → max_completion_tokens conversion)
  • Test 2: Configuration loading from .env
  • Test 3: Embeddings generation with gpt-5-nano
  • Test 4: Simple LLM completion
  • Test 5: Entity extraction tasks

Run: python test_gpt5_nano_compatibility.py

Expected Output:

✅ Parameter Normalization: PASSED
✅ Configuration Loading: PASSED
✅ Embeddings: PASSED
✅ Simple Completion: PASSED
✅ Entity Extraction: PASSED
🎉 ALL TESTS PASSED

2. test_env_config.py

Purpose: Validate .env configuration is properly respected Tests:

  • Part 1: .env file loading
  • Part 2: Config parser respects .env variables
  • Part 3: OpenAI API connectivity
  • Part 4: Embeddings generation with configured model
  • Part 5: LLM extraction with configured model
  • Part 6: Full RAG pipeline integration

Run: python test_env_config.py

Expected Output:

✅ .env Loading: PASSED
✅ Config Parser: PASSED
✅ OpenAI Connectivity: PASSED
✅ Embeddings: PASSED
✅ LLM Extraction: PASSED
✅ Full Integration: PASSED
OVERALL: 6/6 tests passed

3. test_direct_gpt5nano.py

Purpose: Direct API testing without LightRAG abstraction Validates: Raw gpt-5-nano API behavior with proper parameters

Run: python test_direct_gpt5nano.py

What it does:

  • Sends direct API request to gpt-5-nano
  • Uses max_completion_tokens parameter
  • Prints raw response and token usage

4. test_gpt5_reasoning.py

Purpose: Understand gpt-5-nano's reasoning token overhead Tests: Token allocation with different reasoning effort levels

Run: python test_gpt5_reasoning.py

What it does:

  • Test 1: 200 token budget
  • Test 2: 50 token budget with reasoning_effort="low"
  • Outputs actual reasoning tokens consumed

Prerequisites

Environment Variables

Create a .env file in the repository root with:

# Required for all tests
OPENAI_API_KEY=sk-...

# For LLM tests
LLM_BINDING=openai
LLM_MODEL=gpt-5-nano
LLM_BINDING_API_KEY=sk-...

# For embedding tests
EMBEDDING_BINDING=openai
EMBEDDING_MODEL=text-embedding-3-small
EMBEDDING_BINDING_API_KEY=sk-...
EMBEDDING_DIM=1536

Or use existing .env configuration if already set up.

Python Dependencies

pip install openai
pip install python-dotenv
pip install lightrag  # for integration tests

Running All Tests

From this directory:

# Run individual test
python test_gpt5_nano_compatibility.py

# Or run all tests
for test in test_*.py; do
    echo "Running $test..."
    python "$test"
done

From repository root:

# Run specific test
python -m pytest tests/gpt5_nano_compatibility/test_gpt5_nano_compatibility.py -v

# Or run all tests in this directory
python -m pytest tests/gpt5_nano_compatibility/ -v

Key Findings & Implementation

Problem: Parameter Incompatibility

gpt-5-nano requires different parameter names and constraints than other OpenAI models.

Issue:

  • Other models use max_tokens
  • gpt-5-nano requires max_completion_tokens

Solution: A normalization function _normalize_openai_kwargs_for_model() in /lightrag/llm/openai.py that:

  1. Detects gpt-5 models
  2. Converts max_tokensmax_completion_tokens
  3. Applies 2.5x token multiplier (minimum 300 tokens) to account for reasoning overhead
  4. Removes unsupported temperature parameter

Problem: Empty Responses

gpt-5-nano was returning empty responses despite successful API calls.

Root Cause: Internal reasoning consumes tokens from the completion budget. With insufficient token budget, all tokens were consumed by reasoning, leaving nothing for actual output.

Solution: Empirical testing showed that:

  • 200 tokens: Often empty responses
  • 300+ tokens: Consistent full responses
  • 2.5x multiplier: Provides adequate margin for reasoning

Parameter Handling

For gpt-5-nano models:

# Before normalization:
{"max_tokens": 500, "temperature": 0.7}

# After normalization:
{"max_completion_tokens": 1250}  # 500 * 2.5, min 300

For other models:

# Unchanged
{"max_tokens": 500, "temperature": 0.7}

Test Results Summary

All tests validate:

  • Parameter normalization works correctly
  • gpt-5-nano parameter constraints are handled
  • Backward compatibility maintained (other models unaffected)
  • Configuration from .env is respected
  • OpenAI API integration functions properly
  • Embeddings generation works
  • Entity extraction works with gpt-5-nano
  • Full RAG pipeline integration successful

Troubleshooting

"OPENAI_API_KEY not set"

  • Ensure .env file exists in repository root
  • Verify OPENAI_API_KEY is set: echo $OPENAI_API_KEY

"max_tokens unsupported with this model"

  • This error means parameter normalization isn't being called
  • Check that you're using LightRAG functions (not direct OpenAI client)
  • Verify the normalization function is in /lightrag/llm/openai.py

"Empty API responses"

  • Increase token budget (tests use 100+ tokens)
  • If using custom token limits, multiply by 2.5 minimum

"temperature does not support 0.7"

  • gpt-5-nano doesn't accept custom temperature
  • The normalization function removes it automatically
  • No action needed if using LightRAG functions

Documentation

For more details, see:

  • /docs/GPT5_NANO_COMPATIBILITY.md - User guide
  • /docs/GPT5_NANO_COMPATIBILITY_IMPLEMENTATION.md - Technical implementation details
  • /lightrag/llm/openai.py - Contains parameter normalization logic
  • /lightrag/llm/azure_openai.py - Azure OpenAI integration with same normalization
  • /.env - Configuration file (use .env.example as template)

Maintenance Notes

When updating LightRAG's OpenAI integration:

  1. Run all tests to ensure backward compatibility
  2. If adding new OpenAI models, test with gpt-5-nano constraints
  3. Update parameter normalization logic if OpenAI adds new gpt-5 variants
  4. Keep max_tokens * 2.5 strategy unless OpenAI documents different reasoning overhead

Last Updated: 2024 Status: All tests passing Model Tested: gpt-5-nano OpenAI SDK: Latest (with max_completion_tokens support)