Remove legacy storage implementations and deprecated examples: - Delete FAISS, JSON, Memgraph, Milvus, MongoDB, Nano Vector DB, Neo4j, NetworkX, Qdrant, Redis storage backends - Remove Kubernetes deployment manifests and installation scripts - Delete unofficial examples for deprecated backends and offline deployment docs Streamline core infrastructure: - Consolidate storage layer to PostgreSQL-only implementation - Add full-text search caching with FTS cache module - Implement metrics collection and monitoring pipeline - Add explain and metrics API routes Modernize frontend and tooling: - Switch web UI to Bun with bun.lock, remove npm and pnpm lockfiles - Update Dockerfile for PostgreSQL-only deployment - Add Makefile for common development tasks - Update environment and configuration examples Enhance evaluation and testing capabilities: - Add prompt optimization with DSPy and auto-tuning - Implement ground truth regeneration and variant testing - Add prompt debugging and response comparison utilities - Expand test coverage with new integration scenarios Simplify dependencies and configuration: - Remove offline-specific requirement files - Update pyproject.toml with streamlined dependencies - Add Python version pinning with .python-version - Create project guidelines in CLAUDE.md and AGENTS.md
737 lines
26 KiB
Python
737 lines
26 KiB
Python
#!/usr/bin/env python3
|
|
"""
|
|
LLM Query Cache Cleanup Tool for LightRAG
|
|
|
|
This tool cleans up LLM query cache (mix:*, hybrid:*, local:*, global:*)
|
|
from PGKVStorage while preserving workspace isolation.
|
|
|
|
Usage:
|
|
python -m lightrag.tools.clean_llm_query_cache
|
|
# or
|
|
python lightrag/tools/clean_llm_query_cache.py
|
|
|
|
Supported KV Storage Types:
|
|
- PGKVStorage
|
|
"""
|
|
|
|
import asyncio
|
|
import contextlib
|
|
import os
|
|
import sys
|
|
import time
|
|
from dataclasses import dataclass, field
|
|
from typing import Any, cast
|
|
|
|
from dotenv import load_dotenv
|
|
|
|
# Add project root to path for imports
|
|
sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
|
|
|
from lightrag.kg import STORAGE_ENV_REQUIREMENTS
|
|
from lightrag.namespace import NameSpace
|
|
from lightrag.utils import setup_logger
|
|
|
|
# Load environment variables
|
|
load_dotenv(dotenv_path='.env', override=False)
|
|
|
|
# Setup logger
|
|
setup_logger('lightrag', level='INFO')
|
|
|
|
# Storage type configurations
|
|
STORAGE_TYPES = {
|
|
'1': 'PGKVStorage',
|
|
}
|
|
|
|
# Workspace environment variable mapping
|
|
WORKSPACE_ENV_MAP = {
|
|
'PGKVStorage': 'POSTGRES_WORKSPACE',
|
|
}
|
|
|
|
# Query cache modes
|
|
QUERY_MODES = ['mix', 'hybrid', 'local', 'global']
|
|
|
|
# Query cache types
|
|
CACHE_TYPES = ['query', 'keywords']
|
|
|
|
# Default batch size for deletion
|
|
DEFAULT_BATCH_SIZE = 1000
|
|
|
|
# ANSI color codes for terminal output
|
|
BOLD_CYAN = '\033[1;36m'
|
|
BOLD_RED = '\033[1;31m'
|
|
BOLD_GREEN = '\033[1;32m'
|
|
RESET = '\033[0m'
|
|
|
|
|
|
@dataclass
|
|
class CleanupStats:
|
|
"""Cleanup statistics and error tracking"""
|
|
|
|
# Count by mode and cache_type before cleanup
|
|
counts_before: dict[str, dict[str, int]] = field(default_factory=dict)
|
|
|
|
# Deletion statistics
|
|
total_to_delete: int = 0
|
|
total_batches: int = 0
|
|
successful_batches: int = 0
|
|
failed_batches: int = 0
|
|
successfully_deleted: int = 0
|
|
failed_to_delete: int = 0
|
|
|
|
# Count by mode and cache_type after cleanup
|
|
counts_after: dict[str, dict[str, int]] = field(default_factory=dict)
|
|
|
|
# Error tracking
|
|
errors: list[dict[str, Any]] = field(default_factory=list)
|
|
|
|
def add_error(self, batch_idx: int, error: Exception, batch_size: int):
|
|
"""Record batch error"""
|
|
self.errors.append(
|
|
{
|
|
'batch': batch_idx,
|
|
'error_type': type(error).__name__,
|
|
'error_msg': str(error),
|
|
'records_lost': batch_size,
|
|
'timestamp': time.time(),
|
|
}
|
|
)
|
|
self.failed_batches += 1
|
|
self.failed_to_delete += batch_size
|
|
|
|
def initialize_counts(self):
|
|
"""Initialize count dictionaries"""
|
|
for mode in QUERY_MODES:
|
|
self.counts_before[mode] = {'query': 0, 'keywords': 0}
|
|
self.counts_after[mode] = {'query': 0, 'keywords': 0}
|
|
|
|
|
|
class CleanupTool:
|
|
"""LLM Query Cache Cleanup Tool"""
|
|
|
|
def __init__(self):
|
|
self.storage = None
|
|
self.workspace = ''
|
|
self.batch_size = DEFAULT_BATCH_SIZE
|
|
|
|
def get_workspace_for_storage(self, storage_name: str) -> str:
|
|
"""Get workspace for a specific storage type
|
|
|
|
Priority: Storage-specific env var > WORKSPACE env var > empty string
|
|
|
|
Args:
|
|
storage_name: Storage implementation name
|
|
|
|
Returns:
|
|
Workspace name
|
|
"""
|
|
# Check storage-specific workspace
|
|
if storage_name in WORKSPACE_ENV_MAP:
|
|
specific_workspace = os.getenv(WORKSPACE_ENV_MAP[storage_name])
|
|
if specific_workspace:
|
|
return specific_workspace
|
|
|
|
# Check generic WORKSPACE
|
|
workspace = os.getenv('WORKSPACE', '')
|
|
return workspace
|
|
|
|
def check_config_ini_for_storage(self, storage_name: str) -> bool:
|
|
"""Check if config.ini has configuration for the storage type
|
|
|
|
Args:
|
|
storage_name: Storage implementation name
|
|
|
|
Returns:
|
|
True if config.ini has the necessary configuration
|
|
"""
|
|
try:
|
|
import configparser
|
|
|
|
config = configparser.ConfigParser()
|
|
config.read('config.ini', 'utf-8')
|
|
|
|
if storage_name == 'PGKVStorage':
|
|
return (
|
|
config.has_option('postgres', 'user')
|
|
and config.has_option('postgres', 'password')
|
|
and config.has_option('postgres', 'database')
|
|
)
|
|
|
|
return False
|
|
except Exception:
|
|
return False
|
|
|
|
def check_env_vars(self, storage_name: str) -> bool:
|
|
"""Check environment variables, show warnings if missing but don't fail
|
|
|
|
Args:
|
|
storage_name: Storage implementation name
|
|
|
|
Returns:
|
|
Always returns True (warnings only, no hard failure)
|
|
"""
|
|
required_vars = STORAGE_ENV_REQUIREMENTS.get(storage_name, [])
|
|
|
|
if not required_vars:
|
|
print('✓ No environment variables required')
|
|
return True
|
|
|
|
missing_vars = [var for var in required_vars if var not in os.environ]
|
|
|
|
if missing_vars:
|
|
print(f'⚠️ Warning: Missing environment variables: {", ".join(missing_vars)}')
|
|
|
|
# Check if config.ini has configuration
|
|
has_config = self.check_config_ini_for_storage(storage_name)
|
|
if has_config:
|
|
print(' ✓ Found configuration in config.ini')
|
|
else:
|
|
print(f' Will attempt to use defaults for {storage_name}')
|
|
|
|
return True
|
|
|
|
print('✓ All required environment variables are set')
|
|
return True
|
|
|
|
def get_storage_class(self, storage_name: str):
|
|
"""Dynamically import and return storage class
|
|
|
|
Args:
|
|
storage_name: Storage implementation name
|
|
|
|
Returns:
|
|
Storage class
|
|
"""
|
|
if storage_name == 'PGKVStorage':
|
|
from lightrag.kg.postgres_impl import PGKVStorage
|
|
|
|
return PGKVStorage
|
|
else:
|
|
raise ValueError(f'Unsupported storage type: {storage_name}')
|
|
|
|
async def initialize_storage(self, storage_name: str, workspace: str):
|
|
"""Initialize storage instance with fallback to config.ini and defaults
|
|
|
|
Args:
|
|
storage_name: Storage implementation name
|
|
workspace: Workspace name
|
|
|
|
Returns:
|
|
Initialized storage instance
|
|
|
|
Raises:
|
|
Exception: If initialization fails
|
|
"""
|
|
storage_class = self.get_storage_class(storage_name)
|
|
|
|
# Create global config
|
|
global_config = {
|
|
'working_dir': os.getenv('WORKING_DIR', './rag_storage'),
|
|
'embedding_batch_num': 10,
|
|
}
|
|
|
|
# Initialize storage
|
|
storage = storage_class(
|
|
namespace=NameSpace.KV_STORE_LLM_RESPONSE_CACHE,
|
|
workspace=workspace,
|
|
global_config=global_config,
|
|
embedding_func=cast(Any, None),
|
|
)
|
|
|
|
# Initialize the storage (may raise exception if connection fails)
|
|
await storage.initialize()
|
|
|
|
return storage
|
|
|
|
async def count_query_caches_pg(self, storage) -> dict[str, dict[str, int]]:
|
|
"""Count query caches in PostgreSQL by mode and cache_type
|
|
|
|
Args:
|
|
storage: PGKVStorage instance
|
|
|
|
Returns:
|
|
Dictionary with counts for each mode and cache_type
|
|
"""
|
|
from lightrag.kg.postgres_impl import namespace_to_table_name
|
|
|
|
counts = {mode: {'query': 0, 'keywords': 0} for mode in QUERY_MODES}
|
|
table_name = namespace_to_table_name(storage.namespace)
|
|
|
|
print('Counting PostgreSQL records...', end='', flush=True)
|
|
start_time = time.time()
|
|
|
|
for mode in QUERY_MODES:
|
|
for cache_type in CACHE_TYPES:
|
|
query = f"""
|
|
SELECT COUNT(*) as count
|
|
FROM {table_name}
|
|
WHERE workspace = $1
|
|
AND id LIKE $2
|
|
"""
|
|
pattern = f'{mode}:{cache_type}:%'
|
|
result = await storage.db.query(query, [storage.workspace, pattern])
|
|
counts[mode][cache_type] = result['count'] if result else 0
|
|
|
|
elapsed = time.time() - start_time
|
|
if elapsed > 1:
|
|
print(f' (took {elapsed:.1f}s)', end='')
|
|
print() # New line
|
|
|
|
return counts
|
|
|
|
async def count_query_caches(self, storage, storage_name: str) -> dict[str, dict[str, int]]:
|
|
"""Count query caches from any storage type efficiently
|
|
|
|
Args:
|
|
storage: Storage instance
|
|
storage_name: Storage type name
|
|
|
|
Returns:
|
|
Dictionary with counts for each mode and cache_type
|
|
"""
|
|
if storage_name == 'PGKVStorage':
|
|
return await self.count_query_caches_pg(storage)
|
|
else:
|
|
raise ValueError(f'Unsupported storage type: {storage_name}')
|
|
|
|
async def delete_query_caches_pg(self, storage, cleanup_type: str, stats: CleanupStats):
|
|
"""Delete query caches from PostgreSQL
|
|
|
|
Args:
|
|
storage: PGKVStorage instance
|
|
cleanup_type: 'all', 'query', or 'keywords'
|
|
stats: CleanupStats object to track progress
|
|
"""
|
|
from lightrag.kg.postgres_impl import namespace_to_table_name
|
|
|
|
table_name = namespace_to_table_name(storage.namespace)
|
|
|
|
# Build WHERE conditions
|
|
conditions = []
|
|
for mode in QUERY_MODES:
|
|
if cleanup_type == 'all':
|
|
conditions.append(f"id LIKE '{mode}:query:%'")
|
|
conditions.append(f"id LIKE '{mode}:keywords:%'")
|
|
elif cleanup_type == 'query':
|
|
conditions.append(f"id LIKE '{mode}:query:%'")
|
|
elif cleanup_type == 'keywords':
|
|
conditions.append(f"id LIKE '{mode}:keywords:%'")
|
|
|
|
where_clause = ' OR '.join(conditions)
|
|
|
|
print('\n=== Starting Cleanup ===')
|
|
print('💡 Executing PostgreSQL DELETE query\n')
|
|
|
|
try:
|
|
query = f"""
|
|
DELETE FROM {table_name}
|
|
WHERE workspace = $1
|
|
AND ({where_clause})
|
|
"""
|
|
|
|
start_time = time.time()
|
|
# Fix: Pass dict instead of list for execute() method
|
|
await storage.db.execute(query, {'workspace': storage.workspace})
|
|
elapsed = time.time() - start_time
|
|
|
|
# PostgreSQL returns deletion count
|
|
stats.total_batches = 1
|
|
stats.successful_batches = 1
|
|
stats.successfully_deleted = stats.total_to_delete
|
|
|
|
print(f'✓ Deleted {stats.successfully_deleted:,} records in {elapsed:.2f}s')
|
|
|
|
except Exception as e:
|
|
stats.add_error(1, e, stats.total_to_delete)
|
|
print(f'✗ DELETE failed: {type(e).__name__}: {e!s}')
|
|
|
|
async def delete_query_caches(self, storage, storage_name: str, cleanup_type: str, stats: CleanupStats):
|
|
"""Delete query caches from any storage type
|
|
|
|
Args:
|
|
storage: Storage instance
|
|
storage_name: Storage type name
|
|
cleanup_type: 'all', 'query', or 'keywords'
|
|
stats: CleanupStats object to track progress
|
|
"""
|
|
if storage_name == 'PGKVStorage':
|
|
await self.delete_query_caches_pg(storage, cleanup_type, stats)
|
|
else:
|
|
raise ValueError(f'Unsupported storage type: {storage_name}')
|
|
|
|
def print_header(self):
|
|
"""Print tool header"""
|
|
print('\n' + '=' * 60)
|
|
print('LLM Query Cache Cleanup Tool - LightRAG')
|
|
print('=' * 60)
|
|
|
|
def print_storage_types(self):
|
|
"""Print available storage types"""
|
|
print('\nSupported KV Storage Types:')
|
|
for key, value in STORAGE_TYPES.items():
|
|
print(f'[{key}] {value}')
|
|
|
|
def format_workspace(self, workspace: str) -> str:
|
|
"""Format workspace name with highlighting
|
|
|
|
Args:
|
|
workspace: Workspace name (may be empty)
|
|
|
|
Returns:
|
|
Formatted workspace string with ANSI color codes
|
|
"""
|
|
if workspace:
|
|
return f'{BOLD_CYAN}{workspace}{RESET}'
|
|
else:
|
|
return f'{BOLD_CYAN}(default){RESET}'
|
|
|
|
def print_cache_statistics(self, counts: dict[str, dict[str, int]], title: str):
|
|
"""Print cache statistics in a formatted table
|
|
|
|
Args:
|
|
counts: Dictionary with counts for each mode and cache_type
|
|
title: Title for the statistics display
|
|
"""
|
|
print(f'\n{title}')
|
|
print('┌' + '─' * 12 + '┬' + '─' * 12 + '┬' + '─' * 12 + '┬' + '─' * 12 + '┐')
|
|
print(f'│ {"Mode":<10} │ {"Query":>10} │ {"Keywords":>10} │ {"Total":>10} │')
|
|
print('├' + '─' * 12 + '┼' + '─' * 12 + '┼' + '─' * 12 + '┼' + '─' * 12 + '┤')
|
|
|
|
total_query = 0
|
|
total_keywords = 0
|
|
|
|
for mode in QUERY_MODES:
|
|
query_count = counts[mode]['query']
|
|
keywords_count = counts[mode]['keywords']
|
|
mode_total = query_count + keywords_count
|
|
|
|
total_query += query_count
|
|
total_keywords += keywords_count
|
|
|
|
print(f'│ {mode:<10} │ {query_count:>10,} │ {keywords_count:>10,} │ {mode_total:>10,} │')
|
|
|
|
print('├' + '─' * 12 + '┼' + '─' * 12 + '┼' + '─' * 12 + '┼' + '─' * 12 + '┤')
|
|
grand_total = total_query + total_keywords
|
|
print(f'│ {"Total":<10} │ {total_query:>10,} │ {total_keywords:>10,} │ {grand_total:>10,} │')
|
|
print('└' + '─' * 12 + '┴' + '─' * 12 + '┴' + '─' * 12 + '┴' + '─' * 12 + '┘')
|
|
|
|
def calculate_total_to_delete(self, counts: dict[str, dict[str, int]], cleanup_type: str) -> int:
|
|
"""Calculate total number of records to delete
|
|
|
|
Args:
|
|
counts: Dictionary with counts for each mode and cache_type
|
|
cleanup_type: 'all', 'query', or 'keywords'
|
|
|
|
Returns:
|
|
Total number of records to delete
|
|
"""
|
|
total = 0
|
|
for mode in QUERY_MODES:
|
|
if cleanup_type == 'all':
|
|
total += counts[mode]['query'] + counts[mode]['keywords']
|
|
elif cleanup_type == 'query':
|
|
total += counts[mode]['query']
|
|
elif cleanup_type == 'keywords':
|
|
total += counts[mode]['keywords']
|
|
return total
|
|
|
|
def print_cleanup_report(self, stats: CleanupStats):
|
|
"""Print comprehensive cleanup report
|
|
|
|
Args:
|
|
stats: CleanupStats object with cleanup results
|
|
"""
|
|
print('\n' + '=' * 60)
|
|
print('Cleanup Complete - Final Report')
|
|
print('=' * 60)
|
|
|
|
# Overall statistics
|
|
print('\n📊 Statistics:')
|
|
print(f' Total records to delete: {stats.total_to_delete:,}')
|
|
print(f' Total batches: {stats.total_batches:,}')
|
|
print(f' Successful batches: {stats.successful_batches:,}')
|
|
print(f' Failed batches: {stats.failed_batches:,}')
|
|
print(f' Successfully deleted: {stats.successfully_deleted:,}')
|
|
print(f' Failed to delete: {stats.failed_to_delete:,}')
|
|
|
|
# Success rate
|
|
success_rate = (stats.successfully_deleted / stats.total_to_delete * 100) if stats.total_to_delete > 0 else 0
|
|
print(f' Success rate: {success_rate:.2f}%')
|
|
|
|
# Before/After comparison
|
|
print('\n📈 Before/After Comparison:')
|
|
total_before = sum(counts['query'] + counts['keywords'] for counts in stats.counts_before.values())
|
|
total_after = sum(counts['query'] + counts['keywords'] for counts in stats.counts_after.values())
|
|
print(f' Total caches before: {total_before:,}')
|
|
print(f' Total caches after: {total_after:,}')
|
|
print(f' Net reduction: {total_before - total_after:,}')
|
|
|
|
# Error details
|
|
if stats.errors:
|
|
print(f'\n⚠️ Errors encountered: {len(stats.errors)}')
|
|
print('\nError Details:')
|
|
print('-' * 60)
|
|
|
|
# Group errors by type
|
|
error_types = {}
|
|
for error in stats.errors:
|
|
err_type = error['error_type']
|
|
error_types[err_type] = error_types.get(err_type, 0) + 1
|
|
|
|
print('\nError Summary:')
|
|
for err_type, count in sorted(error_types.items(), key=lambda x: -x[1]):
|
|
print(f' - {err_type}: {count} occurrence(s)')
|
|
|
|
print('\nFirst 5 errors:')
|
|
for i, error in enumerate(stats.errors[:5], 1):
|
|
print(f'\n {i}. Batch {error["batch"]}')
|
|
print(f' Type: {error["error_type"]}')
|
|
print(f' Message: {error["error_msg"]}')
|
|
print(f' Records lost: {error["records_lost"]:,}')
|
|
|
|
if len(stats.errors) > 5:
|
|
print(f'\n ... and {len(stats.errors) - 5} more errors')
|
|
|
|
print('\n' + '=' * 60)
|
|
print(f'{BOLD_RED}⚠️ WARNING: Cleanup completed with errors!{RESET}')
|
|
print(' Please review the error details above.')
|
|
print('=' * 60)
|
|
else:
|
|
print('\n' + '=' * 60)
|
|
print(f'{BOLD_GREEN}✓ SUCCESS: All records cleaned up successfully!{RESET}')
|
|
print('=' * 60)
|
|
|
|
async def setup_storage(self) -> tuple:
|
|
"""Setup and initialize storage
|
|
|
|
Returns:
|
|
Tuple of (storage_instance, storage_name, workspace)
|
|
Returns (None, None, None) if user chooses to exit
|
|
"""
|
|
print('\n=== Storage Setup ===')
|
|
self.print_storage_types()
|
|
|
|
# Custom input handling with exit support
|
|
while True:
|
|
choice = input('\nSelect storage type (1) (Press Enter to exit): ').strip()
|
|
|
|
# Check for exit
|
|
if choice == '' or choice == '0':
|
|
print('\n✓ Cleanup cancelled by user')
|
|
return None, None, None
|
|
|
|
# Check if choice is valid
|
|
if choice in STORAGE_TYPES:
|
|
break
|
|
|
|
print(f'✗ Invalid choice. Please enter one of: {", ".join(STORAGE_TYPES.keys())}')
|
|
|
|
storage_name = STORAGE_TYPES[choice]
|
|
|
|
# Check configuration (warnings only, doesn't block)
|
|
print('\nChecking configuration...')
|
|
self.check_env_vars(storage_name)
|
|
|
|
# Get workspace
|
|
workspace = self.get_workspace_for_storage(storage_name)
|
|
|
|
# Initialize storage (real validation point)
|
|
print('\nInitializing storage...')
|
|
try:
|
|
storage = await self.initialize_storage(storage_name, workspace)
|
|
print(f'- Storage Type: {storage_name}')
|
|
print(f'- Workspace: {workspace if workspace else "(default)"}')
|
|
print('- Connection Status: ✓ Success')
|
|
|
|
except Exception as e:
|
|
print(f'✗ Initialization failed: {e}')
|
|
print(f'\nFor {storage_name}, you can configure using:')
|
|
print(' 1. Environment variables (highest priority)')
|
|
|
|
# Show specific environment variable requirements
|
|
if storage_name in STORAGE_ENV_REQUIREMENTS:
|
|
for var in STORAGE_ENV_REQUIREMENTS[storage_name]:
|
|
print(f' - {var}')
|
|
|
|
print(' 2. config.ini file (medium priority)')
|
|
if storage_name == 'PGKVStorage':
|
|
print(' [postgres]')
|
|
print(' host = localhost')
|
|
print(' port = 5432')
|
|
print(' user = postgres')
|
|
print(' password = yourpassword')
|
|
print(' database = lightrag')
|
|
|
|
return None, None, None
|
|
|
|
return storage, storage_name, workspace
|
|
|
|
async def run(self):
|
|
"""Run the cleanup tool"""
|
|
try:
|
|
# Initialize shared storage (REQUIRED for storage classes to work)
|
|
from lightrag.kg.shared_storage import initialize_share_data
|
|
|
|
initialize_share_data(workers=1)
|
|
|
|
# Print header
|
|
self.print_header()
|
|
|
|
# Setup storage
|
|
self.storage, storage_name, self.workspace = await self.setup_storage()
|
|
|
|
# Check if user cancelled
|
|
if self.storage is None:
|
|
return
|
|
|
|
# Count query caches
|
|
print('\nCounting query cache records...')
|
|
try:
|
|
counts = await self.count_query_caches(self.storage, storage_name)
|
|
except Exception as e:
|
|
print(f'✗ Counting failed: {e}')
|
|
await self.storage.finalize()
|
|
return
|
|
|
|
# Initialize stats
|
|
stats = CleanupStats()
|
|
stats.initialize_counts()
|
|
stats.counts_before = counts
|
|
|
|
# Print statistics
|
|
self.print_cache_statistics(counts, '📊 Query Cache Statistics (Before Cleanup):')
|
|
|
|
# Calculate total
|
|
total_caches = sum(counts[mode]['query'] + counts[mode]['keywords'] for mode in QUERY_MODES)
|
|
|
|
if total_caches == 0:
|
|
print('\n⚠️ No query caches found in storage')
|
|
await self.storage.finalize()
|
|
return
|
|
|
|
# Select cleanup type
|
|
print('\n=== Cleanup Options ===')
|
|
print('[1] Delete all query caches (both query and keywords)')
|
|
print('[2] Delete query caches only (keep keywords)')
|
|
print('[3] Delete keywords caches only (keep query)')
|
|
print('[0] Cancel')
|
|
|
|
while True:
|
|
choice = input('\nSelect cleanup option (0-3): ').strip()
|
|
|
|
if choice == '0' or choice == '':
|
|
print('\n✓ Cleanup cancelled')
|
|
await self.storage.finalize()
|
|
return
|
|
elif choice == '1':
|
|
cleanup_type = 'all'
|
|
elif choice == '2':
|
|
cleanup_type = 'query'
|
|
elif choice == '3':
|
|
cleanup_type = 'keywords'
|
|
else:
|
|
print('✗ Invalid choice. Please enter 0, 1, 2, or 3')
|
|
continue
|
|
|
|
# Calculate total to delete for the selected type
|
|
stats.total_to_delete = self.calculate_total_to_delete(counts, cleanup_type)
|
|
|
|
# Check if there are any records to delete
|
|
if stats.total_to_delete == 0:
|
|
if cleanup_type == 'all':
|
|
print(f'\n{BOLD_RED}⚠️ No query caches found to delete!{RESET}')
|
|
elif cleanup_type == 'query':
|
|
print(f'\n{BOLD_RED}⚠️ No query caches found to delete! (Only keywords exist){RESET}')
|
|
elif cleanup_type == 'keywords':
|
|
print(f'\n{BOLD_RED}⚠️ No keywords caches found to delete! (Only query caches exist){RESET}')
|
|
print(' Please select a different cleanup option.\n')
|
|
continue
|
|
|
|
# Valid selection with records to delete
|
|
break
|
|
|
|
# Confirm deletion
|
|
print('\n' + '=' * 60)
|
|
print('Cleanup Confirmation')
|
|
print('=' * 60)
|
|
print(f'Storage: {BOLD_CYAN}{storage_name}{RESET} (workspace: {self.format_workspace(self.workspace)})')
|
|
print(f'Cleanup Type: {BOLD_CYAN}{cleanup_type}{RESET}')
|
|
print(f'Records to Delete: {BOLD_RED}{stats.total_to_delete:,}{RESET} / {total_caches:,}')
|
|
|
|
if cleanup_type == 'all':
|
|
print(f'\n{BOLD_RED}⚠️ WARNING: This will delete ALL query caches across all modes!{RESET}')
|
|
elif cleanup_type == 'query':
|
|
print('\n⚠️ This will delete query caches only (keywords will be kept)')
|
|
elif cleanup_type == 'keywords':
|
|
print('\n⚠️ This will delete keywords caches only (query will be kept)')
|
|
|
|
confirm = input('\nContinue with deletion? (y/n): ').strip().lower()
|
|
if confirm != 'y':
|
|
print('\n✓ Cleanup cancelled')
|
|
await self.storage.finalize()
|
|
return
|
|
|
|
# Perform deletion
|
|
await self.delete_query_caches(self.storage, storage_name, cleanup_type, stats)
|
|
|
|
# Persist changes
|
|
print('\nPersisting changes to storage...')
|
|
try:
|
|
await self.storage.index_done_callback()
|
|
print('✓ Changes persisted successfully')
|
|
except Exception as e:
|
|
print(f'✗ Persist failed: {e}')
|
|
stats.add_error(0, e, 0)
|
|
|
|
# Count again to verify
|
|
print('\nVerifying cleanup results...')
|
|
try:
|
|
stats.counts_after = await self.count_query_caches(self.storage, storage_name)
|
|
except Exception as e:
|
|
print(f'⚠️ Verification failed: {e}')
|
|
# Use zero counts if verification fails
|
|
stats.counts_after = {mode: {'query': 0, 'keywords': 0} for mode in QUERY_MODES}
|
|
|
|
# Print final report
|
|
self.print_cleanup_report(stats)
|
|
|
|
# Print after statistics
|
|
self.print_cache_statistics(stats.counts_after, '\n📊 Query Cache Statistics (After Cleanup):')
|
|
|
|
# Cleanup
|
|
await self.storage.finalize()
|
|
|
|
except KeyboardInterrupt:
|
|
print('\n\n✗ Cleanup interrupted by user')
|
|
except Exception as e:
|
|
print(f'\n✗ Cleanup failed: {e}')
|
|
import traceback
|
|
|
|
traceback.print_exc()
|
|
finally:
|
|
# Ensure cleanup
|
|
if self.storage:
|
|
with contextlib.suppress(Exception):
|
|
await self.storage.finalize()
|
|
|
|
# Finalize shared storage
|
|
try:
|
|
from lightrag.kg.shared_storage import finalize_share_data
|
|
|
|
finalize_share_data()
|
|
except Exception:
|
|
pass
|
|
|
|
|
|
async def async_main():
|
|
"""Async main entry point"""
|
|
tool = CleanupTool()
|
|
await tool.run()
|
|
|
|
|
|
def main():
|
|
"""Synchronous entry point for CLI command"""
|
|
asyncio.run(async_main())
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|