LightRAG/lightrag/llm/nvidia_openai.py
clssck 59e89772de refactor: consolidate to PostgreSQL-only backend and modernize stack
Remove legacy storage implementations and deprecated examples:
- Delete FAISS, JSON, Memgraph, Milvus, MongoDB, Nano Vector DB, Neo4j, NetworkX, Qdrant, Redis storage backends
- Remove Kubernetes deployment manifests and installation scripts
- Delete unofficial examples for deprecated backends and offline deployment docs
Streamline core infrastructure:
- Consolidate storage layer to PostgreSQL-only implementation
- Add full-text search caching with FTS cache module
- Implement metrics collection and monitoring pipeline
- Add explain and metrics API routes
Modernize frontend and tooling:
- Switch web UI to Bun with bun.lock, remove npm and pnpm lockfiles
- Update Dockerfile for PostgreSQL-only deployment
- Add Makefile for common development tasks
- Update environment and configuration examples
Enhance evaluation and testing capabilities:
- Add prompt optimization with DSPy and auto-tuning
- Implement ground truth regeneration and variant testing
- Add prompt debugging and response comparison utilities
- Expand test coverage with new integration scenarios
Simplify dependencies and configuration:
- Remove offline-specific requirement files
- Update pyproject.toml with streamlined dependencies
- Add Python version pinning with .python-version
- Create project guidelines in CLAUDE.md and AGENTS.md
2025-12-12 16:28:49 +01:00

69 lines
2.1 KiB
Python

import base64
import os
from typing import Literal
import pipmaster as pm # Pipmaster for dynamic library install
# install specific modules
if not pm.is_installed('openai'):
pm.install('openai')
import numpy as np
from openai import (
APIConnectionError,
APITimeoutError,
AsyncOpenAI,
RateLimitError,
)
from tenacity import (
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
from lightrag.utils import (
wrap_embedding_func_with_attrs,
)
@wrap_embedding_func_with_attrs(embedding_dim=2048, max_token_size=8192)
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=60),
retry=retry_if_exception_type((RateLimitError, APIConnectionError, APITimeoutError)),
)
async def nvidia_openai_embed(
texts: list[str],
model: str = 'nvidia/llama-3.2-nv-embedqa-1b-v1',
# refer to https://build.nvidia.com/nim?filters=usecase%3Ausecase_text_to_embedding
base_url: str = 'https://integrate.api.nvidia.com/v1',
api_key: str | None = None,
input_type: str = 'passage', # query for retrieval, passage for embedding
trunc: str = 'NONE', # NONE or START or END
encode: Literal['float', 'base64'] = 'float', # float or base64
) -> np.ndarray:
if api_key:
os.environ['OPENAI_API_KEY'] = api_key
openai_async_client = AsyncOpenAI(base_url=base_url)
response = await openai_async_client.embeddings.create(
model=model,
input=texts,
encoding_format=encode,
extra_body={'input_type': input_type, 'truncate': trunc},
)
embeddings = []
for dp in response.data:
emb = dp.embedding
if encode == 'base64':
if isinstance(emb, str):
emb_bytes = base64.b64decode(emb)
emb_arr = np.frombuffer(emb_bytes, dtype=np.float32)
else:
emb_arr = np.array(emb, dtype=np.float32)
else:
emb_arr = np.array(emb, dtype=np.float32)
embeddings.append(emb_arr)
return np.vstack(embeddings) if embeddings else np.empty((0, 0), dtype=np.float32)