LightRAG/lightrag/evaluation/sample_documents
clssck da9070ecf7 refactor: remove legacy storage implementations and k8s deployment
Remove deprecated storage backends and Kubernetes deployment configuration:
- Delete unused storage implementations: FAISS, JSON, Memgraph, Milvus, MongoDB, Nano Vector DB, Neo4j, NetworkX, Qdrant, Redis
- Remove Kubernetes deployment manifests and installation scripts
- Delete legacy examples for deprecated backends
- Consolidate to PostgreSQL-only storage backend
Streamline dependencies and add new capabilities:
- Remove deprecated code documentation and migration guides
- Add full-text search caching layer with FTS cache module
- Implement metrics collection and monitoring pipeline
- Add explain and metrics API routes
- Simplify configuration with PostgreSQL-focused setup
Update documentation and configuration:
- Rewrite README to focus on supported features
- Update environment and configuration examples
- Remove Kubernetes-specific documentation
- Add new utility scripts for PDF uploads and pipeline monitoring
2025-12-09 14:02:00 +01:00
..
01_lightrag_overview.md feat(evaluation): Add sample documents for reproducible RAGAS testing 2025-11-03 13:28:46 +01:00
02_rag_architecture.md feat(evaluation): Add sample documents for reproducible RAGAS testing 2025-11-03 13:28:46 +01:00
03_lightrag_improvements.md feat(evaluation): Add sample documents for reproducible RAGAS testing 2025-11-03 13:28:46 +01:00
05_evaluation_and_deployment.md feat(evaluation): Add sample documents for reproducible RAGAS testing 2025-11-03 13:28:46 +01:00
README.md feat(evaluation): Add sample documents for reproducible RAGAS testing 2025-11-03 13:28:46 +01:00

Sample Documents for Evaluation

These markdown files correspond to test questions in ../sample_dataset.json.

Usage

  1. Index documents into LightRAG (via WebUI, API, or Python)
  2. Run evaluation: python lightrag/evaluation/eval_rag_quality.py
  3. Expected results: ~91-100% RAGAS score per question

Files

  • 01_lightrag_overview.md - LightRAG framework and hallucination problem
  • 02_rag_architecture.md - RAG system components
  • 03_lightrag_improvements.md - LightRAG vs traditional RAG
  • 04_supported_databases.md - Vector database support
  • 05_evaluation_and_deployment.md - Metrics and deployment

Note

Documents use clear entity-relationship patterns for LightRAG's default entity extraction prompts. For better results with your data, customize lightrag/prompt.py.