Remove legacy storage implementations and deprecated examples: - Delete FAISS, JSON, Memgraph, Milvus, MongoDB, Nano Vector DB, Neo4j, NetworkX, Qdrant, Redis storage backends - Remove Kubernetes deployment manifests and installation scripts - Delete unofficial examples for deprecated backends and offline deployment docs Streamline core infrastructure: - Consolidate storage layer to PostgreSQL-only implementation - Add full-text search caching with FTS cache module - Implement metrics collection and monitoring pipeline - Add explain and metrics API routes Modernize frontend and tooling: - Switch web UI to Bun with bun.lock, remove npm and pnpm lockfiles - Update Dockerfile for PostgreSQL-only deployment - Add Makefile for common development tasks - Update environment and configuration examples Enhance evaluation and testing capabilities: - Add prompt optimization with DSPy and auto-tuning - Implement ground truth regeneration and variant testing - Add prompt debugging and response comparison utilities - Expand test coverage with new integration scenarios Simplify dependencies and configuration: - Remove offline-specific requirement files - Update pyproject.toml with streamlined dependencies - Add Python version pinning with .python-version - Create project guidelines in CLAUDE.md and AGENTS.md
1215 lines
48 KiB
Python
1215 lines
48 KiB
Python
#!/usr/bin/env python3
|
|
"""
|
|
RAGAS Evaluation Script for LightRAG System
|
|
|
|
Evaluates RAG response quality using RAGAS metrics:
|
|
- Faithfulness: Is the answer factually accurate based on context?
|
|
- Answer Relevance: Is the answer relevant to the question?
|
|
- Context Recall: Is all relevant information retrieved?
|
|
- Context Precision: Is retrieved context clean without noise?
|
|
|
|
Usage:
|
|
# Use defaults (sample_dataset.json, http://localhost:9621)
|
|
python lightrag/evaluation/eval_rag_quality.py
|
|
|
|
# Specify custom dataset
|
|
python lightrag/evaluation/eval_rag_quality.py --dataset my_test.json
|
|
python lightrag/evaluation/eval_rag_quality.py -d my_test.json
|
|
|
|
# Specify custom RAG endpoint
|
|
python lightrag/evaluation/eval_rag_quality.py --ragendpoint http://my-server.com:9621
|
|
python lightrag/evaluation/eval_rag_quality.py -r http://my-server.com:9621
|
|
|
|
# Specify both
|
|
python lightrag/evaluation/eval_rag_quality.py -d my_test.json -r http://localhost:9621
|
|
|
|
# Get help
|
|
python lightrag/evaluation/eval_rag_quality.py --help
|
|
|
|
Results are saved to: lightrag/evaluation/results/
|
|
- results_YYYYMMDD_HHMMSS.csv (CSV export for analysis)
|
|
- results_YYYYMMDD_HHMMSS.json (Full results with details)
|
|
|
|
Technical Notes:
|
|
- Uses stable RAGAS API (LangchainLLMWrapper) for maximum compatibility
|
|
- Supports custom OpenAI-compatible endpoints via EVAL_LLM_BINDING_HOST
|
|
- Enables bypass_n mode for endpoints that don't support 'n' parameter
|
|
- Deprecation warnings are suppressed for cleaner output
|
|
"""
|
|
|
|
import argparse
|
|
import asyncio
|
|
import csv
|
|
import json
|
|
import math
|
|
import os
|
|
import sys
|
|
import time
|
|
import warnings
|
|
from datetime import datetime
|
|
from pathlib import Path
|
|
from typing import Any
|
|
|
|
import httpx
|
|
from dotenv import load_dotenv
|
|
|
|
from lightrag.utils import logger
|
|
|
|
# Suppress LangchainLLMWrapper deprecation warning
|
|
# We use LangchainLLMWrapper for stability and compatibility with all RAGAS versions
|
|
warnings.filterwarnings(
|
|
'ignore',
|
|
message='.*LangchainLLMWrapper is deprecated.*',
|
|
category=DeprecationWarning,
|
|
)
|
|
|
|
# Suppress token usage warning for custom OpenAI-compatible endpoints
|
|
# Custom endpoints (vLLM, SGLang, etc.) often don't return usage information
|
|
# This is non-critical as token tracking is not required for RAGAS evaluation
|
|
warnings.filterwarnings(
|
|
'ignore',
|
|
message='.*Unexpected type for token usage.*',
|
|
category=UserWarning,
|
|
)
|
|
|
|
# Add parent directory to path
|
|
sys.path.insert(0, str(Path(__file__).parent.parent.parent))
|
|
|
|
# use the .env that is inside the current folder
|
|
# allows to use different .env file for each lightrag instance
|
|
# the OS environment variables take precedence over the .env file
|
|
load_dotenv(dotenv_path='.env', override=False)
|
|
|
|
# Placeholder annotations for optional dependencies
|
|
ChatOpenAI: Any = None
|
|
OpenAIEmbeddings: Any = None
|
|
LangchainLLMWrapper: Any = None
|
|
AnswerRelevancy: Any = None
|
|
ContextPrecision: Any = None
|
|
ContextRecall: Any = None
|
|
Faithfulness: Any = None
|
|
Dataset: Any = None
|
|
evaluate: Any = None
|
|
tqdm: Any = None
|
|
|
|
# Conditional imports - will raise ImportError if dependencies not installed
|
|
try:
|
|
from datasets import Dataset
|
|
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
|
|
from ragas import evaluate
|
|
from ragas.llms import LangchainLLMWrapper
|
|
from ragas.metrics import (
|
|
AnswerRelevancy,
|
|
ContextPrecision,
|
|
ContextRecall,
|
|
Faithfulness,
|
|
)
|
|
from tqdm.auto import tqdm
|
|
|
|
RAGAS_AVAILABLE = True
|
|
|
|
except ImportError:
|
|
RAGAS_AVAILABLE = False
|
|
Dataset = None
|
|
evaluate = None
|
|
LangchainLLMWrapper = None
|
|
ChatOpenAI = None
|
|
OpenAIEmbeddings = None
|
|
AnswerRelevancy = None
|
|
ContextPrecision = None
|
|
ContextRecall = None
|
|
Faithfulness = None
|
|
tqdm = None
|
|
|
|
|
|
CONNECT_TIMEOUT_SECONDS = 180.0
|
|
READ_TIMEOUT_SECONDS = 300.0
|
|
TOTAL_TIMEOUT_SECONDS = 180.0
|
|
|
|
|
|
def _is_nan(value: Any) -> bool:
|
|
"""Return True when value is a float NaN."""
|
|
return isinstance(value, float) and math.isnan(value)
|
|
|
|
|
|
class RAGEvaluator:
|
|
"""Evaluate RAG system quality using RAGAS metrics"""
|
|
|
|
def __init__(
|
|
self,
|
|
test_dataset_path: str | Path | None = None,
|
|
rag_api_url: str | None = None,
|
|
query_mode: str = 'mix',
|
|
debug_mode: bool = False,
|
|
):
|
|
"""
|
|
Initialize evaluator with test dataset
|
|
|
|
Args:
|
|
test_dataset_path: Path to test dataset JSON file
|
|
rag_api_url: Base URL of LightRAG API (e.g., http://localhost:9621)
|
|
If None, will try to read from environment or use default
|
|
query_mode: Query mode for retrieval (local, global, hybrid, mix, naive)
|
|
debug_mode: Enable verbose logging of retrieved contexts
|
|
|
|
Environment Variables:
|
|
EVAL_LLM_MODEL: LLM model for evaluation (default: gpt-4o-mini)
|
|
EVAL_EMBEDDING_MODEL: Embedding model for evaluation (default: text-embedding-3-small)
|
|
EVAL_LLM_BINDING_API_KEY: API key for LLM (fallback to OPENAI_API_KEY)
|
|
EVAL_LLM_BINDING_HOST: Custom endpoint URL for LLM (optional)
|
|
EVAL_EMBEDDING_BINDING_API_KEY: API key for embeddings (fallback: EVAL_LLM_BINDING_API_KEY -> OPENAI_API_KEY)
|
|
EVAL_EMBEDDING_BINDING_HOST: Custom endpoint URL for embeddings (fallback: EVAL_LLM_BINDING_HOST)
|
|
|
|
Raises:
|
|
ImportError: If ragas or datasets packages are not installed
|
|
EnvironmentError: If EVAL_LLM_BINDING_API_KEY and OPENAI_API_KEY are both not set
|
|
"""
|
|
# Validate RAGAS dependencies are installed
|
|
if not RAGAS_AVAILABLE:
|
|
raise ImportError('RAGAS dependencies not installed. Install with: pip install ragas datasets')
|
|
|
|
# Configure evaluation LLM (for RAGAS scoring)
|
|
eval_llm_api_key = os.getenv('EVAL_LLM_BINDING_API_KEY') or os.getenv('OPENAI_API_KEY')
|
|
if not eval_llm_api_key:
|
|
raise OSError(
|
|
'EVAL_LLM_BINDING_API_KEY or OPENAI_API_KEY is required for evaluation. '
|
|
'Set EVAL_LLM_BINDING_API_KEY to use a custom API key, '
|
|
'or ensure OPENAI_API_KEY is set.'
|
|
)
|
|
|
|
eval_model = os.getenv('EVAL_LLM_MODEL', 'gpt-4o-mini')
|
|
eval_llm_base_url = os.getenv('EVAL_LLM_BINDING_HOST')
|
|
|
|
# Configure evaluation embeddings (for RAGAS scoring)
|
|
# Fallback chain: EVAL_EMBEDDING_BINDING_API_KEY -> EVAL_LLM_BINDING_API_KEY -> OPENAI_API_KEY
|
|
eval_embedding_api_key = (
|
|
os.getenv('EVAL_EMBEDDING_BINDING_API_KEY')
|
|
or os.getenv('EVAL_LLM_BINDING_API_KEY')
|
|
or os.getenv('OPENAI_API_KEY')
|
|
)
|
|
eval_embedding_model = os.getenv('EVAL_EMBEDDING_MODEL', 'text-embedding-3-large')
|
|
# Fallback chain: EVAL_EMBEDDING_BINDING_HOST -> EVAL_LLM_BINDING_HOST -> None
|
|
eval_embedding_base_url = os.getenv('EVAL_EMBEDDING_BINDING_HOST') or os.getenv('EVAL_LLM_BINDING_HOST')
|
|
|
|
# Create LLM and Embeddings instances for RAGAS
|
|
llm_kwargs = {
|
|
'model': eval_model,
|
|
'api_key': eval_llm_api_key,
|
|
'max_retries': int(os.getenv('EVAL_LLM_MAX_RETRIES', '5')),
|
|
'request_timeout': int(os.getenv('EVAL_LLM_TIMEOUT', '180')),
|
|
}
|
|
embedding_kwargs = {
|
|
'model': eval_embedding_model,
|
|
'api_key': eval_embedding_api_key,
|
|
}
|
|
|
|
if eval_llm_base_url:
|
|
llm_kwargs['base_url'] = eval_llm_base_url
|
|
|
|
if eval_embedding_base_url:
|
|
embedding_kwargs['base_url'] = eval_embedding_base_url
|
|
|
|
# Create base LangChain LLM
|
|
base_llm = ChatOpenAI(**llm_kwargs)
|
|
self.eval_embeddings = OpenAIEmbeddings(**embedding_kwargs)
|
|
|
|
# Wrap LLM with LangchainLLMWrapper and enable bypass_n mode for custom endpoints
|
|
# This ensures compatibility with endpoints that don't support the 'n' parameter
|
|
# by generating multiple outputs through repeated prompts instead of using 'n' parameter
|
|
try:
|
|
self.eval_llm = LangchainLLMWrapper(
|
|
langchain_llm=base_llm,
|
|
bypass_n=True, # Enable bypass_n to avoid passing 'n' to OpenAI API
|
|
)
|
|
logger.debug('Successfully configured bypass_n mode for LLM wrapper')
|
|
except Exception as e:
|
|
logger.warning(
|
|
'Could not configure LangchainLLMWrapper with bypass_n: %s. '
|
|
'Using base LLM directly, which may cause warnings with custom endpoints.',
|
|
e,
|
|
)
|
|
self.eval_llm = base_llm
|
|
|
|
if test_dataset_path is None:
|
|
test_dataset_path = Path(__file__).parent / 'sample_dataset.json'
|
|
|
|
if rag_api_url is None:
|
|
rag_api_url = os.getenv('LIGHTRAG_API_URL', 'http://localhost:9621')
|
|
|
|
self.test_dataset_path = Path(test_dataset_path)
|
|
self.rag_api_url = rag_api_url.rstrip('/')
|
|
self.query_mode = query_mode
|
|
self.debug_mode = debug_mode
|
|
self.results_dir = Path(__file__).parent / 'results'
|
|
self.results_dir.mkdir(exist_ok=True)
|
|
|
|
# Load test dataset
|
|
self.test_cases = self._load_test_dataset()
|
|
|
|
# Store configuration values for display
|
|
self.eval_model = eval_model
|
|
self.eval_embedding_model = eval_embedding_model
|
|
self.eval_llm_base_url = eval_llm_base_url
|
|
self.eval_embedding_base_url = eval_embedding_base_url
|
|
self.eval_max_retries = llm_kwargs['max_retries']
|
|
self.eval_timeout = llm_kwargs['request_timeout']
|
|
|
|
# Display configuration
|
|
self._display_configuration()
|
|
|
|
def _display_configuration(self):
|
|
"""Display all evaluation configuration settings"""
|
|
logger.info('Evaluation Models:')
|
|
logger.info(' • LLM Model: %s', self.eval_model)
|
|
logger.info(' • Embedding Model: %s', self.eval_embedding_model)
|
|
|
|
# Display LLM endpoint
|
|
if self.eval_llm_base_url:
|
|
logger.info(' • LLM Endpoint: %s', self.eval_llm_base_url)
|
|
logger.info(' • Bypass N-Parameter: Enabled (use LangchainLLMWrapper for compatibility)')
|
|
else:
|
|
logger.info(' • LLM Endpoint: OpenAI Official API')
|
|
|
|
# Display Embedding endpoint (only if different from LLM)
|
|
if self.eval_embedding_base_url:
|
|
if self.eval_embedding_base_url != self.eval_llm_base_url:
|
|
logger.info(' • Embedding Endpoint: %s', self.eval_embedding_base_url)
|
|
# If same as LLM endpoint, no need to display separately
|
|
elif not self.eval_llm_base_url:
|
|
# Both using OpenAI - already displayed above
|
|
pass
|
|
else:
|
|
# LLM uses custom endpoint, but embeddings use OpenAI
|
|
logger.info(' • Embedding Endpoint: OpenAI Official API')
|
|
|
|
logger.info('Concurrency & Rate Limiting:')
|
|
query_top_k = int(os.getenv('EVAL_QUERY_TOP_K', '10'))
|
|
logger.info(' • Query Top-K: %s Entities/Relations', query_top_k)
|
|
logger.info(' • LLM Max Retries: %s', self.eval_max_retries)
|
|
logger.info(' • LLM Timeout: %s seconds', self.eval_timeout)
|
|
|
|
logger.info('Test Configuration:')
|
|
logger.info(' • Total Test Cases: %s', len(self.test_cases))
|
|
logger.info(' • Test Dataset: %s', self.test_dataset_path.name)
|
|
logger.info(' • LightRAG API: %s', self.rag_api_url)
|
|
logger.info(' • Query Mode: %s', self.query_mode)
|
|
logger.info(' • Results Directory: %s', self.results_dir.name)
|
|
|
|
def _load_test_dataset(self) -> list[dict[str, str]]:
|
|
"""Load test cases from JSON file"""
|
|
if not self.test_dataset_path.exists():
|
|
raise FileNotFoundError(f'Test dataset not found: {self.test_dataset_path}')
|
|
|
|
with open(self.test_dataset_path, encoding='utf-8') as f:
|
|
data = json.load(f)
|
|
|
|
return data.get('test_cases', [])
|
|
|
|
async def generate_rag_response(
|
|
self,
|
|
question: str,
|
|
client: httpx.AsyncClient,
|
|
test_case: dict[str, Any] | None = None,
|
|
) -> dict[str, Any]:
|
|
"""
|
|
Generate RAG response by calling LightRAG API.
|
|
|
|
Args:
|
|
question: The user query.
|
|
client: Shared httpx AsyncClient for connection pooling.
|
|
test_case: Optional test case dict with keyword overrides (hl_keywords, ll_keywords).
|
|
|
|
Returns:
|
|
Dictionary with 'answer' and 'contexts' keys.
|
|
'contexts' is a list of strings (one per retrieved document).
|
|
|
|
Raises:
|
|
Exception: If LightRAG API is unavailable.
|
|
"""
|
|
try:
|
|
# Build payload with tunable parameters via environment variables
|
|
# These allow testing different retrieval configurations without code changes
|
|
payload = {
|
|
'query': question,
|
|
'mode': self.query_mode,
|
|
'include_references': True,
|
|
'include_chunk_content': True, # Request chunk content in references
|
|
'response_type': 'Single Paragraph',
|
|
# Retrieval tuning parameters (override via EVAL_* env vars)
|
|
'top_k': int(os.getenv('EVAL_QUERY_TOP_K', '10')),
|
|
'chunk_top_k': int(os.getenv('EVAL_CHUNK_TOP_K', '10')),
|
|
'max_total_tokens': int(os.getenv('EVAL_MAX_TOTAL_TOKENS', '30000')),
|
|
'enable_rerank': os.getenv('EVAL_ENABLE_RERANK', 'true').lower() == 'true',
|
|
}
|
|
|
|
# Optional keyword overrides from test dataset - bypasses LLM keyword extraction
|
|
# Useful for testing if poor keyword extraction is causing retrieval failures
|
|
if test_case:
|
|
if test_case.get('hl_keywords'):
|
|
payload['hl_keywords'] = test_case['hl_keywords']
|
|
if self.debug_mode:
|
|
logger.info('[DEBUG] Using HL keywords override: %s', test_case['hl_keywords'])
|
|
if test_case.get('ll_keywords'):
|
|
payload['ll_keywords'] = test_case['ll_keywords']
|
|
if self.debug_mode:
|
|
logger.info('[DEBUG] Using LL keywords override: %s', test_case['ll_keywords'])
|
|
|
|
# Get API key from environment for authentication
|
|
api_key = os.getenv('LIGHTRAG_API_KEY')
|
|
|
|
# Prepare headers with optional authentication
|
|
headers = {}
|
|
if api_key:
|
|
headers['X-API-Key'] = api_key
|
|
|
|
# Single optimized API call - gets both answer AND chunk content
|
|
response = await client.post(
|
|
f'{self.rag_api_url}/query',
|
|
json=payload,
|
|
headers=headers if headers else None,
|
|
)
|
|
response.raise_for_status()
|
|
result = response.json()
|
|
|
|
answer = result.get('response', 'No response generated')
|
|
references = result.get('references', [])
|
|
|
|
# DEBUG: Inspect the API response
|
|
logger.debug('🔍 References Count: %s', len(references))
|
|
if references:
|
|
first_ref = references[0]
|
|
logger.debug('🔍 First Reference Keys: %s', list(first_ref.keys()))
|
|
if 'content' in first_ref:
|
|
content_preview = first_ref['content']
|
|
if isinstance(content_preview, list) and content_preview:
|
|
logger.debug(
|
|
'🔍 Content Preview (first chunk): %s...',
|
|
content_preview[0][:100],
|
|
)
|
|
elif isinstance(content_preview, str):
|
|
logger.debug('🔍 Content Preview: %s...', content_preview[:100])
|
|
|
|
# Extract chunk content from enriched references
|
|
# Note: content is now a list of chunks per reference (one file may have multiple chunks)
|
|
contexts = []
|
|
for ref in references:
|
|
content = ref.get('content', [])
|
|
if isinstance(content, list):
|
|
# Flatten the list: each chunk becomes a separate context
|
|
contexts.extend(content)
|
|
elif isinstance(content, str):
|
|
# Backward compatibility: if content is still a string (shouldn't happen)
|
|
contexts.append(content)
|
|
|
|
# Debug logging for troubleshooting retrieval issues
|
|
if self.debug_mode:
|
|
logger.info('[DEBUG] Query: %s', question[:100])
|
|
logger.info('[DEBUG] Retrieved %d context chunks', len(contexts))
|
|
if not contexts:
|
|
logger.warning('[DEBUG] ⚠️ NO CONTEXTS RETRIEVED! Check keyword extraction and KB coverage.')
|
|
logger.info('[DEBUG] Answer preview: %s', answer[:200] if answer else 'No answer')
|
|
else:
|
|
for i, ctx in enumerate(contexts[:3]):
|
|
ctx_preview = ctx[:300] if isinstance(ctx, str) else str(ctx)[:300]
|
|
logger.info('[DEBUG] Context %d: %s...', i + 1, ctx_preview)
|
|
if len(contexts) > 3:
|
|
logger.info('[DEBUG] ... and %d more contexts', len(contexts) - 3)
|
|
|
|
return {
|
|
'answer': answer,
|
|
'contexts': contexts, # List of strings from actual retrieved chunks
|
|
}
|
|
|
|
except httpx.ConnectError as e:
|
|
raise Exception(
|
|
f'❌ Cannot connect to LightRAG API at {self.rag_api_url}\n'
|
|
f' Make sure LightRAG server is running:\n'
|
|
f' python -m lightrag.api.lightrag_server\n'
|
|
f' Error: {e!s}'
|
|
) from e
|
|
except httpx.HTTPStatusError as e:
|
|
raise Exception(f'LightRAG API error {e.response.status_code}: {e.response.text}') from e
|
|
except httpx.ReadTimeout as e:
|
|
raise Exception(
|
|
f'Request timeout after waiting for response\n Question: {question[:100]}...\n Error: {e!s}'
|
|
) from e
|
|
except Exception as e:
|
|
raise Exception(f'Error calling LightRAG API: {type(e).__name__}: {e!s}') from e
|
|
|
|
async def evaluate_single_case(
|
|
self,
|
|
idx: int,
|
|
test_case: dict[str, str],
|
|
rag_semaphore: asyncio.Semaphore,
|
|
eval_semaphore: asyncio.Semaphore,
|
|
client: httpx.AsyncClient,
|
|
progress_counter: dict[str, int],
|
|
position_pool: asyncio.Queue,
|
|
pbar_creation_lock: asyncio.Lock,
|
|
) -> dict[str, Any]:
|
|
"""
|
|
Evaluate a single test case with two-stage pipeline concurrency control
|
|
|
|
Args:
|
|
idx: Test case index (1-based)
|
|
test_case: Test case dictionary with question and ground_truth
|
|
rag_semaphore: Semaphore to control overall concurrency (covers entire function)
|
|
eval_semaphore: Semaphore to control RAGAS evaluation concurrency (Stage 2)
|
|
client: Shared httpx AsyncClient for connection pooling
|
|
progress_counter: Shared dictionary for progress tracking
|
|
position_pool: Queue of available tqdm position indices
|
|
pbar_creation_lock: Lock to serialize tqdm creation and prevent race conditions
|
|
|
|
Returns:
|
|
Evaluation result dictionary
|
|
"""
|
|
# rag_semaphore controls the entire evaluation process to prevent
|
|
# all RAG responses from being generated at once when eval is slow
|
|
async with rag_semaphore:
|
|
question = test_case['question']
|
|
ground_truth = test_case['ground_truth']
|
|
|
|
# Stage 1: Generate RAG response
|
|
try:
|
|
rag_response = await self.generate_rag_response(question=question, client=client, test_case=test_case)
|
|
except Exception as e:
|
|
logger.error('Error generating response for test %s: %s', idx, str(e))
|
|
progress_counter['completed'] += 1
|
|
return {
|
|
'test_number': idx,
|
|
'question': question,
|
|
'error': str(e),
|
|
'metrics': {},
|
|
'ragas_score': 0,
|
|
'timestamp': datetime.now().isoformat(),
|
|
}
|
|
|
|
# *** CRITICAL FIX: Use actual retrieved contexts, NOT ground_truth ***
|
|
retrieved_contexts = rag_response['contexts']
|
|
|
|
# Prepare dataset for RAGAS evaluation with CORRECT contexts
|
|
eval_dataset = Dataset.from_dict(
|
|
{
|
|
'question': [question],
|
|
'answer': [rag_response['answer']],
|
|
'contexts': [retrieved_contexts],
|
|
'ground_truth': [ground_truth],
|
|
}
|
|
)
|
|
|
|
# Stage 2: Run RAGAS evaluation (controlled by eval_semaphore)
|
|
# IMPORTANT: Create fresh metric instances for each evaluation to avoid
|
|
# concurrent state conflicts when multiple tasks run in parallel
|
|
async with eval_semaphore:
|
|
pbar = None
|
|
position = None
|
|
try:
|
|
# Acquire a position from the pool for this tqdm progress bar
|
|
position = await position_pool.get()
|
|
|
|
# Serialize tqdm creation to prevent race conditions
|
|
# Multiple tasks creating tqdm simultaneously can cause display conflicts
|
|
async with pbar_creation_lock:
|
|
# Create tqdm progress bar with assigned position to avoid overlapping
|
|
# leave=False ensures the progress bar is cleared after completion,
|
|
# preventing accumulation of completed bars and allowing position reuse
|
|
pbar = tqdm(
|
|
total=4,
|
|
desc=f'Eval-{idx:02d}',
|
|
position=position,
|
|
leave=False,
|
|
)
|
|
# Give tqdm time to initialize and claim its screen position
|
|
await asyncio.sleep(0.05)
|
|
|
|
eval_results = evaluate(
|
|
dataset=eval_dataset,
|
|
metrics=[
|
|
Faithfulness(),
|
|
AnswerRelevancy(),
|
|
ContextRecall(),
|
|
ContextPrecision(),
|
|
],
|
|
llm=self.eval_llm,
|
|
embeddings=self.eval_embeddings,
|
|
_pbar=pbar,
|
|
)
|
|
|
|
# Convert to DataFrame (RAGAS v0.3+ API)
|
|
df = eval_results.to_pandas()
|
|
|
|
# Extract scores from first row
|
|
scores_row = df.iloc[0]
|
|
|
|
# Extract scores (RAGAS v0.3+ uses .to_pandas())
|
|
result = {
|
|
'test_number': idx,
|
|
'question': question,
|
|
'answer': rag_response['answer'][:200] + '...'
|
|
if len(rag_response['answer']) > 200
|
|
else rag_response['answer'],
|
|
'ground_truth': ground_truth[:200] + '...' if len(ground_truth) > 200 else ground_truth,
|
|
'project': test_case.get('project', 'unknown'),
|
|
'metrics': {
|
|
'faithfulness': float(scores_row.get('faithfulness', 0)),
|
|
'answer_relevance': float(scores_row.get('answer_relevancy', 0)),
|
|
'context_recall': float(scores_row.get('context_recall', 0)),
|
|
'context_precision': float(scores_row.get('context_precision', 0)),
|
|
},
|
|
'timestamp': datetime.now().isoformat(),
|
|
}
|
|
|
|
# Calculate RAGAS score (average of all metrics, excluding NaN values)
|
|
metrics = result['metrics']
|
|
valid_metrics = [v for v in metrics.values() if not _is_nan(v)]
|
|
ragas_score = sum(valid_metrics) / len(valid_metrics) if valid_metrics else 0
|
|
result['ragas_score'] = round(ragas_score, 4)
|
|
|
|
# Update progress counter
|
|
progress_counter['completed'] += 1
|
|
|
|
return result
|
|
|
|
except Exception as e:
|
|
logger.error('Error evaluating test %s: %s', idx, str(e))
|
|
progress_counter['completed'] += 1
|
|
return {
|
|
'test_number': idx,
|
|
'question': question,
|
|
'error': str(e),
|
|
'metrics': {},
|
|
'ragas_score': 0,
|
|
'timestamp': datetime.now().isoformat(),
|
|
}
|
|
finally:
|
|
# Force close progress bar to ensure completion
|
|
if pbar is not None:
|
|
pbar.close()
|
|
# Release the position back to the pool for reuse
|
|
if position is not None:
|
|
await position_pool.put(position)
|
|
|
|
async def evaluate_responses(self) -> list[dict[str, Any]]:
|
|
"""
|
|
Evaluate all test cases in parallel with two-stage pipeline and return metrics
|
|
|
|
Returns:
|
|
List of evaluation results with metrics
|
|
"""
|
|
# Get evaluation concurrency from environment (default to 2 for parallel evaluation)
|
|
max_async = int(os.getenv('EVAL_MAX_CONCURRENT', '2'))
|
|
|
|
logger.info('%s', '=' * 70)
|
|
logger.info('🚀 Starting RAGAS Evaluation of LightRAG System')
|
|
logger.info('🔧 RAGAS Evaluation (Stage 2): %s concurrent', max_async)
|
|
logger.info('%s', '=' * 70)
|
|
|
|
# Create two-stage pipeline semaphores
|
|
# Stage 1: RAG generation - allow x2 concurrency to keep evaluation fed
|
|
rag_semaphore = asyncio.Semaphore(max_async * 2)
|
|
# Stage 2: RAGAS evaluation - primary bottleneck
|
|
eval_semaphore = asyncio.Semaphore(max_async)
|
|
|
|
# Create progress counter (shared across all tasks)
|
|
progress_counter = {'completed': 0}
|
|
|
|
# Create position pool for tqdm progress bars
|
|
# Positions range from 0 to max_async-1, ensuring no overlapping displays
|
|
position_pool = asyncio.Queue()
|
|
for i in range(max_async):
|
|
await position_pool.put(i)
|
|
|
|
# Create lock to serialize tqdm creation and prevent race conditions
|
|
# This ensures progress bars are created one at a time, avoiding display conflicts
|
|
pbar_creation_lock = asyncio.Lock()
|
|
|
|
# Create shared HTTP client with connection pooling and proper timeouts
|
|
# Timeout: 3 minutes for connect, 5 minutes for read (LLM can be slow)
|
|
timeout = httpx.Timeout(
|
|
TOTAL_TIMEOUT_SECONDS,
|
|
connect=CONNECT_TIMEOUT_SECONDS,
|
|
read=READ_TIMEOUT_SECONDS,
|
|
)
|
|
limits = httpx.Limits(
|
|
max_connections=(max_async + 1) * 2, # Allow buffer for RAG stage
|
|
max_keepalive_connections=max_async + 1,
|
|
)
|
|
|
|
async with httpx.AsyncClient(timeout=timeout, limits=limits) as client:
|
|
# Create tasks for all test cases
|
|
tasks = [
|
|
self.evaluate_single_case(
|
|
idx,
|
|
test_case,
|
|
rag_semaphore,
|
|
eval_semaphore,
|
|
client,
|
|
progress_counter,
|
|
position_pool,
|
|
pbar_creation_lock,
|
|
)
|
|
for idx, test_case in enumerate(self.test_cases, 1)
|
|
]
|
|
|
|
# Run all evaluations in parallel (limited by two-stage semaphores)
|
|
results = await asyncio.gather(*tasks)
|
|
|
|
return list(results)
|
|
|
|
def _export_to_csv(self, results: list[dict[str, Any]]) -> Path:
|
|
"""
|
|
Export evaluation results to CSV file
|
|
|
|
Args:
|
|
results: List of evaluation results
|
|
|
|
Returns:
|
|
Path to the CSV file
|
|
|
|
CSV Format:
|
|
- question: The test question
|
|
- project: Project context
|
|
- faithfulness: Faithfulness score (0-1)
|
|
- answer_relevance: Answer relevance score (0-1)
|
|
- context_recall: Context recall score (0-1)
|
|
- context_precision: Context precision score (0-1)
|
|
- ragas_score: Overall RAGAS score (0-1)
|
|
- timestamp: When evaluation was run
|
|
"""
|
|
csv_path = self.results_dir / f'results_{datetime.now().strftime("%Y%m%d_%H%M%S")}.csv'
|
|
|
|
with open(csv_path, 'w', newline='', encoding='utf-8') as f:
|
|
fieldnames = [
|
|
'test_number',
|
|
'question',
|
|
'project',
|
|
'faithfulness',
|
|
'answer_relevance',
|
|
'context_recall',
|
|
'context_precision',
|
|
'ragas_score',
|
|
'status',
|
|
'timestamp',
|
|
]
|
|
|
|
writer = csv.DictWriter(f, fieldnames=fieldnames)
|
|
writer.writeheader()
|
|
|
|
for idx, result in enumerate(results, 1):
|
|
metrics = result.get('metrics', {})
|
|
writer.writerow(
|
|
{
|
|
'test_number': idx,
|
|
'question': result.get('question', ''),
|
|
'project': result.get('project', 'unknown'),
|
|
'faithfulness': f'{metrics.get("faithfulness", 0):.4f}',
|
|
'answer_relevance': f'{metrics.get("answer_relevance", 0):.4f}',
|
|
'context_recall': f'{metrics.get("context_recall", 0):.4f}',
|
|
'context_precision': f'{metrics.get("context_precision", 0):.4f}',
|
|
'ragas_score': f'{result.get("ragas_score", 0):.4f}',
|
|
'status': 'success' if metrics else 'error',
|
|
'timestamp': result.get('timestamp', ''),
|
|
}
|
|
)
|
|
|
|
return csv_path
|
|
|
|
def _format_metric(self, value: float, width: int = 6) -> str:
|
|
"""
|
|
Format a metric value for display, handling NaN gracefully
|
|
|
|
Args:
|
|
value: The metric value to format
|
|
width: The width of the formatted string
|
|
|
|
Returns:
|
|
Formatted string (e.g., "0.8523" or " N/A ")
|
|
"""
|
|
if _is_nan(value):
|
|
return 'N/A'.center(width)
|
|
return f'{value:.4f}'.rjust(width)
|
|
|
|
def _display_results_table(self, results: list[dict[str, Any]]):
|
|
"""
|
|
Display evaluation results in a formatted table
|
|
|
|
Args:
|
|
results: List of evaluation results
|
|
"""
|
|
logger.info('')
|
|
logger.info('%s', '=' * 115)
|
|
logger.info('📊 EVALUATION RESULTS SUMMARY')
|
|
logger.info('%s', '=' * 115)
|
|
|
|
# Table header
|
|
logger.info(
|
|
'%-4s | %-50s | %6s | %7s | %6s | %7s | %6s | %6s',
|
|
'#',
|
|
'Question',
|
|
'Faith',
|
|
'AnswRel',
|
|
'CtxRec',
|
|
'CtxPrec',
|
|
'RAGAS',
|
|
'Status',
|
|
)
|
|
logger.info('%s', '-' * 115)
|
|
|
|
# Table rows
|
|
for result in results:
|
|
test_num = result.get('test_number', 0)
|
|
question = result.get('question', '')
|
|
# Truncate question to 50 chars
|
|
question_display = (question[:47] + '...') if len(question) > 50 else question
|
|
|
|
metrics = result.get('metrics', {})
|
|
if metrics:
|
|
# Success case - format each metric, handling NaN values
|
|
faith = metrics.get('faithfulness', 0)
|
|
ans_rel = metrics.get('answer_relevance', 0)
|
|
ctx_rec = metrics.get('context_recall', 0)
|
|
ctx_prec = metrics.get('context_precision', 0)
|
|
ragas = result.get('ragas_score', 0)
|
|
status = '✓'
|
|
|
|
logger.info(
|
|
'%-4d | %-50s | %s | %s | %s | %s | %s | %6s',
|
|
test_num,
|
|
question_display,
|
|
self._format_metric(faith, 6),
|
|
self._format_metric(ans_rel, 7),
|
|
self._format_metric(ctx_rec, 6),
|
|
self._format_metric(ctx_prec, 7),
|
|
self._format_metric(ragas, 6),
|
|
status,
|
|
)
|
|
else:
|
|
# Error case
|
|
error = result.get('error', 'Unknown error')
|
|
error_display = (error[:20] + '...') if len(error) > 23 else error
|
|
logger.info(
|
|
'%-4d | %-50s | %6s | %7s | %6s | %7s | %6s | ✗ %s',
|
|
test_num,
|
|
question_display,
|
|
'N/A',
|
|
'N/A',
|
|
'N/A',
|
|
'N/A',
|
|
'N/A',
|
|
error_display,
|
|
)
|
|
|
|
logger.info('%s', '=' * 115)
|
|
|
|
def _calculate_benchmark_stats(self, results: list[dict[str, Any]]) -> dict[str, Any]:
|
|
"""
|
|
Calculate benchmark statistics from evaluation results
|
|
|
|
Args:
|
|
results: List of evaluation results
|
|
|
|
Returns:
|
|
Dictionary with benchmark statistics
|
|
"""
|
|
# Filter out results with errors
|
|
valid_results = [r for r in results if r.get('metrics')]
|
|
total_tests = len(results)
|
|
successful_tests = len(valid_results)
|
|
failed_tests = total_tests - successful_tests
|
|
|
|
if not valid_results:
|
|
return {
|
|
'total_tests': total_tests,
|
|
'successful_tests': 0,
|
|
'failed_tests': failed_tests,
|
|
'success_rate': 0.0,
|
|
}
|
|
|
|
# Calculate averages for each metric (handling NaN values correctly)
|
|
# Track both sum and count for each metric to handle NaN values properly
|
|
metrics_data = {
|
|
'faithfulness': {'sum': 0.0, 'count': 0},
|
|
'answer_relevance': {'sum': 0.0, 'count': 0},
|
|
'context_recall': {'sum': 0.0, 'count': 0},
|
|
'context_precision': {'sum': 0.0, 'count': 0},
|
|
'ragas_score': {'sum': 0.0, 'count': 0},
|
|
}
|
|
|
|
for result in valid_results:
|
|
metrics = result.get('metrics', {})
|
|
|
|
# For each metric, sum non-NaN values and count them
|
|
faithfulness = metrics.get('faithfulness', 0)
|
|
if not _is_nan(faithfulness):
|
|
metrics_data['faithfulness']['sum'] += faithfulness
|
|
metrics_data['faithfulness']['count'] += 1
|
|
|
|
answer_relevance = metrics.get('answer_relevance', 0)
|
|
if not _is_nan(answer_relevance):
|
|
metrics_data['answer_relevance']['sum'] += answer_relevance
|
|
metrics_data['answer_relevance']['count'] += 1
|
|
|
|
context_recall = metrics.get('context_recall', 0)
|
|
if not _is_nan(context_recall):
|
|
metrics_data['context_recall']['sum'] += context_recall
|
|
metrics_data['context_recall']['count'] += 1
|
|
|
|
context_precision = metrics.get('context_precision', 0)
|
|
if not _is_nan(context_precision):
|
|
metrics_data['context_precision']['sum'] += context_precision
|
|
metrics_data['context_precision']['count'] += 1
|
|
|
|
ragas_score = result.get('ragas_score', 0)
|
|
if not _is_nan(ragas_score):
|
|
metrics_data['ragas_score']['sum'] += ragas_score
|
|
metrics_data['ragas_score']['count'] += 1
|
|
|
|
# Calculate averages using actual counts for each metric
|
|
avg_metrics = {}
|
|
for metric_name, data in metrics_data.items():
|
|
if data['count'] > 0:
|
|
avg_val = data['sum'] / data['count']
|
|
avg_metrics[metric_name] = round(avg_val, 4) if not _is_nan(avg_val) else 0.0
|
|
else:
|
|
avg_metrics[metric_name] = 0.0
|
|
|
|
# Find min and max RAGAS scores (filter out NaN)
|
|
ragas_scores = []
|
|
for r in valid_results:
|
|
score = r.get('ragas_score', 0)
|
|
if _is_nan(score):
|
|
continue # Skip NaN values
|
|
ragas_scores.append(score)
|
|
|
|
min_score = min(ragas_scores) if ragas_scores else 0
|
|
max_score = max(ragas_scores) if ragas_scores else 0
|
|
|
|
return {
|
|
'total_tests': total_tests,
|
|
'successful_tests': successful_tests,
|
|
'failed_tests': failed_tests,
|
|
'success_rate': round(successful_tests / total_tests * 100, 2),
|
|
'average_metrics': avg_metrics,
|
|
'min_ragas_score': round(min_score, 4),
|
|
'max_ragas_score': round(max_score, 4),
|
|
}
|
|
|
|
async def run(self) -> dict[str, Any]:
|
|
"""Run complete evaluation pipeline"""
|
|
|
|
start_time = time.time()
|
|
|
|
# Evaluate responses
|
|
results = await self.evaluate_responses()
|
|
|
|
elapsed_time = time.time() - start_time
|
|
|
|
# Calculate benchmark statistics
|
|
benchmark_stats = self._calculate_benchmark_stats(results)
|
|
|
|
# Save results
|
|
summary = {
|
|
'timestamp': datetime.now().isoformat(),
|
|
'total_tests': len(results),
|
|
'elapsed_time_seconds': round(elapsed_time, 2),
|
|
'benchmark_stats': benchmark_stats,
|
|
'results': results,
|
|
}
|
|
|
|
# Display results table
|
|
self._display_results_table(results)
|
|
|
|
# Save JSON results
|
|
json_path = self.results_dir / f'results_{datetime.now().strftime("%Y%m%d_%H%M%S")}.json'
|
|
with open(json_path, 'w', encoding='utf-8') as f:
|
|
json.dump(summary, f, indent=2)
|
|
|
|
# Export to CSV
|
|
csv_path = self._export_to_csv(results)
|
|
|
|
# Print summary
|
|
logger.info('')
|
|
logger.info('%s', '=' * 70)
|
|
logger.info('📊 EVALUATION COMPLETE')
|
|
logger.info('%s', '=' * 70)
|
|
logger.info('Total Tests: %s', len(results))
|
|
logger.info('Successful: %s', benchmark_stats['successful_tests'])
|
|
logger.info('Failed: %s', benchmark_stats['failed_tests'])
|
|
logger.info('Success Rate: %.2f%%', benchmark_stats['success_rate'])
|
|
logger.info('Elapsed Time: %.2f seconds', elapsed_time)
|
|
logger.info('Avg Time/Test: %.2f seconds', elapsed_time / len(results))
|
|
|
|
# Print benchmark metrics
|
|
logger.info('')
|
|
logger.info('%s', '=' * 70)
|
|
logger.info('📈 BENCHMARK RESULTS (Average)')
|
|
logger.info('%s', '=' * 70)
|
|
avg = benchmark_stats['average_metrics']
|
|
logger.info('Average Faithfulness: %.4f', avg['faithfulness'])
|
|
logger.info('Average Answer Relevance: %.4f', avg['answer_relevance'])
|
|
logger.info('Average Context Recall: %.4f', avg['context_recall'])
|
|
logger.info('Average Context Precision: %.4f', avg['context_precision'])
|
|
logger.info('Average RAGAS Score: %.4f', avg['ragas_score'])
|
|
logger.info('%s', '-' * 70)
|
|
logger.info(
|
|
'Min RAGAS Score: %.4f',
|
|
benchmark_stats['min_ragas_score'],
|
|
)
|
|
logger.info(
|
|
'Max RAGAS Score: %.4f',
|
|
benchmark_stats['max_ragas_score'],
|
|
)
|
|
|
|
logger.info('')
|
|
logger.info('%s', '=' * 70)
|
|
logger.info('📁 GENERATED FILES')
|
|
logger.info('%s', '=' * 70)
|
|
logger.info('Results Dir: %s', self.results_dir.absolute())
|
|
logger.info(' • CSV: %s', csv_path.name)
|
|
logger.info(' • JSON: %s', json_path.name)
|
|
logger.info('%s', '=' * 70)
|
|
|
|
return summary
|
|
|
|
|
|
# Available query modes for multi-mode comparison
|
|
QUERY_MODES = ['local', 'global', 'hybrid', 'mix', 'naive']
|
|
|
|
|
|
def generate_mode_comparison(
|
|
all_results: dict[str, dict[str, Any]],
|
|
results_dir: Path,
|
|
) -> Path:
|
|
"""
|
|
Generate a comparison report showing best mode per question.
|
|
|
|
Args:
|
|
all_results: Dict mapping mode name to evaluation summary.
|
|
results_dir: Directory to save comparison report.
|
|
|
|
Returns:
|
|
Path to the generated comparison CSV file.
|
|
"""
|
|
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
|
|
comparison_path = results_dir / f'mode_comparison_{timestamp}.csv'
|
|
|
|
if not all_results:
|
|
empty_path = results_dir / 'mode_comparison_empty.csv'
|
|
with open(empty_path, 'w', newline='', encoding='utf-8') as f:
|
|
writer = csv.writer(f)
|
|
writer.writerow(['question', 'best_mode', 'best_ragas', *QUERY_MODES])
|
|
return empty_path
|
|
|
|
# Get the test questions from the first mode's results
|
|
first_mode = next(iter(all_results.keys()))
|
|
questions = [r['question'] for r in all_results[first_mode].get('results', [])]
|
|
num_questions = len(questions)
|
|
|
|
with open(comparison_path, 'w', newline='', encoding='utf-8') as f:
|
|
writer = csv.writer(f)
|
|
# Header: question, best_mode, best_ragas, then each mode's score
|
|
header = ['question', 'best_mode', 'best_ragas', *QUERY_MODES]
|
|
writer.writerow(header)
|
|
|
|
# For each question, find best mode
|
|
for q_idx in range(num_questions):
|
|
question = questions[q_idx][:50] + '...' # Truncate for readability
|
|
scores = {}
|
|
for mode in QUERY_MODES:
|
|
if mode in all_results and q_idx < len(all_results[mode].get('results', [])):
|
|
result = all_results[mode]['results'][q_idx]
|
|
scores[mode] = result.get('ragas_score', 0)
|
|
else:
|
|
scores[mode] = None
|
|
|
|
# Find best mode (ignore None values)
|
|
valid_scores = {m: s for m, s in scores.items() if s is not None}
|
|
if valid_scores:
|
|
best_mode, best_score = max(valid_scores.items(), key=lambda item: item[1])
|
|
else:
|
|
best_mode = 'N/A'
|
|
best_score = 0
|
|
|
|
row = [question, best_mode, f'{best_score:.4f}']
|
|
for mode in QUERY_MODES:
|
|
if scores[mode] is not None:
|
|
row.append(f'{scores[mode]:.4f}')
|
|
else:
|
|
row.append('N/A')
|
|
writer.writerow(row)
|
|
|
|
# Add summary row with averages
|
|
avg_row = ['AVERAGE', '', '']
|
|
best_avg = 0
|
|
best_avg_mode = ''
|
|
for mode in QUERY_MODES:
|
|
if mode in all_results:
|
|
avg = all_results[mode]['benchmark_stats']['average_metrics']['ragas_score']
|
|
avg_row.append(f'{avg:.4f}')
|
|
if avg > best_avg:
|
|
best_avg = avg
|
|
best_avg_mode = mode
|
|
else:
|
|
avg_row.append('N/A')
|
|
avg_row[1] = best_avg_mode
|
|
avg_row[2] = f'{best_avg:.4f}'
|
|
writer.writerow(avg_row)
|
|
|
|
logger.info('')
|
|
logger.info('%s', '=' * 70)
|
|
logger.info('📊 MODE COMPARISON SUMMARY')
|
|
logger.info('%s', '=' * 70)
|
|
logger.info('Best overall mode: %s (avg RAGAS: %.4f)', best_avg_mode, best_avg)
|
|
logger.info('')
|
|
for mode in QUERY_MODES:
|
|
if mode in all_results:
|
|
avg = all_results[mode]['benchmark_stats']['average_metrics']['ragas_score']
|
|
marker = '⭐' if mode == best_avg_mode else ' '
|
|
logger.info('%s %-8s: %.4f', marker, mode, avg)
|
|
logger.info('')
|
|
logger.info('Comparison CSV: %s', comparison_path.name)
|
|
logger.info('%s', '=' * 70)
|
|
|
|
return comparison_path
|
|
|
|
|
|
async def main():
|
|
"""
|
|
Main entry point for RAGAS evaluation
|
|
|
|
Command-line arguments:
|
|
--dataset, -d: Path to test dataset JSON file (default: sample_dataset.json)
|
|
--ragendpoint, -r: LightRAG API endpoint URL (default: http://localhost:9621 or $LIGHTRAG_API_URL)
|
|
|
|
Usage:
|
|
python lightrag/evaluation/eval_rag_quality.py
|
|
python lightrag/evaluation/eval_rag_quality.py --dataset my_test.json
|
|
python lightrag/evaluation/eval_rag_quality.py -d my_test.json -r http://localhost:9621
|
|
"""
|
|
try:
|
|
# Parse command-line arguments
|
|
parser = argparse.ArgumentParser(
|
|
description='RAGAS Evaluation Script for LightRAG System',
|
|
formatter_class=argparse.RawDescriptionHelpFormatter,
|
|
epilog="""
|
|
Examples:
|
|
# Use defaults
|
|
python lightrag/evaluation/eval_rag_quality.py
|
|
|
|
# Specify custom dataset
|
|
python lightrag/evaluation/eval_rag_quality.py --dataset my_test.json
|
|
|
|
# Specify custom RAG endpoint
|
|
python lightrag/evaluation/eval_rag_quality.py --ragendpoint http://my-server.com:9621
|
|
|
|
# Specify both
|
|
python lightrag/evaluation/eval_rag_quality.py -d my_test.json -r http://localhost:9621
|
|
|
|
# Run with debug logging
|
|
python lightrag/evaluation/eval_rag_quality.py --debug
|
|
|
|
# Run multi-mode comparison (evaluates all modes and generates comparison)
|
|
python lightrag/evaluation/eval_rag_quality.py --compare-modes
|
|
|
|
# Tune retrieval parameters via environment variables
|
|
EVAL_QUERY_TOP_K=15 EVAL_CHUNK_TOP_K=20 python lightrag/evaluation/eval_rag_quality.py
|
|
|
|
Environment Variables (for parameter tuning):
|
|
EVAL_QUERY_TOP_K Number of entities/relations to retrieve (default: 10)
|
|
EVAL_CHUNK_TOP_K Number of text chunks to retrieve (default: 10)
|
|
EVAL_MAX_TOTAL_TOKENS Maximum tokens for context (default: 30000)
|
|
EVAL_ENABLE_RERANK Enable reranking (default: true)
|
|
LIGHTRAG_API_KEY API key for LightRAG authentication (optional)
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
'--dataset',
|
|
'-d',
|
|
type=str,
|
|
default=None,
|
|
help='Path to test dataset JSON file (default: sample_dataset.json in evaluation directory)',
|
|
)
|
|
|
|
parser.add_argument(
|
|
'--ragendpoint',
|
|
'-r',
|
|
type=str,
|
|
default=None,
|
|
help='LightRAG API endpoint URL (default: http://localhost:9621 or $LIGHTRAG_API_URL environment variable)',
|
|
)
|
|
|
|
parser.add_argument(
|
|
'--mode',
|
|
'-m',
|
|
type=str,
|
|
default='mix',
|
|
choices=['local', 'global', 'hybrid', 'mix', 'naive'],
|
|
help="Query mode for retrieval (default: mix). 'local' for entity-specific questions, 'mix' for comprehensive retrieval.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
'--debug',
|
|
'-v',
|
|
action='store_true',
|
|
help='Enable verbose debug logging of retrieved contexts (useful for diagnosing retrieval issues)',
|
|
)
|
|
|
|
parser.add_argument(
|
|
'--compare-modes',
|
|
action='store_true',
|
|
help='Run evaluation across ALL query modes and generate a comparison report. Ignores --mode.',
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
|
|
logger.info('%s', '=' * 70)
|
|
logger.info('🔍 RAGAS Evaluation - Using Real LightRAG API')
|
|
logger.info('%s', '=' * 70)
|
|
|
|
if args.compare_modes:
|
|
# Multi-mode comparison: run evaluation for each query mode
|
|
logger.info('🔄 Running multi-mode comparison across: %s', ', '.join(QUERY_MODES))
|
|
logger.info('%s', '=' * 70)
|
|
|
|
all_results: dict[str, dict[str, Any]] = {}
|
|
results_dir = None
|
|
|
|
for mode in QUERY_MODES:
|
|
logger.info('')
|
|
logger.info('%s', '=' * 70)
|
|
logger.info('📊 Evaluating mode: %s', mode.upper())
|
|
logger.info('%s', '=' * 70)
|
|
|
|
evaluator = RAGEvaluator(
|
|
test_dataset_path=args.dataset,
|
|
rag_api_url=args.ragendpoint,
|
|
query_mode=mode,
|
|
debug_mode=args.debug,
|
|
)
|
|
summary = await evaluator.run()
|
|
all_results[mode] = summary
|
|
|
|
# Capture the results directory from first evaluator
|
|
if results_dir is None:
|
|
results_dir = evaluator.results_dir
|
|
|
|
# Generate comparison report
|
|
if results_dir:
|
|
generate_mode_comparison(all_results, results_dir)
|
|
else:
|
|
# Single mode evaluation
|
|
evaluator = RAGEvaluator(
|
|
test_dataset_path=args.dataset,
|
|
rag_api_url=args.ragendpoint,
|
|
query_mode=args.mode,
|
|
debug_mode=args.debug,
|
|
)
|
|
await evaluator.run()
|
|
except Exception as e:
|
|
logger.exception('❌ Error: %s', e)
|
|
sys.exit(1)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
asyncio.run(main())
|