LightRAG/lightrag/evaluation/__init__.py
clssck da9070ecf7 refactor: remove legacy storage implementations and k8s deployment
Remove deprecated storage backends and Kubernetes deployment configuration:
- Delete unused storage implementations: FAISS, JSON, Memgraph, Milvus, MongoDB, Nano Vector DB, Neo4j, NetworkX, Qdrant, Redis
- Remove Kubernetes deployment manifests and installation scripts
- Delete legacy examples for deprecated backends
- Consolidate to PostgreSQL-only storage backend
Streamline dependencies and add new capabilities:
- Remove deprecated code documentation and migration guides
- Add full-text search caching layer with FTS cache module
- Implement metrics collection and monitoring pipeline
- Add explain and metrics API routes
- Simplify configuration with PostgreSQL-focused setup
Update documentation and configuration:
- Rewrite README to focus on supported features
- Update environment and configuration examples
- Remove Kubernetes-specific documentation
- Add new utility scripts for PDF uploads and pipeline monitoring
2025-12-09 14:02:00 +01:00

30 lines
766 B
Python

"""
LightRAG Evaluation Module
RAGAS-based evaluation framework for assessing RAG system quality.
Usage:
from lightrag.evaluation import RAGEvaluator
evaluator = RAGEvaluator()
results = await evaluator.run()
Note: RAGEvaluator is imported lazily to avoid import errors
when ragas/datasets are not installed.
"""
from typing import Any
__all__ = ['RAGEvaluator']
# Stub to satisfy static analyzers; lazily loaded in __getattr__
RAGEvaluator: Any
def __getattr__(name: str) -> Any:
"""Lazy import to avoid dependency errors when ragas is not installed."""
if name == 'RAGEvaluator':
from .eval_rag_quality import RAGEvaluator
return RAGEvaluator
raise AttributeError(f'module {__name__!r} has no attribute {name!r}')