Remove deprecated storage backends and Kubernetes deployment configuration: - Delete unused storage implementations: FAISS, JSON, Memgraph, Milvus, MongoDB, Nano Vector DB, Neo4j, NetworkX, Qdrant, Redis - Remove Kubernetes deployment manifests and installation scripts - Delete legacy examples for deprecated backends - Consolidate to PostgreSQL-only storage backend Streamline dependencies and add new capabilities: - Remove deprecated code documentation and migration guides - Add full-text search caching layer with FTS cache module - Implement metrics collection and monitoring pipeline - Add explain and metrics API routes - Simplify configuration with PostgreSQL-focused setup Update documentation and configuration: - Rewrite README to focus on supported features - Update environment and configuration examples - Remove Kubernetes-specific documentation - Add new utility scripts for PDF uploads and pipeline monitoring
30 lines
766 B
Python
30 lines
766 B
Python
"""
|
|
LightRAG Evaluation Module
|
|
|
|
RAGAS-based evaluation framework for assessing RAG system quality.
|
|
|
|
Usage:
|
|
from lightrag.evaluation import RAGEvaluator
|
|
|
|
evaluator = RAGEvaluator()
|
|
results = await evaluator.run()
|
|
|
|
Note: RAGEvaluator is imported lazily to avoid import errors
|
|
when ragas/datasets are not installed.
|
|
"""
|
|
|
|
from typing import Any
|
|
|
|
__all__ = ['RAGEvaluator']
|
|
|
|
# Stub to satisfy static analyzers; lazily loaded in __getattr__
|
|
RAGEvaluator: Any
|
|
|
|
|
|
def __getattr__(name: str) -> Any:
|
|
"""Lazy import to avoid dependency errors when ragas is not installed."""
|
|
if name == 'RAGEvaluator':
|
|
from .eval_rag_quality import RAGEvaluator
|
|
|
|
return RAGEvaluator
|
|
raise AttributeError(f'module {__name__!r} has no attribute {name!r}')
|