Remove legacy storage implementations and deprecated examples: - Delete FAISS, JSON, Memgraph, Milvus, MongoDB, Nano Vector DB, Neo4j, NetworkX, Qdrant, Redis storage backends - Remove Kubernetes deployment manifests and installation scripts - Delete unofficial examples for deprecated backends and offline deployment docs Streamline core infrastructure: - Consolidate storage layer to PostgreSQL-only implementation - Add full-text search caching with FTS cache module - Implement metrics collection and monitoring pipeline - Add explain and metrics API routes Modernize frontend and tooling: - Switch web UI to Bun with bun.lock, remove npm and pnpm lockfiles - Update Dockerfile for PostgreSQL-only deployment - Add Makefile for common development tasks - Update environment and configuration examples Enhance evaluation and testing capabilities: - Add prompt optimization with DSPy and auto-tuning - Implement ground truth regeneration and variant testing - Add prompt debugging and response comparison utilities - Expand test coverage with new integration scenarios Simplify dependencies and configuration: - Remove offline-specific requirement files - Update pyproject.toml with streamlined dependencies - Add Python version pinning with .python-version - Create project guidelines in CLAUDE.md and AGENTS.md
140 lines
4 KiB
Python
140 lines
4 KiB
Python
import asyncio
|
|
import logging
|
|
import os
|
|
|
|
import numpy as np
|
|
from dotenv import load_dotenv
|
|
from openai import AzureOpenAI
|
|
|
|
from lightrag import LightRAG, QueryParam
|
|
from lightrag.utils import EmbeddingFunc
|
|
|
|
logging.basicConfig(level=logging.INFO)
|
|
|
|
load_dotenv()
|
|
|
|
AZURE_OPENAI_API_VERSION = os.getenv('AZURE_OPENAI_API_VERSION')
|
|
AZURE_OPENAI_DEPLOYMENT = os.getenv('AZURE_OPENAI_DEPLOYMENT')
|
|
AZURE_OPENAI_API_KEY = os.getenv('AZURE_OPENAI_API_KEY')
|
|
AZURE_OPENAI_ENDPOINT = os.getenv('AZURE_OPENAI_ENDPOINT')
|
|
|
|
AZURE_EMBEDDING_DEPLOYMENT = os.getenv('AZURE_EMBEDDING_DEPLOYMENT')
|
|
AZURE_EMBEDDING_API_VERSION = os.getenv('AZURE_EMBEDDING_API_VERSION')
|
|
|
|
# Ensure all required environment variables are set
|
|
if not AZURE_OPENAI_API_VERSION:
|
|
raise ValueError('AZURE_OPENAI_API_VERSION is not set')
|
|
if not AZURE_OPENAI_DEPLOYMENT:
|
|
raise ValueError('AZURE_OPENAI_DEPLOYMENT is not set')
|
|
if not AZURE_OPENAI_API_KEY:
|
|
raise ValueError('AZURE_OPENAI_API_KEY is not set')
|
|
if not AZURE_OPENAI_ENDPOINT:
|
|
raise ValueError('AZURE_OPENAI_ENDPOINT is not set')
|
|
if not AZURE_EMBEDDING_DEPLOYMENT:
|
|
raise ValueError('AZURE_EMBEDDING_DEPLOYMENT is not set')
|
|
if not AZURE_EMBEDDING_API_VERSION:
|
|
raise ValueError('AZURE_EMBEDDING_API_VERSION is not set')
|
|
|
|
WORKING_DIR = './dickens'
|
|
|
|
if os.path.exists(WORKING_DIR):
|
|
import shutil
|
|
|
|
shutil.rmtree(WORKING_DIR)
|
|
|
|
os.mkdir(WORKING_DIR)
|
|
|
|
|
|
async def llm_model_func(prompt, system_prompt=None, history_messages=None, keyword_extraction=False, **kwargs) -> str:
|
|
if history_messages is None:
|
|
history_messages = []
|
|
client = AzureOpenAI(
|
|
api_key=AZURE_OPENAI_API_KEY,
|
|
api_version=AZURE_OPENAI_API_VERSION,
|
|
azure_endpoint=AZURE_OPENAI_ENDPOINT,
|
|
)
|
|
|
|
messages = []
|
|
if system_prompt:
|
|
messages.append({'role': 'system', 'content': system_prompt})
|
|
if history_messages:
|
|
messages.extend(history_messages)
|
|
messages.append({'role': 'user', 'content': prompt})
|
|
|
|
chat_completion = client.chat.completions.create(
|
|
model=AZURE_OPENAI_DEPLOYMENT, # model = "deployment_name".
|
|
messages=messages,
|
|
temperature=kwargs.get('temperature', 0),
|
|
top_p=kwargs.get('top_p', 1),
|
|
n=kwargs.get('n', 1),
|
|
)
|
|
return chat_completion.choices[0].message.content
|
|
|
|
|
|
async def embedding_func(texts: list[str]) -> np.ndarray:
|
|
client = AzureOpenAI(
|
|
api_key=AZURE_OPENAI_API_KEY,
|
|
api_version=AZURE_EMBEDDING_API_VERSION,
|
|
azure_endpoint=AZURE_OPENAI_ENDPOINT,
|
|
)
|
|
embedding = client.embeddings.create(model=AZURE_EMBEDDING_DEPLOYMENT, input=texts)
|
|
|
|
embeddings = [item.embedding for item in embedding.data]
|
|
return np.array(embeddings)
|
|
|
|
|
|
async def test_funcs():
|
|
result = await llm_model_func('How are you?')
|
|
print('Resposta do llm_model_func: ', result)
|
|
|
|
result = await embedding_func(['How are you?'])
|
|
print('Resultado do embedding_func: ', result.shape)
|
|
print('Dimensão da embedding: ', result.shape[1])
|
|
|
|
|
|
asyncio.run(test_funcs())
|
|
|
|
embedding_dimension = 3072
|
|
|
|
|
|
async def initialize_rag():
|
|
rag = LightRAG(
|
|
working_dir=WORKING_DIR,
|
|
llm_model_func=llm_model_func,
|
|
embedding_func=EmbeddingFunc(
|
|
embedding_dim=embedding_dimension,
|
|
max_token_size=8192,
|
|
func=embedding_func,
|
|
),
|
|
)
|
|
|
|
await rag.initialize_storages() # Auto-initializes pipeline_status
|
|
return rag
|
|
|
|
|
|
def main():
|
|
rag = asyncio.run(initialize_rag())
|
|
|
|
with (
|
|
open('./book_1.txt', encoding='utf-8') as book1,
|
|
open('./book_2.txt', encoding='utf-8') as book2,
|
|
):
|
|
rag.insert([book1.read(), book2.read()])
|
|
|
|
query_text = 'What are the main themes?'
|
|
|
|
print('Result (Naive):')
|
|
print(rag.query(query_text, param=QueryParam(mode='naive')))
|
|
|
|
print('\nResult (Local):')
|
|
print(rag.query(query_text, param=QueryParam(mode='local')))
|
|
|
|
print('\nResult (Global):')
|
|
print(rag.query(query_text, param=QueryParam(mode='global')))
|
|
|
|
print('\nResult (Hybrid):')
|
|
print(rag.query(query_text, param=QueryParam(mode='hybrid')))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|