LightRAG/examples/rerank_example.py
2025-07-07 22:44:59 +08:00

193 lines
No EOL
6.6 KiB
Python

"""
LightRAG Rerank Integration Example
This example demonstrates how to use rerank functionality with LightRAG
to improve retrieval quality across different query modes.
IMPORTANT: Parameter Priority
- QueryParam(top_k=N) has higher priority than rerank_top_k in LightRAG configuration
- If you set QueryParam(top_k=5), it will override rerank_top_k setting
- For optimal rerank performance, use appropriate top_k values in QueryParam
Configuration Required:
1. Set your LLM API key and base URL in llm_model_func()
2. Set your embedding API key and base URL in embedding_func()
3. Set your rerank API key and base URL in the rerank configuration
4. Or use environment variables (.env file):
- RERANK_API_KEY=your_actual_rerank_api_key
- RERANK_BASE_URL=https://your-actual-rerank-endpoint/v1/rerank
- RERANK_MODEL=your_rerank_model_name
"""
import asyncio
import os
import numpy as np
from lightrag import LightRAG, QueryParam
from lightrag.rerank import custom_rerank, RerankModel
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
from lightrag.utils import EmbeddingFunc, setup_logger
# Set up your working directory
WORKING_DIR = "./test_rerank"
setup_logger("test_rerank")
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
async def llm_model_func(
prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
return await openai_complete_if_cache(
"gpt-4o-mini",
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
api_key="your_llm_api_key_here",
base_url="https://api.your-llm-provider.com/v1",
**kwargs,
)
async def embedding_func(texts: list[str]) -> np.ndarray:
return await openai_embed(
texts,
model="text-embedding-3-large",
api_key="your_embedding_api_key_here",
base_url="https://api.your-embedding-provider.com/v1",
)
async def create_rag_with_rerank():
"""Create LightRAG instance with rerank configuration"""
# Get embedding dimension
test_embedding = await embedding_func(["test"])
embedding_dim = test_embedding.shape[1]
print(f"Detected embedding dimension: {embedding_dim}")
# Create rerank model
rerank_model = RerankModel(
rerank_func=custom_rerank,
kwargs={
"model": "BAAI/bge-reranker-v2-m3",
"base_url": "https://api.your-rerank-provider.com/v1/rerank",
"api_key": "your_rerank_api_key_here",
}
)
# Initialize LightRAG with rerank
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=llm_model_func,
embedding_func=EmbeddingFunc(
embedding_dim=embedding_dim,
max_token_size=8192,
func=embedding_func,
),
# Rerank Configuration
enable_rerank=True,
rerank_model_func=rerank_model.rerank,
rerank_top_k=10, # Note: QueryParam.top_k will override this
)
return rag
async def test_rerank_with_different_topk():
"""
Test rerank functionality with different top_k settings to demonstrate parameter priority
"""
print("🚀 Setting up LightRAG with Rerank functionality...")
rag = await create_rag_with_rerank()
# Insert sample documents
sample_docs = [
"Reranking improves retrieval quality by re-ordering documents based on relevance.",
"LightRAG is a powerful retrieval-augmented generation system with multiple query modes.",
"Vector databases enable efficient similarity search in high-dimensional embedding spaces.",
"Natural language processing has evolved with large language models and transformers.",
"Machine learning algorithms can learn patterns from data without explicit programming."
]
print("📄 Inserting sample documents...")
await rag.ainsert(sample_docs)
query = "How does reranking improve retrieval quality?"
print(f"\n🔍 Testing query: '{query}'")
print("=" * 80)
# Test different top_k values to show parameter priority
top_k_values = [2, 5, 10]
for top_k in top_k_values:
print(f"\n📊 Testing with QueryParam(top_k={top_k}) - overrides rerank_top_k=10:")
# Test naive mode with specific top_k
result = await rag.aquery(
query,
param=QueryParam(mode="naive", top_k=top_k)
)
print(f" Result length: {len(result)} characters")
print(f" Preview: {result[:100]}...")
async def test_direct_rerank():
"""Test rerank function directly"""
print("\n🔧 Direct Rerank API Test")
print("=" * 40)
documents = [
{"content": "Reranking significantly improves retrieval quality"},
{"content": "LightRAG supports advanced reranking capabilities"},
{"content": "Vector search finds semantically similar documents"},
{"content": "Natural language processing with modern transformers"},
{"content": "The quick brown fox jumps over the lazy dog"}
]
query = "rerank improve quality"
print(f"Query: '{query}'")
print(f"Documents: {len(documents)}")
try:
reranked_docs = await custom_rerank(
query=query,
documents=documents,
model="BAAI/bge-reranker-v2-m3",
base_url="https://api.your-rerank-provider.com/v1/rerank",
api_key="your_rerank_api_key_here",
top_k=3
)
print("\n✅ Rerank Results:")
for i, doc in enumerate(reranked_docs):
score = doc.get("rerank_score", "N/A")
content = doc.get("content", "")[:60]
print(f" {i+1}. Score: {score:.4f} | {content}...")
except Exception as e:
print(f"❌ Rerank failed: {e}")
async def main():
"""Main example function"""
print("🎯 LightRAG Rerank Integration Example")
print("=" * 60)
try:
# Test rerank with different top_k values
await test_rerank_with_different_topk()
# Test direct rerank
await test_direct_rerank()
print("\n✅ Example completed successfully!")
print("\n💡 Key Points:")
print(" ✓ QueryParam.top_k has higher priority than rerank_top_k")
print(" ✓ Rerank improves document relevance ordering")
print(" ✓ Configure API keys in your .env file for production")
print(" ✓ Monitor API usage and costs when using rerank services")
except Exception as e:
print(f"\n❌ Example failed: {e}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
asyncio.run(main())