Format entire codebase with ruff and add type hints across all modules: - Apply ruff formatting to all Python files (121 files, 17K insertions) - Add type hints to function signatures throughout lightrag core and API - Update test suite with improved type annotations and docstrings - Add pyrightconfig.json for static type checking configuration - Create prompt_optimized.py and test_extraction_prompt_ab.py test files - Update ruff.toml and .gitignore for improved linting configuration - Standardize code style across examples, reproduce scripts, and utilities
120 lines
4.1 KiB
Python
120 lines
4.1 KiB
Python
import json
|
|
import re
|
|
|
|
import jsonlines
|
|
from openai import OpenAI
|
|
|
|
|
|
def batch_eval(query_file, result1_file, result2_file, output_file_path):
|
|
client = OpenAI()
|
|
|
|
with open(query_file) as f:
|
|
data = f.read()
|
|
|
|
queries = re.findall(r'- Question \d+: (.+)', data)
|
|
|
|
with open(result1_file) as f:
|
|
answers1 = json.load(f)
|
|
answers1 = [i['result'] for i in answers1]
|
|
|
|
with open(result2_file) as f:
|
|
answers2 = json.load(f)
|
|
answers2 = [i['result'] for i in answers2]
|
|
|
|
requests = []
|
|
for i, (query, answer1, answer2) in enumerate(zip(queries, answers1, answers2, strict=False)):
|
|
sys_prompt = """
|
|
---Role---
|
|
You are an expert tasked with evaluating two answers to the same question based on three criteria: **Comprehensiveness**, **Diversity**, and **Empowerment**.
|
|
"""
|
|
|
|
prompt = f"""
|
|
You will evaluate two answers to the same question based on three criteria: **Comprehensiveness**, **Diversity**, and **Empowerment**.
|
|
|
|
- **Comprehensiveness**: How much detail does the answer provide to cover all aspects and details of the question?
|
|
- **Diversity**: How varied and rich is the answer in providing different perspectives and insights on the question?
|
|
- **Empowerment**: How well does the answer help the reader understand and make informed judgments about the topic?
|
|
|
|
For each criterion, choose the better answer (either Answer 1 or Answer 2) and explain why. Then, select an overall winner based on these three categories.
|
|
|
|
Here is the question:
|
|
{query}
|
|
|
|
Here are the two answers:
|
|
|
|
**Answer 1:**
|
|
{answer1}
|
|
|
|
**Answer 2:**
|
|
{answer2}
|
|
|
|
Evaluate both answers using the three criteria listed above and provide detailed explanations for each criterion.
|
|
|
|
Output your evaluation in the following JSON format:
|
|
|
|
{{
|
|
"Comprehensiveness": {{
|
|
"Winner": "[Answer 1 or Answer 2]",
|
|
"Explanation": "[Provide explanation here]"
|
|
}},
|
|
"Diversity": {{
|
|
"Winner": "[Answer 1 or Answer 2]",
|
|
"Explanation": "[Provide explanation here]"
|
|
}},
|
|
"Empowerment": {{
|
|
"Winner": "[Answer 1 or Answer 2]",
|
|
"Explanation": "[Provide explanation here]"
|
|
}},
|
|
"Overall Winner": {{
|
|
"Winner": "[Answer 1 or Answer 2]",
|
|
"Explanation": "[Summarize why this answer is the overall winner based on the three criteria]"
|
|
}}
|
|
}}
|
|
"""
|
|
|
|
request_data = {
|
|
'custom_id': f'request-{i + 1}',
|
|
'method': 'POST',
|
|
'url': '/v1/chat/completions',
|
|
'body': {
|
|
'model': 'gpt-4o-mini',
|
|
'messages': [
|
|
{'role': 'system', 'content': sys_prompt},
|
|
{'role': 'user', 'content': prompt},
|
|
],
|
|
},
|
|
}
|
|
|
|
requests.append(request_data)
|
|
|
|
with jsonlines.open(output_file_path, mode='w') as writer:
|
|
for request in requests:
|
|
writer.write(request)
|
|
|
|
print(f'Batch API requests written to {output_file_path}')
|
|
|
|
with open(output_file_path, 'rb') as f:
|
|
batch_input_file = client.files.create(file=f, purpose='batch')
|
|
batch_input_file_id = batch_input_file.id
|
|
|
|
batch = client.batches.create(
|
|
input_file_id=batch_input_file_id,
|
|
endpoint='/v1/chat/completions',
|
|
completion_window='24h',
|
|
metadata={'description': 'nightly eval job'},
|
|
)
|
|
|
|
print(f'Batch {batch.id} has been created.')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
import argparse
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--query_file', type=str, required=True)
|
|
parser.add_argument('--result1_file', type=str, required=True)
|
|
parser.add_argument('--result2_file', type=str, required=True)
|
|
parser.add_argument('--output_file_path', type=str, required=True)
|
|
args = parser.parse_args()
|
|
|
|
batch_eval(args.query_file, args.result1_file, args.result2_file, args.output_file_path)
|