LightRAG/lightrag/llm/nvidia_openai.py
clssck 69358d830d test(lightrag,examples,api): comprehensive ruff formatting and type hints
Format entire codebase with ruff and add type hints across all modules:
- Apply ruff formatting to all Python files (121 files, 17K insertions)
- Add type hints to function signatures throughout lightrag core and API
- Update test suite with improved type annotations and docstrings
- Add pyrightconfig.json for static type checking configuration
- Create prompt_optimized.py and test_extraction_prompt_ab.py test files
- Update ruff.toml and .gitignore for improved linting configuration
- Standardize code style across examples, reproduce scripts, and utilities
2025-12-05 15:17:06 +01:00

57 lines
1.6 KiB
Python

import os
pass
import pipmaster as pm # Pipmaster for dynamic library install
# install specific modules
if not pm.is_installed('openai'):
pm.install('openai')
from typing import Literal
import numpy as np
from openai import (
APIConnectionError,
APITimeoutError,
AsyncOpenAI,
RateLimitError,
)
from tenacity import (
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
from lightrag.utils import (
wrap_embedding_func_with_attrs,
)
@wrap_embedding_func_with_attrs(embedding_dim=2048, max_token_size=8192)
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=60),
retry=retry_if_exception_type((RateLimitError, APIConnectionError, APITimeoutError)),
)
async def nvidia_openai_embed(
texts: list[str],
model: str = 'nvidia/llama-3.2-nv-embedqa-1b-v1',
# refer to https://build.nvidia.com/nim?filters=usecase%3Ausecase_text_to_embedding
base_url: str = 'https://integrate.api.nvidia.com/v1',
api_key: str | None = None,
input_type: str = 'passage', # query for retrieval, passage for embedding
trunc: str = 'NONE', # NONE or START or END
encode: Literal['float', 'base64'] = 'float', # float or base64
) -> np.ndarray:
if api_key:
os.environ['OPENAI_API_KEY'] = api_key
openai_async_client = AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
response = await openai_async_client.embeddings.create(
model=model,
input=texts,
encoding_format=encode,
extra_body={'input_type': input_type, 'truncate': trunc},
)
return np.array([dp.embedding for dp in response.data])