- Supports JSON/Redis/PostgreSQL/MongoDB - Batch migration with error tracking - Workspace-aware data transfer - Memory-efficient pagination - Comprehensive migration reporting
721 lines
26 KiB
Python
721 lines
26 KiB
Python
#!/usr/bin/env python3
|
|
"""
|
|
LLM Cache Migration Tool for LightRAG
|
|
|
|
This tool migrates LLM response cache (default:extract:* and default:summary:*)
|
|
between different KV storage implementations while preserving workspace isolation.
|
|
|
|
Usage:
|
|
python tools/migrate_llm_cache.py
|
|
|
|
Supported KV Storage Types:
|
|
- JsonKVStorage
|
|
- RedisKVStorage
|
|
- PGKVStorage
|
|
- MongoKVStorage
|
|
"""
|
|
|
|
import asyncio
|
|
import os
|
|
import sys
|
|
import time
|
|
from typing import Any, Dict, List
|
|
from dataclasses import dataclass, field
|
|
from dotenv import load_dotenv
|
|
|
|
# Add parent directory to path for imports
|
|
sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
|
|
|
from lightrag.kg import STORAGE_ENV_REQUIREMENTS
|
|
from lightrag.namespace import NameSpace
|
|
from lightrag.utils import setup_logger
|
|
|
|
# Load environment variables
|
|
load_dotenv(dotenv_path=".env", override=False)
|
|
|
|
# Setup logger
|
|
setup_logger("lightrag", level="INFO")
|
|
|
|
# Storage type configurations
|
|
STORAGE_TYPES = {
|
|
"1": "JsonKVStorage",
|
|
"2": "RedisKVStorage",
|
|
"3": "PGKVStorage",
|
|
"4": "MongoKVStorage",
|
|
}
|
|
|
|
# Workspace environment variable mapping
|
|
WORKSPACE_ENV_MAP = {
|
|
"PGKVStorage": "POSTGRES_WORKSPACE",
|
|
"MongoKVStorage": "MONGODB_WORKSPACE",
|
|
"RedisKVStorage": "REDIS_WORKSPACE",
|
|
}
|
|
|
|
# Default batch size for migration
|
|
DEFAULT_BATCH_SIZE = 1000
|
|
|
|
|
|
@dataclass
|
|
class MigrationStats:
|
|
"""Migration statistics and error tracking"""
|
|
total_source_records: int = 0
|
|
total_batches: int = 0
|
|
successful_batches: int = 0
|
|
failed_batches: int = 0
|
|
successful_records: int = 0
|
|
failed_records: int = 0
|
|
errors: List[Dict[str, Any]] = field(default_factory=list)
|
|
|
|
def add_error(self, batch_idx: int, error: Exception, batch_size: int):
|
|
"""Record batch error"""
|
|
self.errors.append({
|
|
'batch': batch_idx,
|
|
'error_type': type(error).__name__,
|
|
'error_msg': str(error),
|
|
'records_lost': batch_size,
|
|
'timestamp': time.time()
|
|
})
|
|
self.failed_batches += 1
|
|
self.failed_records += batch_size
|
|
|
|
|
|
class MigrationTool:
|
|
"""LLM Cache Migration Tool"""
|
|
|
|
def __init__(self):
|
|
self.source_storage = None
|
|
self.target_storage = None
|
|
self.source_workspace = ""
|
|
self.target_workspace = ""
|
|
self.batch_size = DEFAULT_BATCH_SIZE
|
|
|
|
def get_workspace_for_storage(self, storage_name: str) -> str:
|
|
"""Get workspace for a specific storage type
|
|
|
|
Priority: Storage-specific env var > WORKSPACE env var > empty string
|
|
|
|
Args:
|
|
storage_name: Storage implementation name
|
|
|
|
Returns:
|
|
Workspace name
|
|
"""
|
|
# Check storage-specific workspace
|
|
if storage_name in WORKSPACE_ENV_MAP:
|
|
specific_workspace = os.getenv(WORKSPACE_ENV_MAP[storage_name])
|
|
if specific_workspace:
|
|
return specific_workspace
|
|
|
|
# Check generic WORKSPACE
|
|
workspace = os.getenv("WORKSPACE", "")
|
|
return workspace
|
|
|
|
def check_env_vars(self, storage_name: str) -> bool:
|
|
"""Check if all required environment variables exist
|
|
|
|
Args:
|
|
storage_name: Storage implementation name
|
|
|
|
Returns:
|
|
True if all required env vars exist, False otherwise
|
|
"""
|
|
required_vars = STORAGE_ENV_REQUIREMENTS.get(storage_name, [])
|
|
missing_vars = [var for var in required_vars if var not in os.environ]
|
|
|
|
if missing_vars:
|
|
print(f"✗ Missing required environment variables: {', '.join(missing_vars)}")
|
|
return False
|
|
|
|
print("✓ All required environment variables are set")
|
|
return True
|
|
|
|
def get_storage_class(self, storage_name: str):
|
|
"""Dynamically import and return storage class
|
|
|
|
Args:
|
|
storage_name: Storage implementation name
|
|
|
|
Returns:
|
|
Storage class
|
|
"""
|
|
if storage_name == "JsonKVStorage":
|
|
from lightrag.kg.json_kv_impl import JsonKVStorage
|
|
return JsonKVStorage
|
|
elif storage_name == "RedisKVStorage":
|
|
from lightrag.kg.redis_impl import RedisKVStorage
|
|
return RedisKVStorage
|
|
elif storage_name == "PGKVStorage":
|
|
from lightrag.kg.postgres_impl import PGKVStorage
|
|
return PGKVStorage
|
|
elif storage_name == "MongoKVStorage":
|
|
from lightrag.kg.mongo_impl import MongoKVStorage
|
|
return MongoKVStorage
|
|
else:
|
|
raise ValueError(f"Unsupported storage type: {storage_name}")
|
|
|
|
async def initialize_storage(self, storage_name: str, workspace: str):
|
|
"""Initialize storage instance
|
|
|
|
Args:
|
|
storage_name: Storage implementation name
|
|
workspace: Workspace name
|
|
|
|
Returns:
|
|
Initialized storage instance
|
|
"""
|
|
storage_class = self.get_storage_class(storage_name)
|
|
|
|
# Create global config
|
|
global_config = {
|
|
"working_dir": os.getenv("WORKING_DIR", "./rag_storage"),
|
|
"embedding_batch_num": 10,
|
|
}
|
|
|
|
# Initialize storage
|
|
storage = storage_class(
|
|
namespace=NameSpace.KV_STORE_LLM_RESPONSE_CACHE,
|
|
workspace=workspace,
|
|
global_config=global_config,
|
|
embedding_func=None,
|
|
)
|
|
|
|
# Initialize the storage
|
|
await storage.initialize()
|
|
|
|
return storage
|
|
|
|
async def get_default_caches_json(self, storage) -> Dict[str, Any]:
|
|
"""Get default caches from JsonKVStorage
|
|
|
|
Args:
|
|
storage: JsonKVStorage instance
|
|
|
|
Returns:
|
|
Dictionary of cache entries with default:extract:* or default:summary:* keys
|
|
"""
|
|
# Access _data directly - it's a dict from shared_storage
|
|
async with storage._storage_lock:
|
|
filtered = {}
|
|
for key, value in storage._data.items():
|
|
if key.startswith("default:extract:") or key.startswith("default:summary:"):
|
|
filtered[key] = value
|
|
return filtered
|
|
|
|
async def get_default_caches_redis(self, storage, batch_size: int = 1000) -> Dict[str, Any]:
|
|
"""Get default caches from RedisKVStorage with pagination
|
|
|
|
Args:
|
|
storage: RedisKVStorage instance
|
|
batch_size: Number of keys to process per batch
|
|
|
|
Returns:
|
|
Dictionary of cache entries with default:extract:* or default:summary:* keys
|
|
"""
|
|
import json
|
|
|
|
cache_data = {}
|
|
|
|
# Use _get_redis_connection() context manager
|
|
async with storage._get_redis_connection() as redis:
|
|
for pattern in ["default:extract:*", "default:summary:*"]:
|
|
# Add namespace prefix to pattern
|
|
prefixed_pattern = f"{storage.final_namespace}:{pattern}"
|
|
cursor = 0
|
|
|
|
while True:
|
|
# SCAN already implements cursor-based pagination
|
|
cursor, keys = await redis.scan(
|
|
cursor,
|
|
match=prefixed_pattern,
|
|
count=batch_size
|
|
)
|
|
|
|
if keys:
|
|
# Process this batch using pipeline with error handling
|
|
try:
|
|
pipe = redis.pipeline()
|
|
for key in keys:
|
|
pipe.get(key)
|
|
values = await pipe.execute()
|
|
|
|
for key, value in zip(keys, values):
|
|
if value:
|
|
key_str = key.decode() if isinstance(key, bytes) else key
|
|
# Remove namespace prefix to get original key
|
|
original_key = key_str.replace(f"{storage.final_namespace}:", "", 1)
|
|
cache_data[original_key] = json.loads(value)
|
|
|
|
except Exception as e:
|
|
# Pipeline execution failed, fall back to individual gets
|
|
print(f"⚠️ Pipeline execution failed for batch, using individual gets: {e}")
|
|
for key in keys:
|
|
try:
|
|
value = await redis.get(key)
|
|
if value:
|
|
key_str = key.decode() if isinstance(key, bytes) else key
|
|
original_key = key_str.replace(f"{storage.final_namespace}:", "", 1)
|
|
cache_data[original_key] = json.loads(value)
|
|
except Exception as individual_error:
|
|
print(f"⚠️ Failed to get individual key {key}: {individual_error}")
|
|
continue
|
|
|
|
if cursor == 0:
|
|
break
|
|
|
|
# Yield control periodically to avoid blocking
|
|
await asyncio.sleep(0)
|
|
|
|
return cache_data
|
|
|
|
async def get_default_caches_pg(self, storage, batch_size: int = 1000) -> Dict[str, Any]:
|
|
"""Get default caches from PGKVStorage with pagination
|
|
|
|
Args:
|
|
storage: PGKVStorage instance
|
|
batch_size: Number of records to fetch per batch
|
|
|
|
Returns:
|
|
Dictionary of cache entries with default:extract:* or default:summary:* keys
|
|
"""
|
|
from lightrag.kg.postgres_impl import namespace_to_table_name
|
|
|
|
cache_data = {}
|
|
table_name = namespace_to_table_name(storage.namespace)
|
|
offset = 0
|
|
|
|
while True:
|
|
# Use LIMIT and OFFSET for pagination
|
|
query = f"""
|
|
SELECT id as key, original_prompt, return_value, chunk_id, cache_type, queryparam,
|
|
EXTRACT(EPOCH FROM create_time)::BIGINT as create_time,
|
|
EXTRACT(EPOCH FROM update_time)::BIGINT as update_time
|
|
FROM {table_name}
|
|
WHERE workspace = $1
|
|
AND (id LIKE 'default:extract:%' OR id LIKE 'default:summary:%')
|
|
ORDER BY id
|
|
LIMIT $2 OFFSET $3
|
|
"""
|
|
|
|
results = await storage.db.query(
|
|
query,
|
|
[storage.workspace, batch_size, offset],
|
|
multirows=True
|
|
)
|
|
|
|
if not results:
|
|
break
|
|
|
|
for row in results:
|
|
# Map PostgreSQL fields to cache format
|
|
cache_entry = {
|
|
"return": row.get("return_value", ""),
|
|
"cache_type": row.get("cache_type"),
|
|
"original_prompt": row.get("original_prompt", ""),
|
|
"chunk_id": row.get("chunk_id"),
|
|
"queryparam": row.get("queryparam"),
|
|
"create_time": row.get("create_time", 0),
|
|
"update_time": row.get("update_time", 0),
|
|
}
|
|
cache_data[row["key"]] = cache_entry
|
|
|
|
# If we got fewer results than batch_size, we're done
|
|
if len(results) < batch_size:
|
|
break
|
|
|
|
offset += batch_size
|
|
|
|
# Yield control periodically
|
|
await asyncio.sleep(0)
|
|
|
|
return cache_data
|
|
|
|
async def get_default_caches_mongo(self, storage, batch_size: int = 1000) -> Dict[str, Any]:
|
|
"""Get default caches from MongoKVStorage with cursor-based pagination
|
|
|
|
Args:
|
|
storage: MongoKVStorage instance
|
|
batch_size: Number of documents to process per batch
|
|
|
|
Returns:
|
|
Dictionary of cache entries with default:extract:* or default:summary:* keys
|
|
"""
|
|
cache_data = {}
|
|
|
|
# MongoDB query with regex - use _data not collection
|
|
query = {"_id": {"$regex": "^default:(extract|summary):"}}
|
|
|
|
# Use cursor without to_list() - process in batches
|
|
cursor = storage._data.find(query).batch_size(batch_size)
|
|
|
|
async for doc in cursor:
|
|
# Process each document as it comes
|
|
doc_copy = doc.copy()
|
|
key = doc_copy.pop("_id")
|
|
|
|
# Filter ALL MongoDB/database-specific fields
|
|
# Following .clinerules: "Always filter deprecated/incompatible fields during deserialization"
|
|
for field_name in ["namespace", "workspace", "_id", "content"]:
|
|
doc_copy.pop(field_name, None)
|
|
|
|
cache_data[key] = doc_copy
|
|
|
|
# Periodically yield control (every batch_size documents)
|
|
if len(cache_data) % batch_size == 0:
|
|
await asyncio.sleep(0)
|
|
|
|
return cache_data
|
|
|
|
async def get_default_caches(self, storage, storage_name: str) -> Dict[str, Any]:
|
|
"""Get default caches from any storage type
|
|
|
|
Args:
|
|
storage: Storage instance
|
|
storage_name: Storage type name
|
|
|
|
Returns:
|
|
Dictionary of cache entries
|
|
"""
|
|
if storage_name == "JsonKVStorage":
|
|
return await self.get_default_caches_json(storage)
|
|
elif storage_name == "RedisKVStorage":
|
|
return await self.get_default_caches_redis(storage)
|
|
elif storage_name == "PGKVStorage":
|
|
return await self.get_default_caches_pg(storage)
|
|
elif storage_name == "MongoKVStorage":
|
|
return await self.get_default_caches_mongo(storage)
|
|
else:
|
|
raise ValueError(f"Unsupported storage type: {storage_name}")
|
|
|
|
async def count_cache_types(self, cache_data: Dict[str, Any]) -> Dict[str, int]:
|
|
"""Count cache entries by type
|
|
|
|
Args:
|
|
cache_data: Dictionary of cache entries
|
|
|
|
Returns:
|
|
Dictionary with counts for each cache type
|
|
"""
|
|
counts = {
|
|
"extract": 0,
|
|
"summary": 0,
|
|
}
|
|
|
|
for key in cache_data.keys():
|
|
if key.startswith("default:extract:"):
|
|
counts["extract"] += 1
|
|
elif key.startswith("default:summary:"):
|
|
counts["summary"] += 1
|
|
|
|
return counts
|
|
|
|
def print_header(self):
|
|
"""Print tool header"""
|
|
print("\n" + "=" * 50)
|
|
print("LLM Cache Migration Tool - LightRAG")
|
|
print("=" * 50)
|
|
|
|
def print_storage_types(self):
|
|
"""Print available storage types"""
|
|
print("\nSupported KV Storage Types:")
|
|
for key, value in STORAGE_TYPES.items():
|
|
print(f"[{key}] {value}")
|
|
|
|
def get_user_choice(self, prompt: str, valid_choices: list) -> str:
|
|
"""Get user choice with validation
|
|
|
|
Args:
|
|
prompt: Prompt message
|
|
valid_choices: List of valid choices
|
|
|
|
Returns:
|
|
User's choice
|
|
"""
|
|
while True:
|
|
choice = input(f"\n{prompt}: ").strip()
|
|
if choice in valid_choices:
|
|
return choice
|
|
print(f"✗ Invalid choice, please enter one of: {', '.join(valid_choices)}")
|
|
|
|
async def setup_storage(self, storage_type: str) -> tuple:
|
|
"""Setup and initialize storage
|
|
|
|
Args:
|
|
storage_type: Type label (source/target)
|
|
|
|
Returns:
|
|
Tuple of (storage_instance, storage_name, workspace, cache_data)
|
|
"""
|
|
print(f"\n=== {storage_type} Storage Setup ===")
|
|
|
|
# Get storage type choice
|
|
choice = self.get_user_choice(
|
|
f"Select {storage_type} storage type (1-4)",
|
|
list(STORAGE_TYPES.keys())
|
|
)
|
|
storage_name = STORAGE_TYPES[choice]
|
|
|
|
# Check environment variables
|
|
print("\nChecking environment variables...")
|
|
if not self.check_env_vars(storage_name):
|
|
return None, None, None, None
|
|
|
|
# Get workspace
|
|
workspace = self.get_workspace_for_storage(storage_name)
|
|
|
|
# Initialize storage
|
|
print(f"\nInitializing {storage_type} storage...")
|
|
try:
|
|
storage = await self.initialize_storage(storage_name, workspace)
|
|
print(f"- Storage Type: {storage_name}")
|
|
print(f"- Workspace: {workspace if workspace else '(default)'}")
|
|
print("- Connection Status: ✓ Success")
|
|
except Exception as e:
|
|
print(f"✗ Initialization failed: {e}")
|
|
return None, None, None, None
|
|
|
|
# Get cache data
|
|
print("\nCounting cache records...")
|
|
try:
|
|
cache_data = await self.get_default_caches(storage, storage_name)
|
|
counts = await self.count_cache_types(cache_data)
|
|
|
|
print(f"- default:extract: {counts['extract']:,} records")
|
|
print(f"- default:summary: {counts['summary']:,} records")
|
|
print(f"- Total: {len(cache_data):,} records")
|
|
except Exception as e:
|
|
print(f"✗ Counting failed: {e}")
|
|
return None, None, None, None
|
|
|
|
return storage, storage_name, workspace, cache_data
|
|
|
|
async def migrate_caches(
|
|
self,
|
|
source_data: Dict[str, Any],
|
|
target_storage,
|
|
target_storage_name: str
|
|
) -> MigrationStats:
|
|
"""Migrate caches in batches with error tracking
|
|
|
|
Args:
|
|
source_data: Source cache data
|
|
target_storage: Target storage instance
|
|
target_storage_name: Target storage type name
|
|
|
|
Returns:
|
|
MigrationStats object with migration results and errors
|
|
"""
|
|
stats = MigrationStats()
|
|
stats.total_source_records = len(source_data)
|
|
|
|
if stats.total_source_records == 0:
|
|
print("\nNo records to migrate")
|
|
return stats
|
|
|
|
# Convert to list for batching
|
|
items = list(source_data.items())
|
|
stats.total_batches = (stats.total_source_records + self.batch_size - 1) // self.batch_size
|
|
|
|
print("\n=== Starting Migration ===")
|
|
|
|
for batch_idx in range(stats.total_batches):
|
|
start_idx = batch_idx * self.batch_size
|
|
end_idx = min((batch_idx + 1) * self.batch_size, stats.total_source_records)
|
|
batch_items = items[start_idx:end_idx]
|
|
batch_data = dict(batch_items)
|
|
|
|
# Determine current cache type for display
|
|
current_key = batch_items[0][0]
|
|
cache_type = "extract" if "extract" in current_key else "summary"
|
|
|
|
try:
|
|
# Attempt to write batch
|
|
await target_storage.upsert(batch_data)
|
|
|
|
# Success - update stats
|
|
stats.successful_batches += 1
|
|
stats.successful_records += len(batch_data)
|
|
|
|
# Calculate progress
|
|
progress = (end_idx / stats.total_source_records) * 100
|
|
bar_length = 20
|
|
filled_length = int(bar_length * end_idx // stats.total_source_records)
|
|
bar = "█" * filled_length + "░" * (bar_length - filled_length)
|
|
|
|
print(f"Batch {batch_idx + 1}/{stats.total_batches}: {bar} "
|
|
f"{end_idx:,}/{stats.total_source_records:,} ({progress:.0f}%) - "
|
|
f"default:{cache_type} ✓")
|
|
|
|
except Exception as e:
|
|
# Error - record and continue
|
|
stats.add_error(batch_idx + 1, e, len(batch_data))
|
|
|
|
print(f"Batch {batch_idx + 1}/{stats.total_batches}: ✗ FAILED - "
|
|
f"{type(e).__name__}: {str(e)}")
|
|
|
|
# Final persist
|
|
print("\nPersisting data to disk...")
|
|
try:
|
|
await target_storage.index_done_callback()
|
|
print("✓ Data persisted successfully")
|
|
except Exception as e:
|
|
print(f"✗ Persist failed: {e}")
|
|
stats.add_error(0, e, 0) # batch 0 = persist error
|
|
|
|
return stats
|
|
|
|
def print_migration_report(self, stats: MigrationStats):
|
|
"""Print comprehensive migration report
|
|
|
|
Args:
|
|
stats: MigrationStats object with migration results
|
|
"""
|
|
print("\n" + "=" * 60)
|
|
print("Migration Complete - Final Report")
|
|
print("=" * 60)
|
|
|
|
# Overall statistics
|
|
print("\n📊 Statistics:")
|
|
print(f" Total source records: {stats.total_source_records:,}")
|
|
print(f" Total batches: {stats.total_batches:,}")
|
|
print(f" Successful batches: {stats.successful_batches:,}")
|
|
print(f" Failed batches: {stats.failed_batches:,}")
|
|
print(f" Successfully migrated: {stats.successful_records:,}")
|
|
print(f" Failed to migrate: {stats.failed_records:,}")
|
|
|
|
# Success rate
|
|
success_rate = (stats.successful_records / stats.total_source_records * 100) if stats.total_source_records > 0 else 0
|
|
print(f" Success rate: {success_rate:.2f}%")
|
|
|
|
# Error details
|
|
if stats.errors:
|
|
print(f"\n⚠️ Errors encountered: {len(stats.errors)}")
|
|
print("\nError Details:")
|
|
print("-" * 60)
|
|
|
|
# Group errors by type
|
|
error_types = {}
|
|
for error in stats.errors:
|
|
err_type = error['error_type']
|
|
error_types[err_type] = error_types.get(err_type, 0) + 1
|
|
|
|
print("\nError Summary:")
|
|
for err_type, count in sorted(error_types.items(), key=lambda x: -x[1]):
|
|
print(f" - {err_type}: {count} occurrence(s)")
|
|
|
|
print("\nFirst 5 errors:")
|
|
for i, error in enumerate(stats.errors[:5], 1):
|
|
print(f"\n {i}. Batch {error['batch']}")
|
|
print(f" Type: {error['error_type']}")
|
|
print(f" Message: {error['error_msg']}")
|
|
print(f" Records lost: {error['records_lost']:,}")
|
|
|
|
if len(stats.errors) > 5:
|
|
print(f"\n ... and {len(stats.errors) - 5} more errors")
|
|
|
|
print("\n" + "=" * 60)
|
|
print("⚠️ WARNING: Migration completed with errors!")
|
|
print(" Please review the error details above.")
|
|
print("=" * 60)
|
|
else:
|
|
print("\n" + "=" * 60)
|
|
print("✓ SUCCESS: All records migrated successfully!")
|
|
print("=" * 60)
|
|
|
|
async def run(self):
|
|
"""Run the migration tool"""
|
|
try:
|
|
# Print header
|
|
self.print_header()
|
|
self.print_storage_types()
|
|
|
|
# Setup source storage
|
|
(
|
|
self.source_storage,
|
|
source_storage_name,
|
|
self.source_workspace,
|
|
source_data
|
|
) = await self.setup_storage("Source")
|
|
|
|
if not self.source_storage:
|
|
print("\n✗ Source storage setup failed")
|
|
return
|
|
|
|
if not source_data:
|
|
print("\n⚠ Source storage has no cache records to migrate")
|
|
# Cleanup
|
|
await self.source_storage.finalize()
|
|
return
|
|
|
|
# Setup target storage
|
|
(
|
|
self.target_storage,
|
|
target_storage_name,
|
|
self.target_workspace,
|
|
target_data
|
|
) = await self.setup_storage("Target")
|
|
|
|
if not self.target_storage:
|
|
print("\n✗ Target storage setup failed")
|
|
# Cleanup source
|
|
await self.source_storage.finalize()
|
|
return
|
|
|
|
# Show migration summary
|
|
print("\n" + "=" * 50)
|
|
print("Migration Confirmation")
|
|
print("=" * 50)
|
|
print(f"Source: {source_storage_name} (workspace: {self.source_workspace if self.source_workspace else '(default)'}) - {len(source_data):,} records")
|
|
print(f"Target: {target_storage_name} (workspace: {self.target_workspace if self.target_workspace else '(default)'}) - {len(target_data):,} records")
|
|
print(f"Batch Size: {self.batch_size:,} records/batch")
|
|
|
|
if target_data:
|
|
print(f"\n⚠ Warning: Target storage already has {len(target_data):,} records")
|
|
print("Migration will overwrite records with the same keys")
|
|
|
|
# Confirm migration
|
|
confirm = input("\nContinue? (y/n): ").strip().lower()
|
|
if confirm != 'y':
|
|
print("\n✗ Migration cancelled")
|
|
# Cleanup
|
|
await self.source_storage.finalize()
|
|
await self.target_storage.finalize()
|
|
return
|
|
|
|
# Perform migration with error tracking
|
|
stats = await self.migrate_caches(source_data, self.target_storage, target_storage_name)
|
|
|
|
# Print comprehensive migration report
|
|
self.print_migration_report(stats)
|
|
|
|
# Cleanup
|
|
await self.source_storage.finalize()
|
|
await self.target_storage.finalize()
|
|
|
|
except KeyboardInterrupt:
|
|
print("\n\n✗ Migration interrupted by user")
|
|
except Exception as e:
|
|
print(f"\n✗ Migration failed: {e}")
|
|
import traceback
|
|
traceback.print_exc()
|
|
finally:
|
|
# Ensure cleanup
|
|
if self.source_storage:
|
|
try:
|
|
await self.source_storage.finalize()
|
|
except Exception:
|
|
pass
|
|
if self.target_storage:
|
|
try:
|
|
await self.target_storage.finalize()
|
|
except Exception:
|
|
pass
|
|
|
|
|
|
async def main():
|
|
"""Main entry point"""
|
|
tool = MigrationTool()
|
|
await tool.run()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
asyncio.run(main())
|