- **API:** The `graph/entity/edit` endpoint now returns a detailed `operation_summary` for better client-side handling of update, rename, and merge outcomes. - **Web UI:** Added an "auto-merge on rename" option. The UI now gracefully handles merge success, partial failures (update OK, merge fail), and other errors with specific user feedback.
3836 lines
163 KiB
Python
3836 lines
163 KiB
Python
from __future__ import annotations
|
||
|
||
import traceback
|
||
import asyncio
|
||
import configparser
|
||
import os
|
||
import time
|
||
import warnings
|
||
from dataclasses import asdict, dataclass, field
|
||
from datetime import datetime, timezone
|
||
from functools import partial
|
||
from typing import (
|
||
Any,
|
||
AsyncIterator,
|
||
Callable,
|
||
Iterator,
|
||
cast,
|
||
final,
|
||
Literal,
|
||
Optional,
|
||
List,
|
||
Dict,
|
||
)
|
||
from lightrag.prompt import PROMPTS
|
||
from lightrag.exceptions import PipelineCancelledException
|
||
from lightrag.constants import (
|
||
DEFAULT_MAX_GLEANING,
|
||
DEFAULT_FORCE_LLM_SUMMARY_ON_MERGE,
|
||
DEFAULT_TOP_K,
|
||
DEFAULT_CHUNK_TOP_K,
|
||
DEFAULT_MAX_ENTITY_TOKENS,
|
||
DEFAULT_MAX_RELATION_TOKENS,
|
||
DEFAULT_MAX_TOTAL_TOKENS,
|
||
DEFAULT_COSINE_THRESHOLD,
|
||
DEFAULT_RELATED_CHUNK_NUMBER,
|
||
DEFAULT_KG_CHUNK_PICK_METHOD,
|
||
DEFAULT_MIN_RERANK_SCORE,
|
||
DEFAULT_SUMMARY_MAX_TOKENS,
|
||
DEFAULT_SUMMARY_CONTEXT_SIZE,
|
||
DEFAULT_SUMMARY_LENGTH_RECOMMENDED,
|
||
DEFAULT_MAX_ASYNC,
|
||
DEFAULT_MAX_PARALLEL_INSERT,
|
||
DEFAULT_MAX_GRAPH_NODES,
|
||
DEFAULT_MAX_SOURCE_IDS_PER_ENTITY,
|
||
DEFAULT_MAX_SOURCE_IDS_PER_RELATION,
|
||
DEFAULT_ENTITY_TYPES,
|
||
DEFAULT_SUMMARY_LANGUAGE,
|
||
DEFAULT_LLM_TIMEOUT,
|
||
DEFAULT_EMBEDDING_TIMEOUT,
|
||
DEFAULT_SOURCE_IDS_LIMIT_METHOD,
|
||
DEFAULT_MAX_FILE_PATHS,
|
||
DEFAULT_FILE_PATH_MORE_PLACEHOLDER,
|
||
)
|
||
from lightrag.utils import get_env_value
|
||
|
||
from lightrag.kg import (
|
||
STORAGES,
|
||
verify_storage_implementation,
|
||
)
|
||
|
||
|
||
from lightrag.kg.shared_storage import (
|
||
get_namespace_data,
|
||
get_pipeline_status_lock,
|
||
get_graph_db_lock,
|
||
get_data_init_lock,
|
||
)
|
||
|
||
from lightrag.base import (
|
||
BaseGraphStorage,
|
||
BaseKVStorage,
|
||
BaseVectorStorage,
|
||
DocProcessingStatus,
|
||
DocStatus,
|
||
DocStatusStorage,
|
||
QueryParam,
|
||
StorageNameSpace,
|
||
StoragesStatus,
|
||
DeletionResult,
|
||
OllamaServerInfos,
|
||
QueryResult,
|
||
)
|
||
from lightrag.namespace import NameSpace
|
||
from lightrag.operate import (
|
||
chunking_by_token_size,
|
||
extract_entities,
|
||
merge_nodes_and_edges,
|
||
kg_query,
|
||
naive_query,
|
||
rebuild_knowledge_from_chunks,
|
||
)
|
||
from lightrag.constants import GRAPH_FIELD_SEP
|
||
from lightrag.utils import (
|
||
Tokenizer,
|
||
TiktokenTokenizer,
|
||
EmbeddingFunc,
|
||
always_get_an_event_loop,
|
||
compute_mdhash_id,
|
||
lazy_external_import,
|
||
priority_limit_async_func_call,
|
||
get_content_summary,
|
||
sanitize_text_for_encoding,
|
||
check_storage_env_vars,
|
||
generate_track_id,
|
||
convert_to_user_format,
|
||
logger,
|
||
subtract_source_ids,
|
||
make_relation_chunk_key,
|
||
normalize_source_ids_limit_method,
|
||
)
|
||
from lightrag.types import KnowledgeGraph
|
||
from dotenv import load_dotenv
|
||
|
||
# use the .env that is inside the current folder
|
||
# allows to use different .env file for each lightrag instance
|
||
# the OS environment variables take precedence over the .env file
|
||
load_dotenv(dotenv_path=".env", override=False)
|
||
|
||
# TODO: TO REMOVE @Yannick
|
||
config = configparser.ConfigParser()
|
||
config.read("config.ini", "utf-8")
|
||
|
||
|
||
@final
|
||
@dataclass
|
||
class LightRAG:
|
||
"""LightRAG: Simple and Fast Retrieval-Augmented Generation."""
|
||
|
||
# Directory
|
||
# ---
|
||
|
||
working_dir: str = field(default="./rag_storage")
|
||
"""Directory where cache and temporary files are stored."""
|
||
|
||
# Storage
|
||
# ---
|
||
|
||
kv_storage: str = field(default="JsonKVStorage")
|
||
"""Storage backend for key-value data."""
|
||
|
||
vector_storage: str = field(default="NanoVectorDBStorage")
|
||
"""Storage backend for vector embeddings."""
|
||
|
||
graph_storage: str = field(default="NetworkXStorage")
|
||
"""Storage backend for knowledge graphs."""
|
||
|
||
doc_status_storage: str = field(default="JsonDocStatusStorage")
|
||
"""Storage type for tracking document processing statuses."""
|
||
|
||
# Workspace
|
||
# ---
|
||
|
||
workspace: str = field(default_factory=lambda: os.getenv("WORKSPACE", ""))
|
||
"""Workspace for data isolation. Defaults to empty string if WORKSPACE environment variable is not set."""
|
||
|
||
# Logging (Deprecated, use setup_logger in utils.py instead)
|
||
# ---
|
||
log_level: int | None = field(default=None)
|
||
log_file_path: str | None = field(default=None)
|
||
|
||
# Query parameters
|
||
# ---
|
||
|
||
top_k: int = field(default=get_env_value("TOP_K", DEFAULT_TOP_K, int))
|
||
"""Number of entities/relations to retrieve for each query."""
|
||
|
||
chunk_top_k: int = field(
|
||
default=get_env_value("CHUNK_TOP_K", DEFAULT_CHUNK_TOP_K, int)
|
||
)
|
||
"""Maximum number of chunks in context."""
|
||
|
||
max_entity_tokens: int = field(
|
||
default=get_env_value("MAX_ENTITY_TOKENS", DEFAULT_MAX_ENTITY_TOKENS, int)
|
||
)
|
||
"""Maximum number of tokens for entity in context."""
|
||
|
||
max_relation_tokens: int = field(
|
||
default=get_env_value("MAX_RELATION_TOKENS", DEFAULT_MAX_RELATION_TOKENS, int)
|
||
)
|
||
"""Maximum number of tokens for relation in context."""
|
||
|
||
max_total_tokens: int = field(
|
||
default=get_env_value("MAX_TOTAL_TOKENS", DEFAULT_MAX_TOTAL_TOKENS, int)
|
||
)
|
||
"""Maximum total tokens in context (including system prompt, entities, relations and chunks)."""
|
||
|
||
cosine_threshold: int = field(
|
||
default=get_env_value("COSINE_THRESHOLD", DEFAULT_COSINE_THRESHOLD, int)
|
||
)
|
||
"""Cosine threshold of vector DB retrieval for entities, relations and chunks."""
|
||
|
||
related_chunk_number: int = field(
|
||
default=get_env_value("RELATED_CHUNK_NUMBER", DEFAULT_RELATED_CHUNK_NUMBER, int)
|
||
)
|
||
"""Number of related chunks to grab from single entity or relation."""
|
||
|
||
kg_chunk_pick_method: str = field(
|
||
default=get_env_value("KG_CHUNK_PICK_METHOD", DEFAULT_KG_CHUNK_PICK_METHOD, str)
|
||
)
|
||
"""Method for selecting text chunks: 'WEIGHT' for weight-based selection, 'VECTOR' for embedding similarity-based selection."""
|
||
|
||
# Entity extraction
|
||
# ---
|
||
|
||
entity_extract_max_gleaning: int = field(
|
||
default=get_env_value("MAX_GLEANING", DEFAULT_MAX_GLEANING, int)
|
||
)
|
||
"""Maximum number of entity extraction attempts for ambiguous content."""
|
||
|
||
force_llm_summary_on_merge: int = field(
|
||
default=get_env_value(
|
||
"FORCE_LLM_SUMMARY_ON_MERGE", DEFAULT_FORCE_LLM_SUMMARY_ON_MERGE, int
|
||
)
|
||
)
|
||
|
||
# Text chunking
|
||
# ---
|
||
|
||
chunk_token_size: int = field(default=int(os.getenv("CHUNK_SIZE", 1200)))
|
||
"""Maximum number of tokens per text chunk when splitting documents."""
|
||
|
||
chunk_overlap_token_size: int = field(
|
||
default=int(os.getenv("CHUNK_OVERLAP_SIZE", 100))
|
||
)
|
||
"""Number of overlapping tokens between consecutive text chunks to preserve context."""
|
||
|
||
tokenizer: Optional[Tokenizer] = field(default=None)
|
||
"""
|
||
A function that returns a Tokenizer instance.
|
||
If None, and a `tiktoken_model_name` is provided, a TiktokenTokenizer will be created.
|
||
If both are None, the default TiktokenTokenizer is used.
|
||
"""
|
||
|
||
tiktoken_model_name: str = field(default="gpt-4o-mini")
|
||
"""Model name used for tokenization when chunking text with tiktoken. Defaults to `gpt-4o-mini`."""
|
||
|
||
chunking_func: Callable[
|
||
[
|
||
Tokenizer,
|
||
str,
|
||
Optional[str],
|
||
bool,
|
||
int,
|
||
int,
|
||
],
|
||
List[Dict[str, Any]],
|
||
] = field(default_factory=lambda: chunking_by_token_size)
|
||
"""
|
||
Custom chunking function for splitting text into chunks before processing.
|
||
|
||
The function should take the following parameters:
|
||
|
||
- `tokenizer`: A Tokenizer instance to use for tokenization.
|
||
- `content`: The text to be split into chunks.
|
||
- `split_by_character`: The character to split the text on. If None, the text is split into chunks of `chunk_token_size` tokens.
|
||
- `split_by_character_only`: If True, the text is split only on the specified character.
|
||
- `chunk_token_size`: The maximum number of tokens per chunk.
|
||
- `chunk_overlap_token_size`: The number of overlapping tokens between consecutive chunks.
|
||
|
||
The function should return a list of dictionaries, where each dictionary contains the following keys:
|
||
- `tokens`: The number of tokens in the chunk.
|
||
- `content`: The text content of the chunk.
|
||
|
||
Defaults to `chunking_by_token_size` if not specified.
|
||
"""
|
||
|
||
# Embedding
|
||
# ---
|
||
|
||
embedding_func: EmbeddingFunc | None = field(default=None)
|
||
"""Function for computing text embeddings. Must be set before use."""
|
||
|
||
embedding_batch_num: int = field(default=int(os.getenv("EMBEDDING_BATCH_NUM", 10)))
|
||
"""Batch size for embedding computations."""
|
||
|
||
embedding_func_max_async: int = field(
|
||
default=int(os.getenv("EMBEDDING_FUNC_MAX_ASYNC", 8))
|
||
)
|
||
"""Maximum number of concurrent embedding function calls."""
|
||
|
||
embedding_cache_config: dict[str, Any] = field(
|
||
default_factory=lambda: {
|
||
"enabled": False,
|
||
"similarity_threshold": 0.95,
|
||
"use_llm_check": False,
|
||
}
|
||
)
|
||
"""Configuration for embedding cache.
|
||
- enabled: If True, enables caching to avoid redundant computations.
|
||
- similarity_threshold: Minimum similarity score to use cached embeddings.
|
||
- use_llm_check: If True, validates cached embeddings using an LLM.
|
||
"""
|
||
|
||
default_embedding_timeout: int = field(
|
||
default=int(os.getenv("EMBEDDING_TIMEOUT", DEFAULT_EMBEDDING_TIMEOUT))
|
||
)
|
||
|
||
# LLM Configuration
|
||
# ---
|
||
|
||
llm_model_func: Callable[..., object] | None = field(default=None)
|
||
"""Function for interacting with the large language model (LLM). Must be set before use."""
|
||
|
||
llm_model_name: str = field(default="gpt-4o-mini")
|
||
"""Name of the LLM model used for generating responses."""
|
||
|
||
summary_max_tokens: int = field(
|
||
default=int(os.getenv("SUMMARY_MAX_TOKENS", DEFAULT_SUMMARY_MAX_TOKENS))
|
||
)
|
||
"""Maximum tokens allowed for entity/relation description."""
|
||
|
||
summary_context_size: int = field(
|
||
default=int(os.getenv("SUMMARY_CONTEXT_SIZE", DEFAULT_SUMMARY_CONTEXT_SIZE))
|
||
)
|
||
"""Maximum number of tokens allowed per LLM response."""
|
||
|
||
summary_length_recommended: int = field(
|
||
default=int(
|
||
os.getenv("SUMMARY_LENGTH_RECOMMENDED", DEFAULT_SUMMARY_LENGTH_RECOMMENDED)
|
||
)
|
||
)
|
||
"""Recommended length of LLM summary output."""
|
||
|
||
llm_model_max_async: int = field(
|
||
default=int(os.getenv("MAX_ASYNC", DEFAULT_MAX_ASYNC))
|
||
)
|
||
"""Maximum number of concurrent LLM calls."""
|
||
|
||
llm_model_kwargs: dict[str, Any] = field(default_factory=dict)
|
||
"""Additional keyword arguments passed to the LLM model function."""
|
||
|
||
default_llm_timeout: int = field(
|
||
default=int(os.getenv("LLM_TIMEOUT", DEFAULT_LLM_TIMEOUT))
|
||
)
|
||
|
||
# Rerank Configuration
|
||
# ---
|
||
|
||
rerank_model_func: Callable[..., object] | None = field(default=None)
|
||
"""Function for reranking retrieved documents. All rerank configurations (model name, API keys, top_k, etc.) should be included in this function. Optional."""
|
||
|
||
min_rerank_score: float = field(
|
||
default=get_env_value("MIN_RERANK_SCORE", DEFAULT_MIN_RERANK_SCORE, float)
|
||
)
|
||
"""Minimum rerank score threshold for filtering chunks after reranking."""
|
||
|
||
# Storage
|
||
# ---
|
||
|
||
vector_db_storage_cls_kwargs: dict[str, Any] = field(default_factory=dict)
|
||
"""Additional parameters for vector database storage."""
|
||
|
||
enable_llm_cache: bool = field(default=True)
|
||
"""Enables caching for LLM responses to avoid redundant computations."""
|
||
|
||
enable_llm_cache_for_entity_extract: bool = field(default=True)
|
||
"""If True, enables caching for entity extraction steps to reduce LLM costs."""
|
||
|
||
# Extensions
|
||
# ---
|
||
|
||
max_parallel_insert: int = field(
|
||
default=int(os.getenv("MAX_PARALLEL_INSERT", DEFAULT_MAX_PARALLEL_INSERT))
|
||
)
|
||
"""Maximum number of parallel insert operations."""
|
||
|
||
max_graph_nodes: int = field(
|
||
default=get_env_value("MAX_GRAPH_NODES", DEFAULT_MAX_GRAPH_NODES, int)
|
||
)
|
||
"""Maximum number of graph nodes to return in knowledge graph queries."""
|
||
|
||
max_source_ids_per_entity: int = field(
|
||
default=get_env_value(
|
||
"MAX_SOURCE_IDS_PER_ENTITY", DEFAULT_MAX_SOURCE_IDS_PER_ENTITY, int
|
||
)
|
||
)
|
||
"""Maximum number of source (chunk) ids in entity Grpah + VDB."""
|
||
|
||
max_source_ids_per_relation: int = field(
|
||
default=get_env_value(
|
||
"MAX_SOURCE_IDS_PER_RELATION",
|
||
DEFAULT_MAX_SOURCE_IDS_PER_RELATION,
|
||
int,
|
||
)
|
||
)
|
||
"""Maximum number of source (chunk) ids in relation Graph + VDB."""
|
||
|
||
source_ids_limit_method: str = field(
|
||
default_factory=lambda: normalize_source_ids_limit_method(
|
||
get_env_value(
|
||
"SOURCE_IDS_LIMIT_METHOD",
|
||
DEFAULT_SOURCE_IDS_LIMIT_METHOD,
|
||
str,
|
||
)
|
||
)
|
||
)
|
||
"""Strategy for enforcing source_id limits: IGNORE_NEW or FIFO."""
|
||
|
||
max_file_paths: int = field(
|
||
default=get_env_value("MAX_FILE_PATHS", DEFAULT_MAX_FILE_PATHS, int)
|
||
)
|
||
"""Maximum number of file paths to store in entity/relation file_path field."""
|
||
|
||
file_path_more_placeholder: str = field(default=DEFAULT_FILE_PATH_MORE_PLACEHOLDER)
|
||
"""Placeholder text when file paths exceed max_file_paths limit."""
|
||
|
||
addon_params: dict[str, Any] = field(
|
||
default_factory=lambda: {
|
||
"language": get_env_value(
|
||
"SUMMARY_LANGUAGE", DEFAULT_SUMMARY_LANGUAGE, str
|
||
),
|
||
"entity_types": get_env_value("ENTITY_TYPES", DEFAULT_ENTITY_TYPES, list),
|
||
}
|
||
)
|
||
|
||
# Storages Management
|
||
# ---
|
||
|
||
# TODO: Deprecated (LightRAG will never initialize storage automatically on creation,and finalize should be call before destroying)
|
||
auto_manage_storages_states: bool = field(default=False)
|
||
"""If True, lightrag will automatically calls initialize_storages and finalize_storages at the appropriate times."""
|
||
|
||
cosine_better_than_threshold: float = field(
|
||
default=float(os.getenv("COSINE_THRESHOLD", 0.2))
|
||
)
|
||
|
||
ollama_server_infos: Optional[OllamaServerInfos] = field(default=None)
|
||
"""Configuration for Ollama server information."""
|
||
|
||
_storages_status: StoragesStatus = field(default=StoragesStatus.NOT_CREATED)
|
||
|
||
def __post_init__(self):
|
||
from lightrag.kg.shared_storage import (
|
||
initialize_share_data,
|
||
)
|
||
|
||
# Handle deprecated parameters
|
||
if self.log_level is not None:
|
||
warnings.warn(
|
||
"WARNING: log_level parameter is deprecated, use setup_logger in utils.py instead",
|
||
UserWarning,
|
||
stacklevel=2,
|
||
)
|
||
if self.log_file_path is not None:
|
||
warnings.warn(
|
||
"WARNING: log_file_path parameter is deprecated, use setup_logger in utils.py instead",
|
||
UserWarning,
|
||
stacklevel=2,
|
||
)
|
||
|
||
# Remove these attributes to prevent their use
|
||
if hasattr(self, "log_level"):
|
||
delattr(self, "log_level")
|
||
if hasattr(self, "log_file_path"):
|
||
delattr(self, "log_file_path")
|
||
|
||
initialize_share_data()
|
||
|
||
if not os.path.exists(self.working_dir):
|
||
logger.info(f"Creating working directory {self.working_dir}")
|
||
os.makedirs(self.working_dir)
|
||
|
||
# Verify storage implementation compatibility and environment variables
|
||
storage_configs = [
|
||
("KV_STORAGE", self.kv_storage),
|
||
("VECTOR_STORAGE", self.vector_storage),
|
||
("GRAPH_STORAGE", self.graph_storage),
|
||
("DOC_STATUS_STORAGE", self.doc_status_storage),
|
||
]
|
||
|
||
for storage_type, storage_name in storage_configs:
|
||
# Verify storage implementation compatibility
|
||
verify_storage_implementation(storage_type, storage_name)
|
||
# Check environment variables
|
||
check_storage_env_vars(storage_name)
|
||
|
||
# Ensure vector_db_storage_cls_kwargs has required fields
|
||
self.vector_db_storage_cls_kwargs = {
|
||
"cosine_better_than_threshold": self.cosine_better_than_threshold,
|
||
**self.vector_db_storage_cls_kwargs,
|
||
}
|
||
|
||
# Init Tokenizer
|
||
# Post-initialization hook to handle backward compatabile tokenizer initialization based on provided parameters
|
||
if self.tokenizer is None:
|
||
if self.tiktoken_model_name:
|
||
self.tokenizer = TiktokenTokenizer(self.tiktoken_model_name)
|
||
else:
|
||
self.tokenizer = TiktokenTokenizer()
|
||
|
||
# Initialize ollama_server_infos if not provided
|
||
if self.ollama_server_infos is None:
|
||
self.ollama_server_infos = OllamaServerInfos()
|
||
|
||
# Validate config
|
||
if self.force_llm_summary_on_merge < 3:
|
||
logger.warning(
|
||
f"force_llm_summary_on_merge should be at least 3, got {self.force_llm_summary_on_merge}"
|
||
)
|
||
if self.summary_context_size > self.max_total_tokens:
|
||
logger.warning(
|
||
f"summary_context_size({self.summary_context_size}) should no greater than max_total_tokens({self.max_total_tokens})"
|
||
)
|
||
if self.summary_length_recommended > self.summary_max_tokens:
|
||
logger.warning(
|
||
f"max_total_tokens({self.summary_max_tokens}) should greater than summary_length_recommended({self.summary_length_recommended})"
|
||
)
|
||
|
||
# Fix global_config now
|
||
global_config = asdict(self)
|
||
|
||
_print_config = ",\n ".join([f"{k} = {v}" for k, v in global_config.items()])
|
||
logger.debug(f"LightRAG init with param:\n {_print_config}\n")
|
||
|
||
# Init Embedding
|
||
self.embedding_func = priority_limit_async_func_call(
|
||
self.embedding_func_max_async,
|
||
llm_timeout=self.default_embedding_timeout,
|
||
queue_name="Embedding func",
|
||
)(self.embedding_func)
|
||
|
||
# Initialize all storages
|
||
self.key_string_value_json_storage_cls: type[BaseKVStorage] = (
|
||
self._get_storage_class(self.kv_storage)
|
||
) # type: ignore
|
||
self.vector_db_storage_cls: type[BaseVectorStorage] = self._get_storage_class(
|
||
self.vector_storage
|
||
) # type: ignore
|
||
self.graph_storage_cls: type[BaseGraphStorage] = self._get_storage_class(
|
||
self.graph_storage
|
||
) # type: ignore
|
||
self.key_string_value_json_storage_cls = partial( # type: ignore
|
||
self.key_string_value_json_storage_cls, global_config=global_config
|
||
)
|
||
self.vector_db_storage_cls = partial( # type: ignore
|
||
self.vector_db_storage_cls, global_config=global_config
|
||
)
|
||
self.graph_storage_cls = partial( # type: ignore
|
||
self.graph_storage_cls, global_config=global_config
|
||
)
|
||
|
||
# Initialize document status storage
|
||
self.doc_status_storage_cls = self._get_storage_class(self.doc_status_storage)
|
||
|
||
self.llm_response_cache: BaseKVStorage = self.key_string_value_json_storage_cls( # type: ignore
|
||
namespace=NameSpace.KV_STORE_LLM_RESPONSE_CACHE,
|
||
workspace=self.workspace,
|
||
global_config=global_config,
|
||
embedding_func=self.embedding_func,
|
||
)
|
||
|
||
self.text_chunks: BaseKVStorage = self.key_string_value_json_storage_cls( # type: ignore
|
||
namespace=NameSpace.KV_STORE_TEXT_CHUNKS,
|
||
workspace=self.workspace,
|
||
embedding_func=self.embedding_func,
|
||
)
|
||
|
||
self.full_docs: BaseKVStorage = self.key_string_value_json_storage_cls( # type: ignore
|
||
namespace=NameSpace.KV_STORE_FULL_DOCS,
|
||
workspace=self.workspace,
|
||
embedding_func=self.embedding_func,
|
||
)
|
||
|
||
self.full_entities: BaseKVStorage = self.key_string_value_json_storage_cls( # type: ignore
|
||
namespace=NameSpace.KV_STORE_FULL_ENTITIES,
|
||
workspace=self.workspace,
|
||
embedding_func=self.embedding_func,
|
||
)
|
||
|
||
self.full_relations: BaseKVStorage = self.key_string_value_json_storage_cls( # type: ignore
|
||
namespace=NameSpace.KV_STORE_FULL_RELATIONS,
|
||
workspace=self.workspace,
|
||
embedding_func=self.embedding_func,
|
||
)
|
||
|
||
self.entity_chunks: BaseKVStorage = self.key_string_value_json_storage_cls( # type: ignore
|
||
namespace=NameSpace.KV_STORE_ENTITY_CHUNKS,
|
||
workspace=self.workspace,
|
||
embedding_func=self.embedding_func,
|
||
)
|
||
|
||
self.relation_chunks: BaseKVStorage = self.key_string_value_json_storage_cls( # type: ignore
|
||
namespace=NameSpace.KV_STORE_RELATION_CHUNKS,
|
||
workspace=self.workspace,
|
||
embedding_func=self.embedding_func,
|
||
)
|
||
|
||
self.chunk_entity_relation_graph: BaseGraphStorage = self.graph_storage_cls( # type: ignore
|
||
namespace=NameSpace.GRAPH_STORE_CHUNK_ENTITY_RELATION,
|
||
workspace=self.workspace,
|
||
embedding_func=self.embedding_func,
|
||
)
|
||
|
||
self.entities_vdb: BaseVectorStorage = self.vector_db_storage_cls( # type: ignore
|
||
namespace=NameSpace.VECTOR_STORE_ENTITIES,
|
||
workspace=self.workspace,
|
||
embedding_func=self.embedding_func,
|
||
meta_fields={"entity_name", "source_id", "content", "file_path"},
|
||
)
|
||
self.relationships_vdb: BaseVectorStorage = self.vector_db_storage_cls( # type: ignore
|
||
namespace=NameSpace.VECTOR_STORE_RELATIONSHIPS,
|
||
workspace=self.workspace,
|
||
embedding_func=self.embedding_func,
|
||
meta_fields={"src_id", "tgt_id", "source_id", "content", "file_path"},
|
||
)
|
||
self.chunks_vdb: BaseVectorStorage = self.vector_db_storage_cls( # type: ignore
|
||
namespace=NameSpace.VECTOR_STORE_CHUNKS,
|
||
workspace=self.workspace,
|
||
embedding_func=self.embedding_func,
|
||
meta_fields={"full_doc_id", "content", "file_path"},
|
||
)
|
||
|
||
# Initialize document status storage
|
||
self.doc_status: DocStatusStorage = self.doc_status_storage_cls(
|
||
namespace=NameSpace.DOC_STATUS,
|
||
workspace=self.workspace,
|
||
global_config=global_config,
|
||
embedding_func=None,
|
||
)
|
||
|
||
# Directly use llm_response_cache, don't create a new object
|
||
hashing_kv = self.llm_response_cache
|
||
|
||
# Get timeout from LLM model kwargs for dynamic timeout calculation
|
||
self.llm_model_func = priority_limit_async_func_call(
|
||
self.llm_model_max_async,
|
||
llm_timeout=self.default_llm_timeout,
|
||
queue_name="LLM func",
|
||
)(
|
||
partial(
|
||
self.llm_model_func, # type: ignore
|
||
hashing_kv=hashing_kv,
|
||
**self.llm_model_kwargs,
|
||
)
|
||
)
|
||
|
||
self._storages_status = StoragesStatus.CREATED
|
||
|
||
async def initialize_storages(self):
|
||
"""Storage initialization must be called one by one to prevent deadlock"""
|
||
if self._storages_status == StoragesStatus.CREATED:
|
||
for storage in (
|
||
self.full_docs,
|
||
self.text_chunks,
|
||
self.full_entities,
|
||
self.full_relations,
|
||
self.entity_chunks,
|
||
self.relation_chunks,
|
||
self.entities_vdb,
|
||
self.relationships_vdb,
|
||
self.chunks_vdb,
|
||
self.chunk_entity_relation_graph,
|
||
self.llm_response_cache,
|
||
self.doc_status,
|
||
):
|
||
if storage:
|
||
# logger.debug(f"Initializing storage: {storage}")
|
||
await storage.initialize()
|
||
|
||
self._storages_status = StoragesStatus.INITIALIZED
|
||
logger.debug("All storage types initialized")
|
||
|
||
async def finalize_storages(self):
|
||
"""Asynchronously finalize the storages with improved error handling"""
|
||
if self._storages_status == StoragesStatus.INITIALIZED:
|
||
storages = [
|
||
("full_docs", self.full_docs),
|
||
("text_chunks", self.text_chunks),
|
||
("full_entities", self.full_entities),
|
||
("full_relations", self.full_relations),
|
||
("entity_chunks", self.entity_chunks),
|
||
("relation_chunks", self.relation_chunks),
|
||
("entities_vdb", self.entities_vdb),
|
||
("relationships_vdb", self.relationships_vdb),
|
||
("chunks_vdb", self.chunks_vdb),
|
||
("chunk_entity_relation_graph", self.chunk_entity_relation_graph),
|
||
("llm_response_cache", self.llm_response_cache),
|
||
("doc_status", self.doc_status),
|
||
]
|
||
|
||
# Finalize each storage individually to ensure one failure doesn't prevent others from closing
|
||
successful_finalizations = []
|
||
failed_finalizations = []
|
||
|
||
for storage_name, storage in storages:
|
||
if storage:
|
||
try:
|
||
await storage.finalize()
|
||
successful_finalizations.append(storage_name)
|
||
logger.debug(f"Successfully finalized {storage_name}")
|
||
except Exception as e:
|
||
error_msg = f"Failed to finalize {storage_name}: {e}"
|
||
logger.error(error_msg)
|
||
failed_finalizations.append(storage_name)
|
||
|
||
# Log summary of finalization results
|
||
if successful_finalizations:
|
||
logger.info(
|
||
f"Successfully finalized {len(successful_finalizations)} storages"
|
||
)
|
||
|
||
if failed_finalizations:
|
||
logger.error(
|
||
f"Failed to finalize {len(failed_finalizations)} storages: {', '.join(failed_finalizations)}"
|
||
)
|
||
else:
|
||
logger.debug("All storages finalized successfully")
|
||
|
||
self._storages_status = StoragesStatus.FINALIZED
|
||
|
||
async def check_and_migrate_data(self):
|
||
"""Check if data migration is needed and perform migration if necessary"""
|
||
async with get_data_init_lock():
|
||
try:
|
||
# Check if migration is needed:
|
||
# 1. chunk_entity_relation_graph has entities and relations (count > 0)
|
||
# 2. full_entities and full_relations are empty
|
||
|
||
# Get all entity labels from graph
|
||
all_entity_labels = (
|
||
await self.chunk_entity_relation_graph.get_all_labels()
|
||
)
|
||
|
||
if not all_entity_labels:
|
||
logger.debug("No entities found in graph, skipping migration check")
|
||
return
|
||
|
||
try:
|
||
# Initialize chunk tracking storage after migration
|
||
await self._migrate_chunk_tracking_storage()
|
||
except Exception as e:
|
||
logger.error(f"Error during chunk_tracking migration: {e}")
|
||
raise e
|
||
|
||
# Check if full_entities and full_relations are empty
|
||
# Get all processed documents to check their entity/relation data
|
||
try:
|
||
processed_docs = await self.doc_status.get_docs_by_status(
|
||
DocStatus.PROCESSED
|
||
)
|
||
|
||
if not processed_docs:
|
||
logger.debug("No processed documents found, skipping migration")
|
||
return
|
||
|
||
# Check first few documents to see if they have full_entities/full_relations data
|
||
migration_needed = True
|
||
checked_count = 0
|
||
max_check = min(5, len(processed_docs)) # Check up to 5 documents
|
||
|
||
for doc_id in list(processed_docs.keys())[:max_check]:
|
||
checked_count += 1
|
||
entity_data = await self.full_entities.get_by_id(doc_id)
|
||
relation_data = await self.full_relations.get_by_id(doc_id)
|
||
|
||
if entity_data or relation_data:
|
||
migration_needed = False
|
||
break
|
||
|
||
if not migration_needed:
|
||
logger.debug(
|
||
"Full entities/relations data already exists, no migration needed"
|
||
)
|
||
return
|
||
|
||
logger.info(
|
||
f"Data migration needed: found {len(all_entity_labels)} entities in graph but no full_entities/full_relations data"
|
||
)
|
||
|
||
# Perform migration
|
||
await self._migrate_entity_relation_data(processed_docs)
|
||
|
||
except Exception as e:
|
||
logger.error(f"Error during migration check: {e}")
|
||
raise e
|
||
|
||
except Exception as e:
|
||
logger.error(f"Error in data migration check: {e}")
|
||
raise e
|
||
|
||
async def _migrate_entity_relation_data(self, processed_docs: dict):
|
||
"""Migrate existing entity and relation data to full_entities and full_relations storage"""
|
||
logger.info(f"Starting data migration for {len(processed_docs)} documents")
|
||
|
||
# Create mapping from chunk_id to doc_id
|
||
chunk_to_doc = {}
|
||
for doc_id, doc_status in processed_docs.items():
|
||
chunk_ids = (
|
||
doc_status.chunks_list
|
||
if hasattr(doc_status, "chunks_list") and doc_status.chunks_list
|
||
else []
|
||
)
|
||
for chunk_id in chunk_ids:
|
||
chunk_to_doc[chunk_id] = doc_id
|
||
|
||
# Initialize document entity and relation mappings
|
||
doc_entities = {} # doc_id -> set of entity_names
|
||
doc_relations = {} # doc_id -> set of relation_pairs (as tuples)
|
||
|
||
# Get all nodes and edges from graph
|
||
all_nodes = await self.chunk_entity_relation_graph.get_all_nodes()
|
||
all_edges = await self.chunk_entity_relation_graph.get_all_edges()
|
||
|
||
# Process all nodes once
|
||
for node in all_nodes:
|
||
if "source_id" in node:
|
||
entity_id = node.get("entity_id") or node.get("id")
|
||
if not entity_id:
|
||
continue
|
||
|
||
# Get chunk IDs from source_id
|
||
source_ids = node["source_id"].split(GRAPH_FIELD_SEP)
|
||
|
||
# Find which documents this entity belongs to
|
||
for chunk_id in source_ids:
|
||
doc_id = chunk_to_doc.get(chunk_id)
|
||
if doc_id:
|
||
if doc_id not in doc_entities:
|
||
doc_entities[doc_id] = set()
|
||
doc_entities[doc_id].add(entity_id)
|
||
|
||
# Process all edges once
|
||
for edge in all_edges:
|
||
if "source_id" in edge:
|
||
src = edge.get("source")
|
||
tgt = edge.get("target")
|
||
if not src or not tgt:
|
||
continue
|
||
|
||
# Get chunk IDs from source_id
|
||
source_ids = edge["source_id"].split(GRAPH_FIELD_SEP)
|
||
|
||
# Find which documents this relation belongs to
|
||
for chunk_id in source_ids:
|
||
doc_id = chunk_to_doc.get(chunk_id)
|
||
if doc_id:
|
||
if doc_id not in doc_relations:
|
||
doc_relations[doc_id] = set()
|
||
# Use tuple for set operations, convert to list later
|
||
doc_relations[doc_id].add(tuple(sorted((src, tgt))))
|
||
|
||
# Store the results in full_entities and full_relations
|
||
migration_count = 0
|
||
|
||
# Store entities
|
||
if doc_entities:
|
||
entities_data = {}
|
||
for doc_id, entity_set in doc_entities.items():
|
||
entities_data[doc_id] = {
|
||
"entity_names": list(entity_set),
|
||
"count": len(entity_set),
|
||
}
|
||
await self.full_entities.upsert(entities_data)
|
||
|
||
# Store relations
|
||
if doc_relations:
|
||
relations_data = {}
|
||
for doc_id, relation_set in doc_relations.items():
|
||
# Convert tuples back to lists
|
||
relations_data[doc_id] = {
|
||
"relation_pairs": [list(pair) for pair in relation_set],
|
||
"count": len(relation_set),
|
||
}
|
||
await self.full_relations.upsert(relations_data)
|
||
|
||
migration_count = len(
|
||
set(list(doc_entities.keys()) + list(doc_relations.keys()))
|
||
)
|
||
|
||
# Persist the migrated data
|
||
await self.full_entities.index_done_callback()
|
||
await self.full_relations.index_done_callback()
|
||
|
||
logger.info(
|
||
f"Data migration completed: migrated {migration_count} documents with entities/relations"
|
||
)
|
||
|
||
async def _migrate_chunk_tracking_storage(self) -> None:
|
||
"""Ensure entity/relation chunk tracking KV stores exist and are seeded."""
|
||
|
||
if not self.entity_chunks or not self.relation_chunks:
|
||
return
|
||
|
||
need_entity_migration = False
|
||
need_relation_migration = False
|
||
|
||
try:
|
||
need_entity_migration = await self.entity_chunks.is_empty()
|
||
except Exception as exc: # pragma: no cover - defensive logging
|
||
logger.error(f"Failed to check entity chunks storage: {exc}")
|
||
raise exc
|
||
|
||
try:
|
||
need_relation_migration = await self.relation_chunks.is_empty()
|
||
except Exception as exc: # pragma: no cover - defensive logging
|
||
logger.error(f"Failed to check relation chunks storage: {exc}")
|
||
raise exc
|
||
|
||
if not need_entity_migration and not need_relation_migration:
|
||
return
|
||
|
||
BATCH_SIZE = 500 # Process 500 records per batch
|
||
|
||
if need_entity_migration:
|
||
try:
|
||
nodes = await self.chunk_entity_relation_graph.get_all_nodes()
|
||
except Exception as exc:
|
||
logger.error(f"Failed to fetch nodes for chunk migration: {exc}")
|
||
nodes = []
|
||
|
||
logger.info(f"Starting chunk_tracking data migration: {len(nodes)} nodes")
|
||
|
||
# Process nodes in batches
|
||
total_nodes = len(nodes)
|
||
total_batches = (total_nodes + BATCH_SIZE - 1) // BATCH_SIZE
|
||
total_migrated = 0
|
||
|
||
for batch_idx in range(total_batches):
|
||
start_idx = batch_idx * BATCH_SIZE
|
||
end_idx = min((batch_idx + 1) * BATCH_SIZE, total_nodes)
|
||
batch_nodes = nodes[start_idx:end_idx]
|
||
|
||
upsert_payload: dict[str, dict[str, object]] = {}
|
||
for node in batch_nodes:
|
||
entity_id = node.get("entity_id") or node.get("id")
|
||
if not entity_id:
|
||
continue
|
||
|
||
raw_source = node.get("source_id") or ""
|
||
chunk_ids = [
|
||
chunk_id
|
||
for chunk_id in raw_source.split(GRAPH_FIELD_SEP)
|
||
if chunk_id
|
||
]
|
||
if not chunk_ids:
|
||
continue
|
||
|
||
upsert_payload[entity_id] = {
|
||
"chunk_ids": chunk_ids,
|
||
"count": len(chunk_ids),
|
||
}
|
||
|
||
if upsert_payload:
|
||
await self.entity_chunks.upsert(upsert_payload)
|
||
total_migrated += len(upsert_payload)
|
||
logger.info(
|
||
f"Processed entity batch {batch_idx + 1}/{total_batches}: {len(upsert_payload)} records (total: {total_migrated}/{total_nodes})"
|
||
)
|
||
|
||
if total_migrated > 0:
|
||
# Persist entity_chunks data to disk
|
||
await self.entity_chunks.index_done_callback()
|
||
logger.info(
|
||
f"Entity chunk_tracking migration completed: {total_migrated} records persisted"
|
||
)
|
||
|
||
if need_relation_migration:
|
||
try:
|
||
edges = await self.chunk_entity_relation_graph.get_all_edges()
|
||
except Exception as exc:
|
||
logger.error(f"Failed to fetch edges for chunk migration: {exc}")
|
||
edges = []
|
||
|
||
logger.info(f"Starting chunk_tracking data migration: {len(edges)} edges")
|
||
|
||
# Process edges in batches
|
||
total_edges = len(edges)
|
||
total_batches = (total_edges + BATCH_SIZE - 1) // BATCH_SIZE
|
||
total_migrated = 0
|
||
|
||
for batch_idx in range(total_batches):
|
||
start_idx = batch_idx * BATCH_SIZE
|
||
end_idx = min((batch_idx + 1) * BATCH_SIZE, total_edges)
|
||
batch_edges = edges[start_idx:end_idx]
|
||
|
||
upsert_payload: dict[str, dict[str, object]] = {}
|
||
for edge in batch_edges:
|
||
src = edge.get("source") or edge.get("src_id") or edge.get("src")
|
||
tgt = edge.get("target") or edge.get("tgt_id") or edge.get("tgt")
|
||
if not src or not tgt:
|
||
continue
|
||
|
||
raw_source = edge.get("source_id") or ""
|
||
chunk_ids = [
|
||
chunk_id
|
||
for chunk_id in raw_source.split(GRAPH_FIELD_SEP)
|
||
if chunk_id
|
||
]
|
||
if not chunk_ids:
|
||
continue
|
||
|
||
storage_key = make_relation_chunk_key(src, tgt)
|
||
upsert_payload[storage_key] = {
|
||
"chunk_ids": chunk_ids,
|
||
"count": len(chunk_ids),
|
||
}
|
||
|
||
if upsert_payload:
|
||
await self.relation_chunks.upsert(upsert_payload)
|
||
total_migrated += len(upsert_payload)
|
||
logger.info(
|
||
f"Processed relation batch {batch_idx + 1}/{total_batches}: {len(upsert_payload)} records (total: {total_migrated}/{total_edges})"
|
||
)
|
||
|
||
if total_migrated > 0:
|
||
# Persist relation_chunks data to disk
|
||
await self.relation_chunks.index_done_callback()
|
||
logger.info(
|
||
f"Relation chunk_tracking migration completed: {total_migrated} records persisted"
|
||
)
|
||
|
||
async def get_graph_labels(self):
|
||
text = await self.chunk_entity_relation_graph.get_all_labels()
|
||
return text
|
||
|
||
async def get_knowledge_graph(
|
||
self,
|
||
node_label: str,
|
||
max_depth: int = 3,
|
||
max_nodes: int = None,
|
||
) -> KnowledgeGraph:
|
||
"""Get knowledge graph for a given label
|
||
|
||
Args:
|
||
node_label (str): Label to get knowledge graph for
|
||
max_depth (int): Maximum depth of graph
|
||
max_nodes (int, optional): Maximum number of nodes to return. Defaults to self.max_graph_nodes.
|
||
|
||
Returns:
|
||
KnowledgeGraph: Knowledge graph containing nodes and edges
|
||
"""
|
||
# Use self.max_graph_nodes as default if max_nodes is None
|
||
if max_nodes is None:
|
||
max_nodes = self.max_graph_nodes
|
||
else:
|
||
# Limit max_nodes to not exceed self.max_graph_nodes
|
||
max_nodes = min(max_nodes, self.max_graph_nodes)
|
||
|
||
return await self.chunk_entity_relation_graph.get_knowledge_graph(
|
||
node_label, max_depth, max_nodes
|
||
)
|
||
|
||
def _get_storage_class(self, storage_name: str) -> Callable[..., Any]:
|
||
# Direct imports for default storage implementations
|
||
if storage_name == "JsonKVStorage":
|
||
from lightrag.kg.json_kv_impl import JsonKVStorage
|
||
|
||
return JsonKVStorage
|
||
elif storage_name == "NanoVectorDBStorage":
|
||
from lightrag.kg.nano_vector_db_impl import NanoVectorDBStorage
|
||
|
||
return NanoVectorDBStorage
|
||
elif storage_name == "NetworkXStorage":
|
||
from lightrag.kg.networkx_impl import NetworkXStorage
|
||
|
||
return NetworkXStorage
|
||
elif storage_name == "JsonDocStatusStorage":
|
||
from lightrag.kg.json_doc_status_impl import JsonDocStatusStorage
|
||
|
||
return JsonDocStatusStorage
|
||
else:
|
||
# Fallback to dynamic import for other storage implementations
|
||
import_path = STORAGES[storage_name]
|
||
storage_class = lazy_external_import(import_path, storage_name)
|
||
return storage_class
|
||
|
||
def insert(
|
||
self,
|
||
input: str | list[str],
|
||
split_by_character: str | None = None,
|
||
split_by_character_only: bool = False,
|
||
ids: str | list[str] | None = None,
|
||
file_paths: str | list[str] | None = None,
|
||
track_id: str | None = None,
|
||
) -> str:
|
||
"""Sync Insert documents with checkpoint support
|
||
|
||
Args:
|
||
input: Single document string or list of document strings
|
||
split_by_character: if split_by_character is not None, split the string by character, if chunk longer than
|
||
chunk_token_size, it will be split again by token size.
|
||
split_by_character_only: if split_by_character_only is True, split the string by character only, when
|
||
split_by_character is None, this parameter is ignored.
|
||
ids: single string of the document ID or list of unique document IDs, if not provided, MD5 hash IDs will be generated
|
||
file_paths: single string of the file path or list of file paths, used for citation
|
||
track_id: tracking ID for monitoring processing status, if not provided, will be generated
|
||
|
||
Returns:
|
||
str: tracking ID for monitoring processing status
|
||
"""
|
||
loop = always_get_an_event_loop()
|
||
return loop.run_until_complete(
|
||
self.ainsert(
|
||
input,
|
||
split_by_character,
|
||
split_by_character_only,
|
||
ids,
|
||
file_paths,
|
||
track_id,
|
||
)
|
||
)
|
||
|
||
async def ainsert(
|
||
self,
|
||
input: str | list[str],
|
||
split_by_character: str | None = None,
|
||
split_by_character_only: bool = False,
|
||
ids: str | list[str] | None = None,
|
||
file_paths: str | list[str] | None = None,
|
||
track_id: str | None = None,
|
||
) -> str:
|
||
"""Async Insert documents with checkpoint support
|
||
|
||
Args:
|
||
input: Single document string or list of document strings
|
||
split_by_character: if split_by_character is not None, split the string by character, if chunk longer than
|
||
chunk_token_size, it will be split again by token size.
|
||
split_by_character_only: if split_by_character_only is True, split the string by character only, when
|
||
split_by_character is None, this parameter is ignored.
|
||
ids: list of unique document IDs, if not provided, MD5 hash IDs will be generated
|
||
file_paths: list of file paths corresponding to each document, used for citation
|
||
track_id: tracking ID for monitoring processing status, if not provided, will be generated
|
||
|
||
Returns:
|
||
str: tracking ID for monitoring processing status
|
||
"""
|
||
# Generate track_id if not provided
|
||
if track_id is None:
|
||
track_id = generate_track_id("insert")
|
||
|
||
await self.apipeline_enqueue_documents(input, ids, file_paths, track_id)
|
||
await self.apipeline_process_enqueue_documents(
|
||
split_by_character, split_by_character_only
|
||
)
|
||
|
||
return track_id
|
||
|
||
# TODO: deprecated, use insert instead
|
||
def insert_custom_chunks(
|
||
self,
|
||
full_text: str,
|
||
text_chunks: list[str],
|
||
doc_id: str | list[str] | None = None,
|
||
) -> None:
|
||
loop = always_get_an_event_loop()
|
||
loop.run_until_complete(
|
||
self.ainsert_custom_chunks(full_text, text_chunks, doc_id)
|
||
)
|
||
|
||
# TODO: deprecated, use ainsert instead
|
||
async def ainsert_custom_chunks(
|
||
self, full_text: str, text_chunks: list[str], doc_id: str | None = None
|
||
) -> None:
|
||
update_storage = False
|
||
try:
|
||
# Clean input texts
|
||
full_text = sanitize_text_for_encoding(full_text)
|
||
text_chunks = [sanitize_text_for_encoding(chunk) for chunk in text_chunks]
|
||
file_path = ""
|
||
|
||
# Process cleaned texts
|
||
if doc_id is None:
|
||
doc_key = compute_mdhash_id(full_text, prefix="doc-")
|
||
else:
|
||
doc_key = doc_id
|
||
new_docs = {doc_key: {"content": full_text, "file_path": file_path}}
|
||
|
||
_add_doc_keys = await self.full_docs.filter_keys({doc_key})
|
||
new_docs = {k: v for k, v in new_docs.items() if k in _add_doc_keys}
|
||
if not len(new_docs):
|
||
logger.warning("This document is already in the storage.")
|
||
return
|
||
|
||
update_storage = True
|
||
logger.info(f"Inserting {len(new_docs)} docs")
|
||
|
||
inserting_chunks: dict[str, Any] = {}
|
||
for index, chunk_text in enumerate(text_chunks):
|
||
chunk_key = compute_mdhash_id(chunk_text, prefix="chunk-")
|
||
tokens = len(self.tokenizer.encode(chunk_text))
|
||
inserting_chunks[chunk_key] = {
|
||
"content": chunk_text,
|
||
"full_doc_id": doc_key,
|
||
"tokens": tokens,
|
||
"chunk_order_index": index,
|
||
"file_path": file_path,
|
||
}
|
||
|
||
doc_ids = set(inserting_chunks.keys())
|
||
add_chunk_keys = await self.text_chunks.filter_keys(doc_ids)
|
||
inserting_chunks = {
|
||
k: v for k, v in inserting_chunks.items() if k in add_chunk_keys
|
||
}
|
||
if not len(inserting_chunks):
|
||
logger.warning("All chunks are already in the storage.")
|
||
return
|
||
|
||
tasks = [
|
||
self.chunks_vdb.upsert(inserting_chunks),
|
||
self._process_extract_entities(inserting_chunks),
|
||
self.full_docs.upsert(new_docs),
|
||
self.text_chunks.upsert(inserting_chunks),
|
||
]
|
||
await asyncio.gather(*tasks)
|
||
|
||
finally:
|
||
if update_storage:
|
||
await self._insert_done()
|
||
|
||
async def apipeline_enqueue_documents(
|
||
self,
|
||
input: str | list[str],
|
||
ids: list[str] | None = None,
|
||
file_paths: str | list[str] | None = None,
|
||
track_id: str | None = None,
|
||
) -> str:
|
||
"""
|
||
Pipeline for Processing Documents
|
||
|
||
1. Validate ids if provided or generate MD5 hash IDs and remove duplicate contents
|
||
2. Generate document initial status
|
||
3. Filter out already processed documents
|
||
4. Enqueue document in status
|
||
|
||
Args:
|
||
input: Single document string or list of document strings
|
||
ids: list of unique document IDs, if not provided, MD5 hash IDs will be generated
|
||
file_paths: list of file paths corresponding to each document, used for citation
|
||
track_id: tracking ID for monitoring processing status, if not provided, will be generated with "enqueue" prefix
|
||
|
||
Returns:
|
||
str: tracking ID for monitoring processing status
|
||
"""
|
||
# Generate track_id if not provided
|
||
if track_id is None or track_id.strip() == "":
|
||
track_id = generate_track_id("enqueue")
|
||
if isinstance(input, str):
|
||
input = [input]
|
||
if isinstance(ids, str):
|
||
ids = [ids]
|
||
if isinstance(file_paths, str):
|
||
file_paths = [file_paths]
|
||
|
||
# If file_paths is provided, ensure it matches the number of documents
|
||
if file_paths is not None:
|
||
if isinstance(file_paths, str):
|
||
file_paths = [file_paths]
|
||
if len(file_paths) != len(input):
|
||
raise ValueError(
|
||
"Number of file paths must match the number of documents"
|
||
)
|
||
else:
|
||
# If no file paths provided, use placeholder
|
||
file_paths = ["unknown_source"] * len(input)
|
||
|
||
# 1. Validate ids if provided or generate MD5 hash IDs and remove duplicate contents
|
||
if ids is not None:
|
||
# Check if the number of IDs matches the number of documents
|
||
if len(ids) != len(input):
|
||
raise ValueError("Number of IDs must match the number of documents")
|
||
|
||
# Check if IDs are unique
|
||
if len(ids) != len(set(ids)):
|
||
raise ValueError("IDs must be unique")
|
||
|
||
# Generate contents dict and remove duplicates in one pass
|
||
unique_contents = {}
|
||
for id_, doc, path in zip(ids, input, file_paths):
|
||
cleaned_content = sanitize_text_for_encoding(doc)
|
||
if cleaned_content not in unique_contents:
|
||
unique_contents[cleaned_content] = (id_, path)
|
||
|
||
# Reconstruct contents with unique content
|
||
contents = {
|
||
id_: {"content": content, "file_path": file_path}
|
||
for content, (id_, file_path) in unique_contents.items()
|
||
}
|
||
else:
|
||
# Clean input text and remove duplicates in one pass
|
||
unique_content_with_paths = {}
|
||
for doc, path in zip(input, file_paths):
|
||
cleaned_content = sanitize_text_for_encoding(doc)
|
||
if cleaned_content not in unique_content_with_paths:
|
||
unique_content_with_paths[cleaned_content] = path
|
||
|
||
# Generate contents dict of MD5 hash IDs and documents with paths
|
||
contents = {
|
||
compute_mdhash_id(content, prefix="doc-"): {
|
||
"content": content,
|
||
"file_path": path,
|
||
}
|
||
for content, path in unique_content_with_paths.items()
|
||
}
|
||
|
||
# 2. Generate document initial status (without content)
|
||
new_docs: dict[str, Any] = {
|
||
id_: {
|
||
"status": DocStatus.PENDING,
|
||
"content_summary": get_content_summary(content_data["content"]),
|
||
"content_length": len(content_data["content"]),
|
||
"created_at": datetime.now(timezone.utc).isoformat(),
|
||
"updated_at": datetime.now(timezone.utc).isoformat(),
|
||
"file_path": content_data[
|
||
"file_path"
|
||
], # Store file path in document status
|
||
"track_id": track_id, # Store track_id in document status
|
||
}
|
||
for id_, content_data in contents.items()
|
||
}
|
||
|
||
# 3. Filter out already processed documents
|
||
# Get docs ids
|
||
all_new_doc_ids = set(new_docs.keys())
|
||
# Exclude IDs of documents that are already enqueued
|
||
unique_new_doc_ids = await self.doc_status.filter_keys(all_new_doc_ids)
|
||
|
||
# Log ignored document IDs (documents that were filtered out because they already exist)
|
||
ignored_ids = list(all_new_doc_ids - unique_new_doc_ids)
|
||
if ignored_ids:
|
||
for doc_id in ignored_ids:
|
||
file_path = new_docs.get(doc_id, {}).get("file_path", "unknown_source")
|
||
logger.warning(
|
||
f"Ignoring document ID (already exists): {doc_id} ({file_path})"
|
||
)
|
||
if len(ignored_ids) > 3:
|
||
logger.warning(
|
||
f"Total Ignoring {len(ignored_ids)} document IDs that already exist in storage"
|
||
)
|
||
|
||
# Filter new_docs to only include documents with unique IDs
|
||
new_docs = {
|
||
doc_id: new_docs[doc_id]
|
||
for doc_id in unique_new_doc_ids
|
||
if doc_id in new_docs
|
||
}
|
||
|
||
if not new_docs:
|
||
logger.warning("No new unique documents were found.")
|
||
return
|
||
|
||
# 4. Store document content in full_docs and status in doc_status
|
||
# Store full document content separately
|
||
full_docs_data = {
|
||
doc_id: {
|
||
"content": contents[doc_id]["content"],
|
||
"file_path": contents[doc_id]["file_path"],
|
||
}
|
||
for doc_id in new_docs.keys()
|
||
}
|
||
await self.full_docs.upsert(full_docs_data)
|
||
# Persist data to disk immediately
|
||
await self.full_docs.index_done_callback()
|
||
|
||
# Store document status (without content)
|
||
await self.doc_status.upsert(new_docs)
|
||
logger.debug(f"Stored {len(new_docs)} new unique documents")
|
||
|
||
return track_id
|
||
|
||
async def apipeline_enqueue_error_documents(
|
||
self,
|
||
error_files: list[dict[str, Any]],
|
||
track_id: str | None = None,
|
||
) -> None:
|
||
"""
|
||
Record file extraction errors in doc_status storage.
|
||
|
||
This function creates error document entries in the doc_status storage for files
|
||
that failed during the extraction process. Each error entry contains information
|
||
about the failure to help with debugging and monitoring.
|
||
|
||
Args:
|
||
error_files: List of dictionaries containing error information for each failed file.
|
||
Each dictionary should contain:
|
||
- file_path: Original file name/path
|
||
- error_description: Brief error description (for content_summary)
|
||
- original_error: Full error message (for error_msg)
|
||
- file_size: File size in bytes (for content_length, 0 if unknown)
|
||
track_id: Optional tracking ID for grouping related operations
|
||
|
||
Returns:
|
||
None
|
||
"""
|
||
if not error_files:
|
||
logger.debug("No error files to record")
|
||
return
|
||
|
||
# Generate track_id if not provided
|
||
if track_id is None or track_id.strip() == "":
|
||
track_id = generate_track_id("error")
|
||
|
||
error_docs: dict[str, Any] = {}
|
||
current_time = datetime.now(timezone.utc).isoformat()
|
||
|
||
for error_file in error_files:
|
||
file_path = error_file.get("file_path", "unknown_file")
|
||
error_description = error_file.get(
|
||
"error_description", "File extraction failed"
|
||
)
|
||
original_error = error_file.get("original_error", "Unknown error")
|
||
file_size = error_file.get("file_size", 0)
|
||
|
||
# Generate unique doc_id with "error-" prefix
|
||
doc_id_content = f"{file_path}-{error_description}"
|
||
doc_id = compute_mdhash_id(doc_id_content, prefix="error-")
|
||
|
||
error_docs[doc_id] = {
|
||
"status": DocStatus.FAILED,
|
||
"content_summary": error_description,
|
||
"content_length": file_size,
|
||
"error_msg": original_error,
|
||
"chunks_count": 0, # No chunks for failed files
|
||
"created_at": current_time,
|
||
"updated_at": current_time,
|
||
"file_path": file_path,
|
||
"track_id": track_id,
|
||
"metadata": {
|
||
"error_type": "file_extraction_error",
|
||
},
|
||
}
|
||
|
||
# Store error documents in doc_status
|
||
if error_docs:
|
||
await self.doc_status.upsert(error_docs)
|
||
# Log each error for debugging
|
||
for doc_id, error_doc in error_docs.items():
|
||
logger.error(
|
||
f"File processing error: - ID: {doc_id} {error_doc['file_path']}"
|
||
)
|
||
|
||
async def _validate_and_fix_document_consistency(
|
||
self,
|
||
to_process_docs: dict[str, DocProcessingStatus],
|
||
pipeline_status: dict,
|
||
pipeline_status_lock: asyncio.Lock,
|
||
) -> dict[str, DocProcessingStatus]:
|
||
"""Validate and fix document data consistency by deleting inconsistent entries, but preserve failed documents"""
|
||
inconsistent_docs = []
|
||
failed_docs_to_preserve = []
|
||
successful_deletions = 0
|
||
|
||
# Check each document's data consistency
|
||
for doc_id, status_doc in to_process_docs.items():
|
||
# Check if corresponding content exists in full_docs
|
||
content_data = await self.full_docs.get_by_id(doc_id)
|
||
if not content_data:
|
||
# Check if this is a failed document that should be preserved
|
||
if (
|
||
hasattr(status_doc, "status")
|
||
and status_doc.status == DocStatus.FAILED
|
||
):
|
||
failed_docs_to_preserve.append(doc_id)
|
||
else:
|
||
inconsistent_docs.append(doc_id)
|
||
|
||
# Log information about failed documents that will be preserved
|
||
if failed_docs_to_preserve:
|
||
async with pipeline_status_lock:
|
||
preserve_message = f"Preserving {len(failed_docs_to_preserve)} failed document entries for manual review"
|
||
logger.info(preserve_message)
|
||
pipeline_status["latest_message"] = preserve_message
|
||
pipeline_status["history_messages"].append(preserve_message)
|
||
|
||
# Remove failed documents from processing list but keep them in doc_status
|
||
for doc_id in failed_docs_to_preserve:
|
||
to_process_docs.pop(doc_id, None)
|
||
|
||
# Delete inconsistent document entries(excluding failed documents)
|
||
if inconsistent_docs:
|
||
async with pipeline_status_lock:
|
||
summary_message = (
|
||
f"Inconsistent document entries found: {len(inconsistent_docs)}"
|
||
)
|
||
logger.info(summary_message)
|
||
pipeline_status["latest_message"] = summary_message
|
||
pipeline_status["history_messages"].append(summary_message)
|
||
|
||
successful_deletions = 0
|
||
for doc_id in inconsistent_docs:
|
||
try:
|
||
status_doc = to_process_docs[doc_id]
|
||
file_path = getattr(status_doc, "file_path", "unknown_source")
|
||
|
||
# Delete doc_status entry
|
||
await self.doc_status.delete([doc_id])
|
||
successful_deletions += 1
|
||
|
||
# Log successful deletion
|
||
async with pipeline_status_lock:
|
||
log_message = (
|
||
f"Deleted inconsistent entry: {doc_id} ({file_path})"
|
||
)
|
||
logger.info(log_message)
|
||
pipeline_status["latest_message"] = log_message
|
||
pipeline_status["history_messages"].append(log_message)
|
||
|
||
# Remove from processing list
|
||
to_process_docs.pop(doc_id, None)
|
||
|
||
except Exception as e:
|
||
# Log deletion failure
|
||
async with pipeline_status_lock:
|
||
error_message = f"Failed to delete entry: {doc_id} - {str(e)}"
|
||
logger.error(error_message)
|
||
pipeline_status["latest_message"] = error_message
|
||
pipeline_status["history_messages"].append(error_message)
|
||
|
||
# Final summary log
|
||
# async with pipeline_status_lock:
|
||
# final_message = f"Successfully deleted {successful_deletions} inconsistent entries, preserved {len(failed_docs_to_preserve)} failed documents"
|
||
# logger.info(final_message)
|
||
# pipeline_status["latest_message"] = final_message
|
||
# pipeline_status["history_messages"].append(final_message)
|
||
|
||
# Reset PROCESSING and FAILED documents that pass consistency checks to PENDING status
|
||
docs_to_reset = {}
|
||
reset_count = 0
|
||
|
||
for doc_id, status_doc in to_process_docs.items():
|
||
# Check if document has corresponding content in full_docs (consistency check)
|
||
content_data = await self.full_docs.get_by_id(doc_id)
|
||
if content_data: # Document passes consistency check
|
||
# Check if document is in PROCESSING or FAILED status
|
||
if hasattr(status_doc, "status") and status_doc.status in [
|
||
DocStatus.PROCESSING,
|
||
DocStatus.FAILED,
|
||
]:
|
||
# Prepare document for status reset to PENDING
|
||
docs_to_reset[doc_id] = {
|
||
"status": DocStatus.PENDING,
|
||
"content_summary": status_doc.content_summary,
|
||
"content_length": status_doc.content_length,
|
||
"created_at": status_doc.created_at,
|
||
"updated_at": datetime.now(timezone.utc).isoformat(),
|
||
"file_path": getattr(status_doc, "file_path", "unknown_source"),
|
||
"track_id": getattr(status_doc, "track_id", ""),
|
||
# Clear any error messages and processing metadata
|
||
"error_msg": "",
|
||
"metadata": {},
|
||
}
|
||
|
||
# Update the status in to_process_docs as well
|
||
status_doc.status = DocStatus.PENDING
|
||
reset_count += 1
|
||
|
||
# Update doc_status storage if there are documents to reset
|
||
if docs_to_reset:
|
||
await self.doc_status.upsert(docs_to_reset)
|
||
|
||
async with pipeline_status_lock:
|
||
reset_message = f"Reset {reset_count} documents from PROCESSING/FAILED to PENDING status"
|
||
logger.info(reset_message)
|
||
pipeline_status["latest_message"] = reset_message
|
||
pipeline_status["history_messages"].append(reset_message)
|
||
|
||
return to_process_docs
|
||
|
||
async def apipeline_process_enqueue_documents(
|
||
self,
|
||
split_by_character: str | None = None,
|
||
split_by_character_only: bool = False,
|
||
) -> None:
|
||
"""
|
||
Process pending documents by splitting them into chunks, processing
|
||
each chunk for entity and relation extraction, and updating the
|
||
document status.
|
||
|
||
1. Get all pending, failed, and abnormally terminated processing documents.
|
||
2. Validate document data consistency and fix any issues
|
||
3. Split document content into chunks
|
||
4. Process each chunk for entity and relation extraction
|
||
5. Update the document status
|
||
"""
|
||
|
||
# Get pipeline status shared data and lock
|
||
pipeline_status = await get_namespace_data("pipeline_status")
|
||
pipeline_status_lock = get_pipeline_status_lock()
|
||
|
||
# Check if another process is already processing the queue
|
||
async with pipeline_status_lock:
|
||
# Ensure only one worker is processing documents
|
||
if not pipeline_status.get("busy", False):
|
||
processing_docs, failed_docs, pending_docs = await asyncio.gather(
|
||
self.doc_status.get_docs_by_status(DocStatus.PROCESSING),
|
||
self.doc_status.get_docs_by_status(DocStatus.FAILED),
|
||
self.doc_status.get_docs_by_status(DocStatus.PENDING),
|
||
)
|
||
|
||
to_process_docs: dict[str, DocProcessingStatus] = {}
|
||
to_process_docs.update(processing_docs)
|
||
to_process_docs.update(failed_docs)
|
||
to_process_docs.update(pending_docs)
|
||
|
||
if not to_process_docs:
|
||
logger.info("No documents to process")
|
||
return
|
||
|
||
pipeline_status.update(
|
||
{
|
||
"busy": True,
|
||
"job_name": "Default Job",
|
||
"job_start": datetime.now(timezone.utc).isoformat(),
|
||
"docs": 0,
|
||
"batchs": 0, # Total number of files to be processed
|
||
"cur_batch": 0, # Number of files already processed
|
||
"request_pending": False, # Clear any previous request
|
||
"cancellation_requested": False, # Initialize cancellation flag
|
||
"latest_message": "",
|
||
}
|
||
)
|
||
# Cleaning history_messages without breaking it as a shared list object
|
||
del pipeline_status["history_messages"][:]
|
||
else:
|
||
# Another process is busy, just set request flag and return
|
||
pipeline_status["request_pending"] = True
|
||
logger.info(
|
||
"Another process is already processing the document queue. Request queued."
|
||
)
|
||
return
|
||
|
||
try:
|
||
# Process documents until no more documents or requests
|
||
while True:
|
||
# Check for cancellation request at the start of main loop
|
||
async with pipeline_status_lock:
|
||
if pipeline_status.get("cancellation_requested", False):
|
||
# Clear pending request
|
||
pipeline_status["request_pending"] = False
|
||
# Celar cancellation flag
|
||
pipeline_status["cancellation_requested"] = False
|
||
|
||
log_message = "Pipeline cancelled by user"
|
||
logger.info(log_message)
|
||
pipeline_status["latest_message"] = log_message
|
||
pipeline_status["history_messages"].append(log_message)
|
||
|
||
# Exit directly, skipping request_pending check
|
||
return
|
||
|
||
if not to_process_docs:
|
||
log_message = "All enqueued documents have been processed"
|
||
logger.info(log_message)
|
||
pipeline_status["latest_message"] = log_message
|
||
pipeline_status["history_messages"].append(log_message)
|
||
break
|
||
|
||
# Validate document data consistency and fix any issues as part of the pipeline
|
||
to_process_docs = await self._validate_and_fix_document_consistency(
|
||
to_process_docs, pipeline_status, pipeline_status_lock
|
||
)
|
||
|
||
if not to_process_docs:
|
||
log_message = (
|
||
"No valid documents to process after consistency check"
|
||
)
|
||
logger.info(log_message)
|
||
pipeline_status["latest_message"] = log_message
|
||
pipeline_status["history_messages"].append(log_message)
|
||
break
|
||
|
||
log_message = f"Processing {len(to_process_docs)} document(s)"
|
||
logger.info(log_message)
|
||
|
||
# Update pipeline_status, batchs now represents the total number of files to be processed
|
||
pipeline_status["docs"] = len(to_process_docs)
|
||
pipeline_status["batchs"] = len(to_process_docs)
|
||
pipeline_status["cur_batch"] = 0
|
||
pipeline_status["latest_message"] = log_message
|
||
pipeline_status["history_messages"].append(log_message)
|
||
|
||
# Get first document's file path and total count for job name
|
||
first_doc_id, first_doc = next(iter(to_process_docs.items()))
|
||
first_doc_path = first_doc.file_path
|
||
|
||
# Handle cases where first_doc_path is None
|
||
if first_doc_path:
|
||
path_prefix = first_doc_path[:20] + (
|
||
"..." if len(first_doc_path) > 20 else ""
|
||
)
|
||
else:
|
||
path_prefix = "unknown_source"
|
||
|
||
total_files = len(to_process_docs)
|
||
job_name = f"{path_prefix}[{total_files} files]"
|
||
pipeline_status["job_name"] = job_name
|
||
|
||
# Create a counter to track the number of processed files
|
||
processed_count = 0
|
||
# Create a semaphore to limit the number of concurrent file processing
|
||
semaphore = asyncio.Semaphore(self.max_parallel_insert)
|
||
|
||
async def process_document(
|
||
doc_id: str,
|
||
status_doc: DocProcessingStatus,
|
||
split_by_character: str | None,
|
||
split_by_character_only: bool,
|
||
pipeline_status: dict,
|
||
pipeline_status_lock: asyncio.Lock,
|
||
semaphore: asyncio.Semaphore,
|
||
) -> None:
|
||
"""Process single document"""
|
||
# Initialize variables at the start to prevent UnboundLocalError in error handling
|
||
file_path = "unknown_source"
|
||
current_file_number = 0
|
||
file_extraction_stage_ok = False
|
||
processing_start_time = int(time.time())
|
||
first_stage_tasks = []
|
||
entity_relation_task = None
|
||
|
||
async with semaphore:
|
||
nonlocal processed_count
|
||
# Initialize to prevent UnboundLocalError in error handling
|
||
first_stage_tasks = []
|
||
entity_relation_task = None
|
||
try:
|
||
# Check for cancellation before starting document processing
|
||
async with pipeline_status_lock:
|
||
if pipeline_status.get("cancellation_requested", False):
|
||
raise PipelineCancelledException("User cancelled")
|
||
|
||
# Get file path from status document
|
||
file_path = getattr(
|
||
status_doc, "file_path", "unknown_source"
|
||
)
|
||
|
||
async with pipeline_status_lock:
|
||
# Update processed file count and save current file number
|
||
processed_count += 1
|
||
current_file_number = (
|
||
processed_count # Save the current file number
|
||
)
|
||
pipeline_status["cur_batch"] = processed_count
|
||
|
||
log_message = f"Extracting stage {current_file_number}/{total_files}: {file_path}"
|
||
logger.info(log_message)
|
||
pipeline_status["history_messages"].append(log_message)
|
||
log_message = f"Processing d-id: {doc_id}"
|
||
logger.info(log_message)
|
||
pipeline_status["latest_message"] = log_message
|
||
pipeline_status["history_messages"].append(log_message)
|
||
|
||
# Prevent memory growth: keep only latest 5000 messages when exceeding 10000
|
||
if len(pipeline_status["history_messages"]) > 10000:
|
||
logger.info(
|
||
f"Trimming pipeline history from {len(pipeline_status['history_messages'])} to 5000 messages"
|
||
)
|
||
pipeline_status["history_messages"] = (
|
||
pipeline_status["history_messages"][-5000:]
|
||
)
|
||
|
||
# Get document content from full_docs
|
||
content_data = await self.full_docs.get_by_id(doc_id)
|
||
if not content_data:
|
||
raise Exception(
|
||
f"Document content not found in full_docs for doc_id: {doc_id}"
|
||
)
|
||
content = content_data["content"]
|
||
|
||
# Generate chunks from document
|
||
chunks: dict[str, Any] = {
|
||
compute_mdhash_id(dp["content"], prefix="chunk-"): {
|
||
**dp,
|
||
"full_doc_id": doc_id,
|
||
"file_path": file_path, # Add file path to each chunk
|
||
"llm_cache_list": [], # Initialize empty LLM cache list for each chunk
|
||
}
|
||
for dp in self.chunking_func(
|
||
self.tokenizer,
|
||
content,
|
||
split_by_character,
|
||
split_by_character_only,
|
||
self.chunk_overlap_token_size,
|
||
self.chunk_token_size,
|
||
)
|
||
}
|
||
|
||
if not chunks:
|
||
logger.warning("No document chunks to process")
|
||
|
||
# Record processing start time
|
||
processing_start_time = int(time.time())
|
||
|
||
# Check for cancellation before entity extraction
|
||
async with pipeline_status_lock:
|
||
if pipeline_status.get("cancellation_requested", False):
|
||
raise PipelineCancelledException("User cancelled")
|
||
|
||
# Process document in two stages
|
||
# Stage 1: Process text chunks and docs (parallel execution)
|
||
doc_status_task = asyncio.create_task(
|
||
self.doc_status.upsert(
|
||
{
|
||
doc_id: {
|
||
"status": DocStatus.PROCESSING,
|
||
"chunks_count": len(chunks),
|
||
"chunks_list": list(
|
||
chunks.keys()
|
||
), # Save chunks list
|
||
"content_summary": status_doc.content_summary,
|
||
"content_length": status_doc.content_length,
|
||
"created_at": status_doc.created_at,
|
||
"updated_at": datetime.now(
|
||
timezone.utc
|
||
).isoformat(),
|
||
"file_path": file_path,
|
||
"track_id": status_doc.track_id, # Preserve existing track_id
|
||
"metadata": {
|
||
"processing_start_time": processing_start_time
|
||
},
|
||
}
|
||
}
|
||
)
|
||
)
|
||
chunks_vdb_task = asyncio.create_task(
|
||
self.chunks_vdb.upsert(chunks)
|
||
)
|
||
text_chunks_task = asyncio.create_task(
|
||
self.text_chunks.upsert(chunks)
|
||
)
|
||
|
||
# First stage tasks (parallel execution)
|
||
first_stage_tasks = [
|
||
doc_status_task,
|
||
chunks_vdb_task,
|
||
text_chunks_task,
|
||
]
|
||
entity_relation_task = None
|
||
|
||
# Execute first stage tasks
|
||
await asyncio.gather(*first_stage_tasks)
|
||
|
||
# Stage 2: Process entity relation graph (after text_chunks are saved)
|
||
entity_relation_task = asyncio.create_task(
|
||
self._process_extract_entities(
|
||
chunks, pipeline_status, pipeline_status_lock
|
||
)
|
||
)
|
||
await entity_relation_task
|
||
file_extraction_stage_ok = True
|
||
|
||
except Exception as e:
|
||
# Check if this is a user cancellation
|
||
if isinstance(e, PipelineCancelledException):
|
||
# User cancellation - log brief message only, no traceback
|
||
error_msg = f"User cancelled {current_file_number}/{total_files}: {file_path}"
|
||
logger.warning(error_msg)
|
||
async with pipeline_status_lock:
|
||
pipeline_status["latest_message"] = error_msg
|
||
pipeline_status["history_messages"].append(
|
||
error_msg
|
||
)
|
||
else:
|
||
# Other exceptions - log with traceback
|
||
logger.error(traceback.format_exc())
|
||
error_msg = f"Failed to extract document {current_file_number}/{total_files}: {file_path}"
|
||
logger.error(error_msg)
|
||
async with pipeline_status_lock:
|
||
pipeline_status["latest_message"] = error_msg
|
||
pipeline_status["history_messages"].append(
|
||
traceback.format_exc()
|
||
)
|
||
pipeline_status["history_messages"].append(
|
||
error_msg
|
||
)
|
||
|
||
# Cancel tasks that are not yet completed
|
||
all_tasks = first_stage_tasks + (
|
||
[entity_relation_task] if entity_relation_task else []
|
||
)
|
||
for task in all_tasks:
|
||
if task and not task.done():
|
||
task.cancel()
|
||
|
||
# Persistent llm cache with error handling
|
||
if self.llm_response_cache:
|
||
try:
|
||
await self.llm_response_cache.index_done_callback()
|
||
except Exception as persist_error:
|
||
logger.error(
|
||
f"Failed to persist LLM cache: {persist_error}"
|
||
)
|
||
|
||
# Record processing end time for failed case
|
||
processing_end_time = int(time.time())
|
||
|
||
# Update document status to failed
|
||
await self.doc_status.upsert(
|
||
{
|
||
doc_id: {
|
||
"status": DocStatus.FAILED,
|
||
"error_msg": str(e),
|
||
"content_summary": status_doc.content_summary,
|
||
"content_length": status_doc.content_length,
|
||
"created_at": status_doc.created_at,
|
||
"updated_at": datetime.now(
|
||
timezone.utc
|
||
).isoformat(),
|
||
"file_path": file_path,
|
||
"track_id": status_doc.track_id, # Preserve existing track_id
|
||
"metadata": {
|
||
"processing_start_time": processing_start_time,
|
||
"processing_end_time": processing_end_time,
|
||
},
|
||
}
|
||
}
|
||
)
|
||
|
||
# Concurrency is controlled by keyed lock for individual entities and relationships
|
||
if file_extraction_stage_ok:
|
||
try:
|
||
# Check for cancellation before merge
|
||
async with pipeline_status_lock:
|
||
if pipeline_status.get(
|
||
"cancellation_requested", False
|
||
):
|
||
raise PipelineCancelledException(
|
||
"User cancelled"
|
||
)
|
||
|
||
# Get chunk_results from entity_relation_task
|
||
chunk_results = await entity_relation_task
|
||
await merge_nodes_and_edges(
|
||
chunk_results=chunk_results, # result collected from entity_relation_task
|
||
knowledge_graph_inst=self.chunk_entity_relation_graph,
|
||
entity_vdb=self.entities_vdb,
|
||
relationships_vdb=self.relationships_vdb,
|
||
global_config=asdict(self),
|
||
full_entities_storage=self.full_entities,
|
||
full_relations_storage=self.full_relations,
|
||
doc_id=doc_id,
|
||
pipeline_status=pipeline_status,
|
||
pipeline_status_lock=pipeline_status_lock,
|
||
llm_response_cache=self.llm_response_cache,
|
||
entity_chunks_storage=self.entity_chunks,
|
||
relation_chunks_storage=self.relation_chunks,
|
||
current_file_number=current_file_number,
|
||
total_files=total_files,
|
||
file_path=file_path,
|
||
)
|
||
|
||
# Record processing end time
|
||
processing_end_time = int(time.time())
|
||
|
||
await self.doc_status.upsert(
|
||
{
|
||
doc_id: {
|
||
"status": DocStatus.PROCESSED,
|
||
"chunks_count": len(chunks),
|
||
"chunks_list": list(chunks.keys()),
|
||
"content_summary": status_doc.content_summary,
|
||
"content_length": status_doc.content_length,
|
||
"created_at": status_doc.created_at,
|
||
"updated_at": datetime.now(
|
||
timezone.utc
|
||
).isoformat(),
|
||
"file_path": file_path,
|
||
"track_id": status_doc.track_id, # Preserve existing track_id
|
||
"metadata": {
|
||
"processing_start_time": processing_start_time,
|
||
"processing_end_time": processing_end_time,
|
||
},
|
||
}
|
||
}
|
||
)
|
||
|
||
# Call _insert_done after processing each file
|
||
await self._insert_done()
|
||
|
||
async with pipeline_status_lock:
|
||
log_message = f"Completed processing file {current_file_number}/{total_files}: {file_path}"
|
||
logger.info(log_message)
|
||
pipeline_status["latest_message"] = log_message
|
||
pipeline_status["history_messages"].append(
|
||
log_message
|
||
)
|
||
|
||
except Exception as e:
|
||
# Check if this is a user cancellation
|
||
if isinstance(e, PipelineCancelledException):
|
||
# User cancellation - log brief message only, no traceback
|
||
error_msg = f"User cancelled during merge {current_file_number}/{total_files}: {file_path}"
|
||
logger.warning(error_msg)
|
||
async with pipeline_status_lock:
|
||
pipeline_status["latest_message"] = error_msg
|
||
pipeline_status["history_messages"].append(
|
||
error_msg
|
||
)
|
||
else:
|
||
# Other exceptions - log with traceback
|
||
logger.error(traceback.format_exc())
|
||
error_msg = f"Merging stage failed in document {current_file_number}/{total_files}: {file_path}"
|
||
logger.error(error_msg)
|
||
async with pipeline_status_lock:
|
||
pipeline_status["latest_message"] = error_msg
|
||
pipeline_status["history_messages"].append(
|
||
traceback.format_exc()
|
||
)
|
||
pipeline_status["history_messages"].append(
|
||
error_msg
|
||
)
|
||
|
||
# Persistent llm cache with error handling
|
||
if self.llm_response_cache:
|
||
try:
|
||
await self.llm_response_cache.index_done_callback()
|
||
except Exception as persist_error:
|
||
logger.error(
|
||
f"Failed to persist LLM cache: {persist_error}"
|
||
)
|
||
|
||
# Record processing end time for failed case
|
||
processing_end_time = int(time.time())
|
||
|
||
# Update document status to failed
|
||
await self.doc_status.upsert(
|
||
{
|
||
doc_id: {
|
||
"status": DocStatus.FAILED,
|
||
"error_msg": str(e),
|
||
"content_summary": status_doc.content_summary,
|
||
"content_length": status_doc.content_length,
|
||
"created_at": status_doc.created_at,
|
||
"updated_at": datetime.now().isoformat(),
|
||
"file_path": file_path,
|
||
"track_id": status_doc.track_id, # Preserve existing track_id
|
||
"metadata": {
|
||
"processing_start_time": processing_start_time,
|
||
"processing_end_time": processing_end_time,
|
||
},
|
||
}
|
||
}
|
||
)
|
||
|
||
# Create processing tasks for all documents
|
||
doc_tasks = []
|
||
for doc_id, status_doc in to_process_docs.items():
|
||
doc_tasks.append(
|
||
process_document(
|
||
doc_id,
|
||
status_doc,
|
||
split_by_character,
|
||
split_by_character_only,
|
||
pipeline_status,
|
||
pipeline_status_lock,
|
||
semaphore,
|
||
)
|
||
)
|
||
|
||
# Wait for all document processing to complete
|
||
try:
|
||
await asyncio.gather(*doc_tasks)
|
||
except PipelineCancelledException:
|
||
# Cancel all remaining tasks
|
||
for task in doc_tasks:
|
||
if not task.done():
|
||
task.cancel()
|
||
|
||
# Wait for all tasks to complete cancellation
|
||
await asyncio.wait(doc_tasks, return_when=asyncio.ALL_COMPLETED)
|
||
|
||
# Exit directly (document statuses already updated in process_document)
|
||
return
|
||
|
||
# Check if there's a pending request to process more documents (with lock)
|
||
has_pending_request = False
|
||
async with pipeline_status_lock:
|
||
has_pending_request = pipeline_status.get("request_pending", False)
|
||
if has_pending_request:
|
||
# Clear the request flag before checking for more documents
|
||
pipeline_status["request_pending"] = False
|
||
|
||
if not has_pending_request:
|
||
break
|
||
|
||
log_message = "Processing additional documents due to pending request"
|
||
logger.info(log_message)
|
||
pipeline_status["latest_message"] = log_message
|
||
pipeline_status["history_messages"].append(log_message)
|
||
|
||
# Check for pending documents again
|
||
processing_docs, failed_docs, pending_docs = await asyncio.gather(
|
||
self.doc_status.get_docs_by_status(DocStatus.PROCESSING),
|
||
self.doc_status.get_docs_by_status(DocStatus.FAILED),
|
||
self.doc_status.get_docs_by_status(DocStatus.PENDING),
|
||
)
|
||
|
||
to_process_docs = {}
|
||
to_process_docs.update(processing_docs)
|
||
to_process_docs.update(failed_docs)
|
||
to_process_docs.update(pending_docs)
|
||
|
||
finally:
|
||
log_message = "Enqueued document processing pipeline stopped"
|
||
logger.info(log_message)
|
||
# Always reset busy status and cancellation flag when done or if an exception occurs (with lock)
|
||
async with pipeline_status_lock:
|
||
pipeline_status["busy"] = False
|
||
pipeline_status["cancellation_requested"] = (
|
||
False # Always reset cancellation flag
|
||
)
|
||
pipeline_status["latest_message"] = log_message
|
||
pipeline_status["history_messages"].append(log_message)
|
||
|
||
async def _process_extract_entities(
|
||
self, chunk: dict[str, Any], pipeline_status=None, pipeline_status_lock=None
|
||
) -> list:
|
||
try:
|
||
chunk_results = await extract_entities(
|
||
chunk,
|
||
global_config=asdict(self),
|
||
pipeline_status=pipeline_status,
|
||
pipeline_status_lock=pipeline_status_lock,
|
||
llm_response_cache=self.llm_response_cache,
|
||
text_chunks_storage=self.text_chunks,
|
||
)
|
||
return chunk_results
|
||
except Exception as e:
|
||
error_msg = f"Failed to extract entities and relationships: {str(e)}"
|
||
logger.error(error_msg)
|
||
async with pipeline_status_lock:
|
||
pipeline_status["latest_message"] = error_msg
|
||
pipeline_status["history_messages"].append(error_msg)
|
||
raise e
|
||
|
||
async def _insert_done(
|
||
self, pipeline_status=None, pipeline_status_lock=None
|
||
) -> None:
|
||
tasks = [
|
||
cast(StorageNameSpace, storage_inst).index_done_callback()
|
||
for storage_inst in [ # type: ignore
|
||
self.full_docs,
|
||
self.doc_status,
|
||
self.text_chunks,
|
||
self.full_entities,
|
||
self.full_relations,
|
||
self.entity_chunks,
|
||
self.relation_chunks,
|
||
self.llm_response_cache,
|
||
self.entities_vdb,
|
||
self.relationships_vdb,
|
||
self.chunks_vdb,
|
||
self.chunk_entity_relation_graph,
|
||
]
|
||
if storage_inst is not None
|
||
]
|
||
await asyncio.gather(*tasks)
|
||
|
||
log_message = "In memory DB persist to disk"
|
||
logger.info(log_message)
|
||
|
||
if pipeline_status is not None and pipeline_status_lock is not None:
|
||
async with pipeline_status_lock:
|
||
pipeline_status["latest_message"] = log_message
|
||
pipeline_status["history_messages"].append(log_message)
|
||
|
||
def insert_custom_kg(
|
||
self, custom_kg: dict[str, Any], full_doc_id: str = None
|
||
) -> None:
|
||
loop = always_get_an_event_loop()
|
||
loop.run_until_complete(self.ainsert_custom_kg(custom_kg, full_doc_id))
|
||
|
||
async def ainsert_custom_kg(
|
||
self,
|
||
custom_kg: dict[str, Any],
|
||
full_doc_id: str = None,
|
||
) -> None:
|
||
update_storage = False
|
||
try:
|
||
# Insert chunks into vector storage
|
||
all_chunks_data: dict[str, dict[str, str]] = {}
|
||
chunk_to_source_map: dict[str, str] = {}
|
||
for chunk_data in custom_kg.get("chunks", []):
|
||
chunk_content = sanitize_text_for_encoding(chunk_data["content"])
|
||
source_id = chunk_data["source_id"]
|
||
file_path = chunk_data.get("file_path", "custom_kg")
|
||
tokens = len(self.tokenizer.encode(chunk_content))
|
||
chunk_order_index = (
|
||
0
|
||
if "chunk_order_index" not in chunk_data.keys()
|
||
else chunk_data["chunk_order_index"]
|
||
)
|
||
chunk_id = compute_mdhash_id(chunk_content, prefix="chunk-")
|
||
|
||
chunk_entry = {
|
||
"content": chunk_content,
|
||
"source_id": source_id,
|
||
"tokens": tokens,
|
||
"chunk_order_index": chunk_order_index,
|
||
"full_doc_id": full_doc_id
|
||
if full_doc_id is not None
|
||
else source_id,
|
||
"file_path": file_path,
|
||
"status": DocStatus.PROCESSED,
|
||
}
|
||
all_chunks_data[chunk_id] = chunk_entry
|
||
chunk_to_source_map[source_id] = chunk_id
|
||
update_storage = True
|
||
|
||
if all_chunks_data:
|
||
await asyncio.gather(
|
||
self.chunks_vdb.upsert(all_chunks_data),
|
||
self.text_chunks.upsert(all_chunks_data),
|
||
)
|
||
|
||
# Insert entities into knowledge graph
|
||
all_entities_data: list[dict[str, str]] = []
|
||
for entity_data in custom_kg.get("entities", []):
|
||
entity_name = entity_data["entity_name"]
|
||
entity_type = entity_data.get("entity_type", "UNKNOWN")
|
||
description = entity_data.get("description", "No description provided")
|
||
source_chunk_id = entity_data.get("source_id", "UNKNOWN")
|
||
source_id = chunk_to_source_map.get(source_chunk_id, "UNKNOWN")
|
||
file_path = entity_data.get("file_path", "custom_kg")
|
||
|
||
# Log if source_id is UNKNOWN
|
||
if source_id == "UNKNOWN":
|
||
logger.warning(
|
||
f"Entity '{entity_name}' has an UNKNOWN source_id. Please check the source mapping."
|
||
)
|
||
|
||
# Prepare node data
|
||
node_data: dict[str, str] = {
|
||
"entity_id": entity_name,
|
||
"entity_type": entity_type,
|
||
"description": description,
|
||
"source_id": source_id,
|
||
"file_path": file_path,
|
||
"created_at": int(time.time()),
|
||
}
|
||
# Insert node data into the knowledge graph
|
||
await self.chunk_entity_relation_graph.upsert_node(
|
||
entity_name, node_data=node_data
|
||
)
|
||
node_data["entity_name"] = entity_name
|
||
all_entities_data.append(node_data)
|
||
update_storage = True
|
||
|
||
# Insert relationships into knowledge graph
|
||
all_relationships_data: list[dict[str, str]] = []
|
||
for relationship_data in custom_kg.get("relationships", []):
|
||
src_id = relationship_data["src_id"]
|
||
tgt_id = relationship_data["tgt_id"]
|
||
description = relationship_data["description"]
|
||
keywords = relationship_data["keywords"]
|
||
weight = relationship_data.get("weight", 1.0)
|
||
source_chunk_id = relationship_data.get("source_id", "UNKNOWN")
|
||
source_id = chunk_to_source_map.get(source_chunk_id, "UNKNOWN")
|
||
file_path = relationship_data.get("file_path", "custom_kg")
|
||
|
||
# Log if source_id is UNKNOWN
|
||
if source_id == "UNKNOWN":
|
||
logger.warning(
|
||
f"Relationship from '{src_id}' to '{tgt_id}' has an UNKNOWN source_id. Please check the source mapping."
|
||
)
|
||
|
||
# Check if nodes exist in the knowledge graph
|
||
for need_insert_id in [src_id, tgt_id]:
|
||
if not (
|
||
await self.chunk_entity_relation_graph.has_node(need_insert_id)
|
||
):
|
||
await self.chunk_entity_relation_graph.upsert_node(
|
||
need_insert_id,
|
||
node_data={
|
||
"entity_id": need_insert_id,
|
||
"source_id": source_id,
|
||
"description": "UNKNOWN",
|
||
"entity_type": "UNKNOWN",
|
||
"file_path": file_path,
|
||
"created_at": int(time.time()),
|
||
},
|
||
)
|
||
|
||
# Insert edge into the knowledge graph
|
||
await self.chunk_entity_relation_graph.upsert_edge(
|
||
src_id,
|
||
tgt_id,
|
||
edge_data={
|
||
"weight": weight,
|
||
"description": description,
|
||
"keywords": keywords,
|
||
"source_id": source_id,
|
||
"file_path": file_path,
|
||
"created_at": int(time.time()),
|
||
},
|
||
)
|
||
|
||
edge_data: dict[str, str] = {
|
||
"src_id": src_id,
|
||
"tgt_id": tgt_id,
|
||
"description": description,
|
||
"keywords": keywords,
|
||
"source_id": source_id,
|
||
"weight": weight,
|
||
"file_path": file_path,
|
||
"created_at": int(time.time()),
|
||
}
|
||
all_relationships_data.append(edge_data)
|
||
update_storage = True
|
||
|
||
# Insert entities into vector storage with consistent format
|
||
data_for_vdb = {
|
||
compute_mdhash_id(dp["entity_name"], prefix="ent-"): {
|
||
"content": dp["entity_name"] + "\n" + dp["description"],
|
||
"entity_name": dp["entity_name"],
|
||
"source_id": dp["source_id"],
|
||
"description": dp["description"],
|
||
"entity_type": dp["entity_type"],
|
||
"file_path": dp.get("file_path", "custom_kg"),
|
||
}
|
||
for dp in all_entities_data
|
||
}
|
||
await self.entities_vdb.upsert(data_for_vdb)
|
||
|
||
# Insert relationships into vector storage with consistent format
|
||
data_for_vdb = {
|
||
compute_mdhash_id(dp["src_id"] + dp["tgt_id"], prefix="rel-"): {
|
||
"src_id": dp["src_id"],
|
||
"tgt_id": dp["tgt_id"],
|
||
"source_id": dp["source_id"],
|
||
"content": f"{dp['keywords']}\t{dp['src_id']}\n{dp['tgt_id']}\n{dp['description']}",
|
||
"keywords": dp["keywords"],
|
||
"description": dp["description"],
|
||
"weight": dp["weight"],
|
||
"file_path": dp.get("file_path", "custom_kg"),
|
||
}
|
||
for dp in all_relationships_data
|
||
}
|
||
await self.relationships_vdb.upsert(data_for_vdb)
|
||
|
||
except Exception as e:
|
||
logger.error(f"Error in ainsert_custom_kg: {e}")
|
||
raise
|
||
finally:
|
||
if update_storage:
|
||
await self._insert_done()
|
||
|
||
def query(
|
||
self,
|
||
query: str,
|
||
param: QueryParam = QueryParam(),
|
||
system_prompt: str | None = None,
|
||
) -> str | Iterator[str]:
|
||
"""
|
||
Perform a sync query.
|
||
|
||
Args:
|
||
query (str): The query to be executed.
|
||
param (QueryParam): Configuration parameters for query execution.
|
||
prompt (Optional[str]): Custom prompts for fine-tuned control over the system's behavior. Defaults to None, which uses PROMPTS["rag_response"].
|
||
|
||
Returns:
|
||
str: The result of the query execution.
|
||
"""
|
||
loop = always_get_an_event_loop()
|
||
|
||
return loop.run_until_complete(self.aquery(query, param, system_prompt)) # type: ignore
|
||
|
||
async def aquery(
|
||
self,
|
||
query: str,
|
||
param: QueryParam = QueryParam(),
|
||
system_prompt: str | None = None,
|
||
) -> str | AsyncIterator[str]:
|
||
"""
|
||
Perform a async query (backward compatibility wrapper).
|
||
|
||
This function is now a wrapper around aquery_llm that maintains backward compatibility
|
||
by returning only the LLM response content in the original format.
|
||
|
||
Args:
|
||
query (str): The query to be executed.
|
||
param (QueryParam): Configuration parameters for query execution.
|
||
If param.model_func is provided, it will be used instead of the global model.
|
||
system_prompt (Optional[str]): Custom prompts for fine-tuned control over the system's behavior. Defaults to None, which uses PROMPTS["rag_response"].
|
||
|
||
Returns:
|
||
str | AsyncIterator[str]: The LLM response content.
|
||
- Non-streaming: Returns str
|
||
- Streaming: Returns AsyncIterator[str]
|
||
"""
|
||
# Call the new aquery_llm function to get complete results
|
||
result = await self.aquery_llm(query, param, system_prompt)
|
||
|
||
# Extract and return only the LLM response for backward compatibility
|
||
llm_response = result.get("llm_response", {})
|
||
|
||
if llm_response.get("is_streaming"):
|
||
return llm_response.get("response_iterator")
|
||
else:
|
||
return llm_response.get("content", "")
|
||
|
||
def query_data(
|
||
self,
|
||
query: str,
|
||
param: QueryParam = QueryParam(),
|
||
) -> dict[str, Any]:
|
||
"""
|
||
Synchronous data retrieval API: returns structured retrieval results without LLM generation.
|
||
|
||
This function is the synchronous version of aquery_data, providing the same functionality
|
||
for users who prefer synchronous interfaces.
|
||
|
||
Args:
|
||
query: Query text for retrieval.
|
||
param: Query parameters controlling retrieval behavior (same as aquery).
|
||
|
||
Returns:
|
||
dict[str, Any]: Same structured data result as aquery_data.
|
||
"""
|
||
loop = always_get_an_event_loop()
|
||
return loop.run_until_complete(self.aquery_data(query, param))
|
||
|
||
async def aquery_data(
|
||
self,
|
||
query: str,
|
||
param: QueryParam = QueryParam(),
|
||
) -> dict[str, Any]:
|
||
"""
|
||
Asynchronous data retrieval API: returns structured retrieval results without LLM generation.
|
||
|
||
This function reuses the same logic as aquery but stops before LLM generation,
|
||
returning the final processed entities, relationships, and chunks data that would be sent to LLM.
|
||
|
||
Args:
|
||
query: Query text for retrieval.
|
||
param: Query parameters controlling retrieval behavior (same as aquery).
|
||
|
||
Returns:
|
||
dict[str, Any]: Structured data result in the following format:
|
||
|
||
**Success Response:**
|
||
```python
|
||
{
|
||
"status": "success",
|
||
"message": "Query executed successfully",
|
||
"data": {
|
||
"entities": [
|
||
{
|
||
"entity_name": str, # Entity identifier
|
||
"entity_type": str, # Entity category/type
|
||
"description": str, # Entity description
|
||
"source_id": str, # Source chunk references
|
||
"file_path": str, # Origin file path
|
||
"created_at": str, # Creation timestamp
|
||
"reference_id": str # Reference identifier for citations
|
||
}
|
||
],
|
||
"relationships": [
|
||
{
|
||
"src_id": str, # Source entity name
|
||
"tgt_id": str, # Target entity name
|
||
"description": str, # Relationship description
|
||
"keywords": str, # Relationship keywords
|
||
"weight": float, # Relationship strength
|
||
"source_id": str, # Source chunk references
|
||
"file_path": str, # Origin file path
|
||
"created_at": str, # Creation timestamp
|
||
"reference_id": str # Reference identifier for citations
|
||
}
|
||
],
|
||
"chunks": [
|
||
{
|
||
"content": str, # Document chunk content
|
||
"file_path": str, # Origin file path
|
||
"chunk_id": str, # Unique chunk identifier
|
||
"reference_id": str # Reference identifier for citations
|
||
}
|
||
],
|
||
"references": [
|
||
{
|
||
"reference_id": str, # Reference identifier
|
||
"file_path": str # Corresponding file path
|
||
}
|
||
]
|
||
},
|
||
"metadata": {
|
||
"query_mode": str, # Query mode used ("local", "global", "hybrid", "mix", "naive", "bypass")
|
||
"keywords": {
|
||
"high_level": List[str], # High-level keywords extracted
|
||
"low_level": List[str] # Low-level keywords extracted
|
||
},
|
||
"processing_info": {
|
||
"total_entities_found": int, # Total entities before truncation
|
||
"total_relations_found": int, # Total relations before truncation
|
||
"entities_after_truncation": int, # Entities after token truncation
|
||
"relations_after_truncation": int, # Relations after token truncation
|
||
"merged_chunks_count": int, # Chunks before final processing
|
||
"final_chunks_count": int # Final chunks in result
|
||
}
|
||
}
|
||
}
|
||
```
|
||
|
||
**Query Mode Differences:**
|
||
- **local**: Focuses on entities and their related chunks based on low-level keywords
|
||
- **global**: Focuses on relationships and their connected entities based on high-level keywords
|
||
- **hybrid**: Combines local and global results using round-robin merging
|
||
- **mix**: Includes knowledge graph data plus vector-retrieved document chunks
|
||
- **naive**: Only vector-retrieved chunks, entities and relationships arrays are empty
|
||
- **bypass**: All data arrays are empty, used for direct LLM queries
|
||
|
||
** processing_info is optional and may not be present in all responses, especially when query result is empty**
|
||
|
||
**Failure Response:**
|
||
```python
|
||
{
|
||
"status": "failure",
|
||
"message": str, # Error description
|
||
"data": {} # Empty data object
|
||
}
|
||
```
|
||
|
||
**Common Failure Cases:**
|
||
- Empty query string
|
||
- Both high-level and low-level keywords are empty
|
||
- Query returns empty dataset
|
||
- Missing tokenizer or system configuration errors
|
||
|
||
Note:
|
||
The function adapts to the new data format from convert_to_user_format where
|
||
actual data is nested under the 'data' field, with 'status' and 'message'
|
||
fields at the top level.
|
||
"""
|
||
global_config = asdict(self)
|
||
|
||
# Create a copy of param to avoid modifying the original
|
||
data_param = QueryParam(
|
||
mode=param.mode,
|
||
only_need_context=True, # Skip LLM generation, only get context and data
|
||
only_need_prompt=False,
|
||
response_type=param.response_type,
|
||
stream=False, # Data retrieval doesn't need streaming
|
||
top_k=param.top_k,
|
||
chunk_top_k=param.chunk_top_k,
|
||
max_entity_tokens=param.max_entity_tokens,
|
||
max_relation_tokens=param.max_relation_tokens,
|
||
max_total_tokens=param.max_total_tokens,
|
||
hl_keywords=param.hl_keywords,
|
||
ll_keywords=param.ll_keywords,
|
||
conversation_history=param.conversation_history,
|
||
history_turns=param.history_turns,
|
||
model_func=param.model_func,
|
||
user_prompt=param.user_prompt,
|
||
enable_rerank=param.enable_rerank,
|
||
)
|
||
|
||
query_result = None
|
||
|
||
if data_param.mode in ["local", "global", "hybrid", "mix"]:
|
||
logger.debug(f"[aquery_data] Using kg_query for mode: {data_param.mode}")
|
||
query_result = await kg_query(
|
||
query.strip(),
|
||
self.chunk_entity_relation_graph,
|
||
self.entities_vdb,
|
||
self.relationships_vdb,
|
||
self.text_chunks,
|
||
data_param, # Use data_param with only_need_context=True
|
||
global_config,
|
||
hashing_kv=self.llm_response_cache,
|
||
system_prompt=None,
|
||
chunks_vdb=self.chunks_vdb,
|
||
)
|
||
elif data_param.mode == "naive":
|
||
logger.debug(f"[aquery_data] Using naive_query for mode: {data_param.mode}")
|
||
query_result = await naive_query(
|
||
query.strip(),
|
||
self.chunks_vdb,
|
||
data_param, # Use data_param with only_need_context=True
|
||
global_config,
|
||
hashing_kv=self.llm_response_cache,
|
||
system_prompt=None,
|
||
)
|
||
elif data_param.mode == "bypass":
|
||
logger.debug("[aquery_data] Using bypass mode")
|
||
# bypass mode returns empty data using convert_to_user_format
|
||
empty_raw_data = convert_to_user_format(
|
||
[], # no entities
|
||
[], # no relationships
|
||
[], # no chunks
|
||
[], # no references
|
||
"bypass",
|
||
)
|
||
query_result = QueryResult(content="", raw_data=empty_raw_data)
|
||
else:
|
||
raise ValueError(f"Unknown mode {data_param.mode}")
|
||
|
||
if query_result is None:
|
||
no_result_message = "Query returned no results"
|
||
if data_param.mode == "naive":
|
||
no_result_message = "No relevant document chunks found."
|
||
final_data: dict[str, Any] = {
|
||
"status": "failure",
|
||
"message": no_result_message,
|
||
"data": {},
|
||
"metadata": {
|
||
"failure_reason": "no_results",
|
||
"mode": data_param.mode,
|
||
},
|
||
}
|
||
logger.info("[aquery_data] Query returned no results.")
|
||
else:
|
||
# Extract raw_data from QueryResult
|
||
final_data = query_result.raw_data or {}
|
||
|
||
# Log final result counts - adapt to new data format from convert_to_user_format
|
||
if final_data and "data" in final_data:
|
||
data_section = final_data["data"]
|
||
entities_count = len(data_section.get("entities", []))
|
||
relationships_count = len(data_section.get("relationships", []))
|
||
chunks_count = len(data_section.get("chunks", []))
|
||
logger.debug(
|
||
f"[aquery_data] Final result: {entities_count} entities, {relationships_count} relationships, {chunks_count} chunks"
|
||
)
|
||
else:
|
||
logger.warning("[aquery_data] No data section found in query result")
|
||
|
||
await self._query_done()
|
||
return final_data
|
||
|
||
async def aquery_llm(
|
||
self,
|
||
query: str,
|
||
param: QueryParam = QueryParam(),
|
||
system_prompt: str | None = None,
|
||
) -> dict[str, Any]:
|
||
"""
|
||
Asynchronous complete query API: returns structured retrieval results with LLM generation.
|
||
|
||
This function performs a single query operation and returns both structured data and LLM response,
|
||
based on the original aquery logic to avoid duplicate calls.
|
||
|
||
Args:
|
||
query: Query text for retrieval and LLM generation.
|
||
param: Query parameters controlling retrieval and LLM behavior.
|
||
system_prompt: Optional custom system prompt for LLM generation.
|
||
|
||
Returns:
|
||
dict[str, Any]: Complete response with structured data and LLM response.
|
||
"""
|
||
logger.debug(f"[aquery_llm] Query param: {param}")
|
||
|
||
global_config = asdict(self)
|
||
|
||
try:
|
||
query_result = None
|
||
|
||
if param.mode in ["local", "global", "hybrid", "mix"]:
|
||
query_result = await kg_query(
|
||
query.strip(),
|
||
self.chunk_entity_relation_graph,
|
||
self.entities_vdb,
|
||
self.relationships_vdb,
|
||
self.text_chunks,
|
||
param,
|
||
global_config,
|
||
hashing_kv=self.llm_response_cache,
|
||
system_prompt=system_prompt,
|
||
chunks_vdb=self.chunks_vdb,
|
||
)
|
||
elif param.mode == "naive":
|
||
query_result = await naive_query(
|
||
query.strip(),
|
||
self.chunks_vdb,
|
||
param,
|
||
global_config,
|
||
hashing_kv=self.llm_response_cache,
|
||
system_prompt=system_prompt,
|
||
)
|
||
elif param.mode == "bypass":
|
||
# Bypass mode: directly use LLM without knowledge retrieval
|
||
use_llm_func = param.model_func or global_config["llm_model_func"]
|
||
# Apply higher priority (8) to entity/relation summary tasks
|
||
use_llm_func = partial(use_llm_func, _priority=8)
|
||
|
||
param.stream = True if param.stream is None else param.stream
|
||
response = await use_llm_func(
|
||
query.strip(),
|
||
system_prompt=system_prompt,
|
||
history_messages=param.conversation_history,
|
||
enable_cot=True,
|
||
stream=param.stream,
|
||
)
|
||
if type(response) is str:
|
||
return {
|
||
"status": "success",
|
||
"message": "Bypass mode LLM non streaming response",
|
||
"data": {},
|
||
"metadata": {},
|
||
"llm_response": {
|
||
"content": response,
|
||
"response_iterator": None,
|
||
"is_streaming": False,
|
||
},
|
||
}
|
||
else:
|
||
return {
|
||
"status": "success",
|
||
"message": "Bypass mode LLM streaming response",
|
||
"data": {},
|
||
"metadata": {},
|
||
"llm_response": {
|
||
"content": None,
|
||
"response_iterator": response,
|
||
"is_streaming": True,
|
||
},
|
||
}
|
||
else:
|
||
raise ValueError(f"Unknown mode {param.mode}")
|
||
|
||
await self._query_done()
|
||
|
||
# Check if query_result is None
|
||
if query_result is None:
|
||
return {
|
||
"status": "failure",
|
||
"message": "Query returned no results",
|
||
"data": {},
|
||
"metadata": {
|
||
"failure_reason": "no_results",
|
||
"mode": param.mode,
|
||
},
|
||
"llm_response": {
|
||
"content": PROMPTS["fail_response"],
|
||
"response_iterator": None,
|
||
"is_streaming": False,
|
||
},
|
||
}
|
||
|
||
# Extract structured data from query result
|
||
raw_data = query_result.raw_data or {}
|
||
raw_data["llm_response"] = {
|
||
"content": query_result.content
|
||
if not query_result.is_streaming
|
||
else None,
|
||
"response_iterator": query_result.response_iterator
|
||
if query_result.is_streaming
|
||
else None,
|
||
"is_streaming": query_result.is_streaming,
|
||
}
|
||
|
||
return raw_data
|
||
|
||
except Exception as e:
|
||
logger.error(f"Query failed: {e}")
|
||
# Return error response
|
||
return {
|
||
"status": "failure",
|
||
"message": f"Query failed: {str(e)}",
|
||
"data": {},
|
||
"metadata": {},
|
||
"llm_response": {
|
||
"content": None,
|
||
"response_iterator": None,
|
||
"is_streaming": False,
|
||
},
|
||
}
|
||
|
||
def query_llm(
|
||
self,
|
||
query: str,
|
||
param: QueryParam = QueryParam(),
|
||
system_prompt: str | None = None,
|
||
) -> dict[str, Any]:
|
||
"""
|
||
Synchronous complete query API: returns structured retrieval results with LLM generation.
|
||
|
||
This function is the synchronous version of aquery_llm, providing the same functionality
|
||
for users who prefer synchronous interfaces.
|
||
|
||
Args:
|
||
query: Query text for retrieval and LLM generation.
|
||
param: Query parameters controlling retrieval and LLM behavior.
|
||
system_prompt: Optional custom system prompt for LLM generation.
|
||
|
||
Returns:
|
||
dict[str, Any]: Same complete response format as aquery_llm.
|
||
"""
|
||
loop = always_get_an_event_loop()
|
||
return loop.run_until_complete(self.aquery_llm(query, param, system_prompt))
|
||
|
||
async def _query_done(self):
|
||
await self.llm_response_cache.index_done_callback()
|
||
|
||
async def aclear_cache(self) -> None:
|
||
"""Clear all cache data from the LLM response cache storage.
|
||
|
||
This method clears all cached LLM responses regardless of mode.
|
||
|
||
Example:
|
||
# Clear all cache
|
||
await rag.aclear_cache()
|
||
"""
|
||
if not self.llm_response_cache:
|
||
logger.warning("No cache storage configured")
|
||
return
|
||
|
||
try:
|
||
# Clear all cache using drop method
|
||
success = await self.llm_response_cache.drop()
|
||
if success:
|
||
logger.info("Cleared all cache")
|
||
else:
|
||
logger.warning("Failed to clear all cache")
|
||
|
||
await self.llm_response_cache.index_done_callback()
|
||
|
||
except Exception as e:
|
||
logger.error(f"Error while clearing cache: {e}")
|
||
|
||
def clear_cache(self) -> None:
|
||
"""Synchronous version of aclear_cache."""
|
||
return always_get_an_event_loop().run_until_complete(self.aclear_cache())
|
||
|
||
async def get_docs_by_status(
|
||
self, status: DocStatus
|
||
) -> dict[str, DocProcessingStatus]:
|
||
"""Get documents by status
|
||
|
||
Returns:
|
||
Dict with document id is keys and document status is values
|
||
"""
|
||
return await self.doc_status.get_docs_by_status(status)
|
||
|
||
async def aget_docs_by_ids(
|
||
self, ids: str | list[str]
|
||
) -> dict[str, DocProcessingStatus]:
|
||
"""Retrieves the processing status for one or more documents by their IDs.
|
||
|
||
Args:
|
||
ids: A single document ID (string) or a list of document IDs (list of strings).
|
||
|
||
Returns:
|
||
A dictionary where keys are the document IDs for which a status was found,
|
||
and values are the corresponding DocProcessingStatus objects. IDs that
|
||
are not found in the storage will be omitted from the result dictionary.
|
||
"""
|
||
if isinstance(ids, str):
|
||
# Ensure input is always a list of IDs for uniform processing
|
||
id_list = [ids]
|
||
elif (
|
||
ids is None
|
||
): # Handle potential None input gracefully, although type hint suggests str/list
|
||
logger.warning(
|
||
"aget_docs_by_ids called with None input, returning empty dict."
|
||
)
|
||
return {}
|
||
else:
|
||
# Assume input is already a list if not a string
|
||
id_list = ids
|
||
|
||
# Return early if the final list of IDs is empty
|
||
if not id_list:
|
||
logger.debug("aget_docs_by_ids called with an empty list of IDs.")
|
||
return {}
|
||
|
||
# Create tasks to fetch document statuses concurrently using the doc_status storage
|
||
tasks = [self.doc_status.get_by_id(doc_id) for doc_id in id_list]
|
||
# Execute tasks concurrently and gather the results. Results maintain order.
|
||
# Type hint indicates results can be DocProcessingStatus or None if not found.
|
||
results_list: list[Optional[DocProcessingStatus]] = await asyncio.gather(*tasks)
|
||
|
||
# Build the result dictionary, mapping found IDs to their statuses
|
||
found_statuses: dict[str, DocProcessingStatus] = {}
|
||
# Keep track of IDs for which no status was found (for logging purposes)
|
||
not_found_ids: list[str] = []
|
||
|
||
# Iterate through the results, correlating them back to the original IDs
|
||
for i, status_obj in enumerate(results_list):
|
||
doc_id = id_list[
|
||
i
|
||
] # Get the original ID corresponding to this result index
|
||
if status_obj:
|
||
# If a status object was returned (not None), add it to the result dict
|
||
found_statuses[doc_id] = status_obj
|
||
else:
|
||
# If status_obj is None, the document ID was not found in storage
|
||
not_found_ids.append(doc_id)
|
||
|
||
# Log a warning if any of the requested document IDs were not found
|
||
if not_found_ids:
|
||
logger.warning(
|
||
f"Document statuses not found for the following IDs: {not_found_ids}"
|
||
)
|
||
|
||
# Return the dictionary containing statuses only for the found document IDs
|
||
return found_statuses
|
||
|
||
async def adelete_by_doc_id(
|
||
self, doc_id: str, delete_llm_cache: bool = False
|
||
) -> DeletionResult:
|
||
"""Delete a document and all its related data, including chunks, graph elements.
|
||
|
||
This method orchestrates a comprehensive deletion process for a given document ID.
|
||
It ensures that not only the document itself but also all its derived and associated
|
||
data across different storage layers are removed or rebuiled. If entities or relationships
|
||
are partially affected, they will be rebuilded using LLM cached from remaining documents.
|
||
|
||
Args:
|
||
doc_id (str): The unique identifier of the document to be deleted.
|
||
delete_llm_cache (bool): Whether to delete cached LLM extraction results
|
||
associated with the document. Defaults to False.
|
||
|
||
Returns:
|
||
DeletionResult: An object containing the outcome of the deletion process.
|
||
- `status` (str): "success", "not_found", or "failure".
|
||
- `doc_id` (str): The ID of the document attempted to be deleted.
|
||
- `message` (str): A summary of the operation's result.
|
||
- `status_code` (int): HTTP status code (e.g., 200, 404, 500).
|
||
- `file_path` (str | None): The file path of the deleted document, if available.
|
||
"""
|
||
deletion_operations_started = False
|
||
original_exception = None
|
||
doc_llm_cache_ids: list[str] = []
|
||
|
||
# Get pipeline status shared data and lock for status updates
|
||
pipeline_status = await get_namespace_data("pipeline_status")
|
||
pipeline_status_lock = get_pipeline_status_lock()
|
||
|
||
async with pipeline_status_lock:
|
||
log_message = f"Starting deletion process for document {doc_id}"
|
||
logger.info(log_message)
|
||
pipeline_status["latest_message"] = log_message
|
||
pipeline_status["history_messages"].append(log_message)
|
||
|
||
try:
|
||
# 1. Get the document status and related data
|
||
doc_status_data = await self.doc_status.get_by_id(doc_id)
|
||
file_path = doc_status_data.get("file_path") if doc_status_data else None
|
||
if not doc_status_data:
|
||
logger.warning(f"Document {doc_id} not found")
|
||
return DeletionResult(
|
||
status="not_found",
|
||
doc_id=doc_id,
|
||
message=f"Document {doc_id} not found.",
|
||
status_code=404,
|
||
file_path="",
|
||
)
|
||
|
||
# Check document status and log warning for non-completed documents
|
||
raw_status = doc_status_data.get("status")
|
||
try:
|
||
doc_status = DocStatus(raw_status)
|
||
except ValueError:
|
||
doc_status = raw_status
|
||
|
||
if doc_status != DocStatus.PROCESSED:
|
||
if doc_status == DocStatus.PENDING:
|
||
warning_msg = (
|
||
f"Deleting {doc_id} {file_path}(previous status: PENDING)"
|
||
)
|
||
elif doc_status == DocStatus.PROCESSING:
|
||
warning_msg = (
|
||
f"Deleting {doc_id} {file_path}(previous status: PROCESSING)"
|
||
)
|
||
elif doc_status == DocStatus.PREPROCESSED:
|
||
warning_msg = (
|
||
f"Deleting {doc_id} {file_path}(previous status: PREPROCESSED)"
|
||
)
|
||
elif doc_status == DocStatus.FAILED:
|
||
warning_msg = (
|
||
f"Deleting {doc_id} {file_path}(previous status: FAILED)"
|
||
)
|
||
else:
|
||
status_text = (
|
||
doc_status.value
|
||
if isinstance(doc_status, DocStatus)
|
||
else str(doc_status)
|
||
)
|
||
warning_msg = (
|
||
f"Deleting {doc_id} {file_path}(previous status: {status_text})"
|
||
)
|
||
logger.info(warning_msg)
|
||
# Update pipeline status for monitoring
|
||
async with pipeline_status_lock:
|
||
pipeline_status["latest_message"] = warning_msg
|
||
pipeline_status["history_messages"].append(warning_msg)
|
||
|
||
# 2. Get chunk IDs from document status
|
||
chunk_ids = set(doc_status_data.get("chunks_list", []))
|
||
|
||
if not chunk_ids:
|
||
logger.warning(f"No chunks found for document {doc_id}")
|
||
# Mark that deletion operations have started
|
||
deletion_operations_started = True
|
||
try:
|
||
# Still need to delete the doc status and full doc
|
||
await self.full_docs.delete([doc_id])
|
||
await self.doc_status.delete([doc_id])
|
||
except Exception as e:
|
||
logger.error(
|
||
f"Failed to delete document {doc_id} with no chunks: {e}"
|
||
)
|
||
raise Exception(f"Failed to delete document entry: {e}") from e
|
||
|
||
async with pipeline_status_lock:
|
||
log_message = (
|
||
f"Document deleted without associated chunks: {doc_id}"
|
||
)
|
||
logger.info(log_message)
|
||
pipeline_status["latest_message"] = log_message
|
||
pipeline_status["history_messages"].append(log_message)
|
||
|
||
return DeletionResult(
|
||
status="success",
|
||
doc_id=doc_id,
|
||
message=log_message,
|
||
status_code=200,
|
||
file_path=file_path,
|
||
)
|
||
|
||
# Mark that deletion operations have started
|
||
deletion_operations_started = True
|
||
|
||
if delete_llm_cache and chunk_ids:
|
||
if not self.llm_response_cache:
|
||
logger.info(
|
||
"Skipping LLM cache collection for document %s because cache storage is unavailable",
|
||
doc_id,
|
||
)
|
||
elif not self.text_chunks:
|
||
logger.info(
|
||
"Skipping LLM cache collection for document %s because text chunk storage is unavailable",
|
||
doc_id,
|
||
)
|
||
else:
|
||
try:
|
||
chunk_data_list = await self.text_chunks.get_by_ids(
|
||
list(chunk_ids)
|
||
)
|
||
seen_cache_ids: set[str] = set()
|
||
for chunk_data in chunk_data_list:
|
||
if not chunk_data or not isinstance(chunk_data, dict):
|
||
continue
|
||
cache_ids = chunk_data.get("llm_cache_list", [])
|
||
if not isinstance(cache_ids, list):
|
||
continue
|
||
for cache_id in cache_ids:
|
||
if (
|
||
isinstance(cache_id, str)
|
||
and cache_id
|
||
and cache_id not in seen_cache_ids
|
||
):
|
||
doc_llm_cache_ids.append(cache_id)
|
||
seen_cache_ids.add(cache_id)
|
||
if doc_llm_cache_ids:
|
||
logger.info(
|
||
"Collected %d LLM cache entries for document %s",
|
||
len(doc_llm_cache_ids),
|
||
doc_id,
|
||
)
|
||
else:
|
||
logger.info(
|
||
"No LLM cache entries found for document %s", doc_id
|
||
)
|
||
except Exception as cache_collect_error:
|
||
logger.error(
|
||
"Failed to collect LLM cache ids for document %s: %s",
|
||
doc_id,
|
||
cache_collect_error,
|
||
)
|
||
raise Exception(
|
||
f"Failed to collect LLM cache ids for document {doc_id}: {cache_collect_error}"
|
||
) from cache_collect_error
|
||
|
||
# 4. Analyze entities and relationships that will be affected
|
||
entities_to_delete = set()
|
||
entities_to_rebuild = {} # entity_name -> remaining chunk id list
|
||
relationships_to_delete = set()
|
||
relationships_to_rebuild = {} # (src, tgt) -> remaining chunk id list
|
||
entity_chunk_updates: dict[str, list[str]] = {}
|
||
relation_chunk_updates: dict[tuple[str, str], list[str]] = {}
|
||
|
||
try:
|
||
# Get affected entities and relations from full_entities and full_relations storage
|
||
doc_entities_data = await self.full_entities.get_by_id(doc_id)
|
||
doc_relations_data = await self.full_relations.get_by_id(doc_id)
|
||
|
||
affected_nodes = []
|
||
affected_edges = []
|
||
|
||
# Get entity data from graph storage using entity names from full_entities
|
||
if doc_entities_data and "entity_names" in doc_entities_data:
|
||
entity_names = doc_entities_data["entity_names"]
|
||
# get_nodes_batch returns dict[str, dict], need to convert to list[dict]
|
||
nodes_dict = await self.chunk_entity_relation_graph.get_nodes_batch(
|
||
entity_names
|
||
)
|
||
for entity_name in entity_names:
|
||
node_data = nodes_dict.get(entity_name)
|
||
if node_data:
|
||
# Ensure compatibility with existing logic that expects "id" field
|
||
if "id" not in node_data:
|
||
node_data["id"] = entity_name
|
||
affected_nodes.append(node_data)
|
||
|
||
# Get relation data from graph storage using relation pairs from full_relations
|
||
if doc_relations_data and "relation_pairs" in doc_relations_data:
|
||
relation_pairs = doc_relations_data["relation_pairs"]
|
||
edge_pairs_dicts = [
|
||
{"src": pair[0], "tgt": pair[1]} for pair in relation_pairs
|
||
]
|
||
# get_edges_batch returns dict[tuple[str, str], dict], need to convert to list[dict]
|
||
edges_dict = await self.chunk_entity_relation_graph.get_edges_batch(
|
||
edge_pairs_dicts
|
||
)
|
||
|
||
for pair in relation_pairs:
|
||
src, tgt = pair[0], pair[1]
|
||
edge_key = (src, tgt)
|
||
edge_data = edges_dict.get(edge_key)
|
||
if edge_data:
|
||
# Ensure compatibility with existing logic that expects "source" and "target" fields
|
||
if "source" not in edge_data:
|
||
edge_data["source"] = src
|
||
if "target" not in edge_data:
|
||
edge_data["target"] = tgt
|
||
affected_edges.append(edge_data)
|
||
|
||
except Exception as e:
|
||
logger.error(f"Failed to analyze affected graph elements: {e}")
|
||
raise Exception(f"Failed to analyze graph dependencies: {e}") from e
|
||
|
||
try:
|
||
# Process entities
|
||
for node_data in affected_nodes:
|
||
node_label = node_data.get("entity_id")
|
||
if not node_label:
|
||
continue
|
||
|
||
existing_sources: list[str] = []
|
||
if self.entity_chunks:
|
||
stored_chunks = await self.entity_chunks.get_by_id(node_label)
|
||
if stored_chunks and isinstance(stored_chunks, dict):
|
||
existing_sources = [
|
||
chunk_id
|
||
for chunk_id in stored_chunks.get("chunk_ids", [])
|
||
if chunk_id
|
||
]
|
||
|
||
if not existing_sources and node_data.get("source_id"):
|
||
existing_sources = [
|
||
chunk_id
|
||
for chunk_id in node_data["source_id"].split(
|
||
GRAPH_FIELD_SEP
|
||
)
|
||
if chunk_id
|
||
]
|
||
|
||
if not existing_sources:
|
||
continue
|
||
|
||
remaining_sources = subtract_source_ids(existing_sources, chunk_ids)
|
||
|
||
if not remaining_sources:
|
||
entities_to_delete.add(node_label)
|
||
entity_chunk_updates[node_label] = []
|
||
elif remaining_sources != existing_sources:
|
||
entities_to_rebuild[node_label] = remaining_sources
|
||
entity_chunk_updates[node_label] = remaining_sources
|
||
else:
|
||
logger.info(f"Untouch entity: {node_label}")
|
||
|
||
async with pipeline_status_lock:
|
||
log_message = f"Found {len(entities_to_rebuild)} affected entities"
|
||
logger.info(log_message)
|
||
pipeline_status["latest_message"] = log_message
|
||
pipeline_status["history_messages"].append(log_message)
|
||
|
||
# Process relationships
|
||
for edge_data in affected_edges:
|
||
src = edge_data.get("source")
|
||
tgt = edge_data.get("target")
|
||
|
||
if not src or not tgt or "source_id" not in edge_data:
|
||
continue
|
||
|
||
edge_tuple = tuple(sorted((src, tgt)))
|
||
if (
|
||
edge_tuple in relationships_to_delete
|
||
or edge_tuple in relationships_to_rebuild
|
||
):
|
||
continue
|
||
|
||
existing_sources: list[str] = []
|
||
if self.relation_chunks:
|
||
storage_key = make_relation_chunk_key(src, tgt)
|
||
stored_chunks = await self.relation_chunks.get_by_id(
|
||
storage_key
|
||
)
|
||
if stored_chunks and isinstance(stored_chunks, dict):
|
||
existing_sources = [
|
||
chunk_id
|
||
for chunk_id in stored_chunks.get("chunk_ids", [])
|
||
if chunk_id
|
||
]
|
||
|
||
if not existing_sources:
|
||
existing_sources = [
|
||
chunk_id
|
||
for chunk_id in edge_data["source_id"].split(
|
||
GRAPH_FIELD_SEP
|
||
)
|
||
if chunk_id
|
||
]
|
||
|
||
if not existing_sources:
|
||
continue
|
||
|
||
remaining_sources = subtract_source_ids(existing_sources, chunk_ids)
|
||
|
||
if not remaining_sources:
|
||
relationships_to_delete.add(edge_tuple)
|
||
relation_chunk_updates[edge_tuple] = []
|
||
elif remaining_sources != existing_sources:
|
||
relationships_to_rebuild[edge_tuple] = remaining_sources
|
||
relation_chunk_updates[edge_tuple] = remaining_sources
|
||
else:
|
||
logger.info(f"Untouch relation: {edge_tuple}")
|
||
|
||
async with pipeline_status_lock:
|
||
log_message = (
|
||
f"Found {len(relationships_to_rebuild)} affected relations"
|
||
)
|
||
logger.info(log_message)
|
||
pipeline_status["latest_message"] = log_message
|
||
pipeline_status["history_messages"].append(log_message)
|
||
|
||
current_time = int(time.time())
|
||
|
||
if entity_chunk_updates and self.entity_chunks:
|
||
entity_upsert_payload = {}
|
||
entity_delete_ids: set[str] = set()
|
||
for entity_name, remaining in entity_chunk_updates.items():
|
||
if not remaining:
|
||
entity_delete_ids.add(entity_name)
|
||
else:
|
||
entity_upsert_payload[entity_name] = {
|
||
"chunk_ids": remaining,
|
||
"count": len(remaining),
|
||
"updated_at": current_time,
|
||
}
|
||
|
||
if entity_delete_ids:
|
||
await self.entity_chunks.delete(list(entity_delete_ids))
|
||
if entity_upsert_payload:
|
||
await self.entity_chunks.upsert(entity_upsert_payload)
|
||
|
||
if relation_chunk_updates and self.relation_chunks:
|
||
relation_upsert_payload = {}
|
||
relation_delete_ids: set[str] = set()
|
||
for edge_tuple, remaining in relation_chunk_updates.items():
|
||
storage_key = make_relation_chunk_key(*edge_tuple)
|
||
if not remaining:
|
||
relation_delete_ids.add(storage_key)
|
||
else:
|
||
relation_upsert_payload[storage_key] = {
|
||
"chunk_ids": remaining,
|
||
"count": len(remaining),
|
||
"updated_at": current_time,
|
||
}
|
||
|
||
if relation_delete_ids:
|
||
await self.relation_chunks.delete(list(relation_delete_ids))
|
||
if relation_upsert_payload:
|
||
await self.relation_chunks.upsert(relation_upsert_payload)
|
||
|
||
except Exception as e:
|
||
logger.error(f"Failed to process graph analysis results: {e}")
|
||
raise Exception(f"Failed to process graph dependencies: {e}") from e
|
||
|
||
# Use graph database lock to prevent dirty read
|
||
graph_db_lock = get_graph_db_lock(enable_logging=False)
|
||
async with graph_db_lock:
|
||
# 5. Delete chunks from storage
|
||
if chunk_ids:
|
||
try:
|
||
await self.chunks_vdb.delete(chunk_ids)
|
||
await self.text_chunks.delete(chunk_ids)
|
||
|
||
async with pipeline_status_lock:
|
||
log_message = f"Successfully deleted {len(chunk_ids)} chunks from storage"
|
||
logger.info(log_message)
|
||
pipeline_status["latest_message"] = log_message
|
||
pipeline_status["history_messages"].append(log_message)
|
||
|
||
except Exception as e:
|
||
logger.error(f"Failed to delete chunks: {e}")
|
||
raise Exception(f"Failed to delete document chunks: {e}") from e
|
||
|
||
# 6. Delete entities that have no remaining sources
|
||
if entities_to_delete:
|
||
try:
|
||
# Delete from vector database
|
||
entity_vdb_ids = [
|
||
compute_mdhash_id(entity, prefix="ent-")
|
||
for entity in entities_to_delete
|
||
]
|
||
await self.entities_vdb.delete(entity_vdb_ids)
|
||
|
||
# Delete from graph
|
||
await self.chunk_entity_relation_graph.remove_nodes(
|
||
list(entities_to_delete)
|
||
)
|
||
|
||
# Delete from entity_chunks storage
|
||
if self.entity_chunks:
|
||
await self.entity_chunks.delete(list(entities_to_delete))
|
||
|
||
async with pipeline_status_lock:
|
||
log_message = f"Successfully deleted {len(entities_to_delete)} entities"
|
||
logger.info(log_message)
|
||
pipeline_status["latest_message"] = log_message
|
||
pipeline_status["history_messages"].append(log_message)
|
||
|
||
except Exception as e:
|
||
logger.error(f"Failed to delete entities: {e}")
|
||
raise Exception(f"Failed to delete entities: {e}") from e
|
||
|
||
# 7. Delete relationships that have no remaining sources
|
||
if relationships_to_delete:
|
||
try:
|
||
# Delete from vector database
|
||
rel_ids_to_delete = []
|
||
for src, tgt in relationships_to_delete:
|
||
rel_ids_to_delete.extend(
|
||
[
|
||
compute_mdhash_id(src + tgt, prefix="rel-"),
|
||
compute_mdhash_id(tgt + src, prefix="rel-"),
|
||
]
|
||
)
|
||
await self.relationships_vdb.delete(rel_ids_to_delete)
|
||
|
||
# Delete from graph
|
||
await self.chunk_entity_relation_graph.remove_edges(
|
||
list(relationships_to_delete)
|
||
)
|
||
|
||
# Delete from relation_chunks storage
|
||
if self.relation_chunks:
|
||
relation_storage_keys = [
|
||
make_relation_chunk_key(src, tgt)
|
||
for src, tgt in relationships_to_delete
|
||
]
|
||
await self.relation_chunks.delete(relation_storage_keys)
|
||
|
||
async with pipeline_status_lock:
|
||
log_message = f"Successfully deleted {len(relationships_to_delete)} relations"
|
||
logger.info(log_message)
|
||
pipeline_status["latest_message"] = log_message
|
||
pipeline_status["history_messages"].append(log_message)
|
||
|
||
except Exception as e:
|
||
logger.error(f"Failed to delete relationships: {e}")
|
||
raise Exception(f"Failed to delete relationships: {e}") from e
|
||
|
||
# Persist changes to graph database before releasing graph database lock
|
||
await self._insert_done()
|
||
|
||
# 8. Rebuild entities and relationships from remaining chunks
|
||
if entities_to_rebuild or relationships_to_rebuild:
|
||
try:
|
||
await rebuild_knowledge_from_chunks(
|
||
entities_to_rebuild=entities_to_rebuild,
|
||
relationships_to_rebuild=relationships_to_rebuild,
|
||
knowledge_graph_inst=self.chunk_entity_relation_graph,
|
||
entities_vdb=self.entities_vdb,
|
||
relationships_vdb=self.relationships_vdb,
|
||
text_chunks_storage=self.text_chunks,
|
||
llm_response_cache=self.llm_response_cache,
|
||
global_config=asdict(self),
|
||
pipeline_status=pipeline_status,
|
||
pipeline_status_lock=pipeline_status_lock,
|
||
entity_chunks_storage=self.entity_chunks,
|
||
relation_chunks_storage=self.relation_chunks,
|
||
)
|
||
|
||
except Exception as e:
|
||
logger.error(f"Failed to rebuild knowledge from chunks: {e}")
|
||
raise Exception(f"Failed to rebuild knowledge graph: {e}") from e
|
||
|
||
# 9. Delete from full_entities and full_relations storage
|
||
try:
|
||
await self.full_entities.delete([doc_id])
|
||
await self.full_relations.delete([doc_id])
|
||
except Exception as e:
|
||
logger.error(f"Failed to delete from full_entities/full_relations: {e}")
|
||
raise Exception(
|
||
f"Failed to delete from full_entities/full_relations: {e}"
|
||
) from e
|
||
|
||
# 10. Delete original document and status
|
||
try:
|
||
await self.full_docs.delete([doc_id])
|
||
await self.doc_status.delete([doc_id])
|
||
except Exception as e:
|
||
logger.error(f"Failed to delete document and status: {e}")
|
||
raise Exception(f"Failed to delete document and status: {e}") from e
|
||
|
||
if delete_llm_cache and doc_llm_cache_ids and self.llm_response_cache:
|
||
try:
|
||
await self.llm_response_cache.delete(doc_llm_cache_ids)
|
||
cache_log_message = f"Successfully deleted {len(doc_llm_cache_ids)} LLM cache entries for document {doc_id}"
|
||
logger.info(cache_log_message)
|
||
async with pipeline_status_lock:
|
||
pipeline_status["latest_message"] = cache_log_message
|
||
pipeline_status["history_messages"].append(cache_log_message)
|
||
log_message = cache_log_message
|
||
except Exception as cache_delete_error:
|
||
log_message = f"Failed to delete LLM cache for document {doc_id}: {cache_delete_error}"
|
||
logger.error(log_message)
|
||
logger.error(traceback.format_exc())
|
||
async with pipeline_status_lock:
|
||
pipeline_status["latest_message"] = log_message
|
||
pipeline_status["history_messages"].append(log_message)
|
||
|
||
return DeletionResult(
|
||
status="success",
|
||
doc_id=doc_id,
|
||
message=log_message,
|
||
status_code=200,
|
||
file_path=file_path,
|
||
)
|
||
|
||
except Exception as e:
|
||
original_exception = e
|
||
error_message = f"Error while deleting document {doc_id}: {e}"
|
||
logger.error(error_message)
|
||
logger.error(traceback.format_exc())
|
||
return DeletionResult(
|
||
status="fail",
|
||
doc_id=doc_id,
|
||
message=error_message,
|
||
status_code=500,
|
||
file_path=file_path,
|
||
)
|
||
|
||
finally:
|
||
# ALWAYS ensure persistence if any deletion operations were started
|
||
if deletion_operations_started:
|
||
try:
|
||
await self._insert_done()
|
||
except Exception as persistence_error:
|
||
persistence_error_msg = f"Failed to persist data after deletion attempt for {doc_id}: {persistence_error}"
|
||
logger.error(persistence_error_msg)
|
||
logger.error(traceback.format_exc())
|
||
|
||
# If there was no original exception, this persistence error becomes the main error
|
||
if original_exception is None:
|
||
return DeletionResult(
|
||
status="fail",
|
||
doc_id=doc_id,
|
||
message=f"Deletion completed but failed to persist changes: {persistence_error}",
|
||
status_code=500,
|
||
file_path=file_path,
|
||
)
|
||
# If there was an original exception, log the persistence error but don't override the original error
|
||
# The original error result was already returned in the except block
|
||
else:
|
||
logger.debug(
|
||
f"No deletion operations were started for document {doc_id}, skipping persistence"
|
||
)
|
||
|
||
async def adelete_by_entity(self, entity_name: str) -> DeletionResult:
|
||
"""Asynchronously delete an entity and all its relationships.
|
||
|
||
Args:
|
||
entity_name: Name of the entity to delete.
|
||
|
||
Returns:
|
||
DeletionResult: An object containing the outcome of the deletion process.
|
||
"""
|
||
from lightrag.utils_graph import adelete_by_entity
|
||
|
||
return await adelete_by_entity(
|
||
self.chunk_entity_relation_graph,
|
||
self.entities_vdb,
|
||
self.relationships_vdb,
|
||
entity_name,
|
||
)
|
||
|
||
def delete_by_entity(self, entity_name: str) -> DeletionResult:
|
||
"""Synchronously delete an entity and all its relationships.
|
||
|
||
Args:
|
||
entity_name: Name of the entity to delete.
|
||
|
||
Returns:
|
||
DeletionResult: An object containing the outcome of the deletion process.
|
||
"""
|
||
loop = always_get_an_event_loop()
|
||
return loop.run_until_complete(self.adelete_by_entity(entity_name))
|
||
|
||
async def adelete_by_relation(
|
||
self, source_entity: str, target_entity: str
|
||
) -> DeletionResult:
|
||
"""Asynchronously delete a relation between two entities.
|
||
|
||
Args:
|
||
source_entity: Name of the source entity.
|
||
target_entity: Name of the target entity.
|
||
|
||
Returns:
|
||
DeletionResult: An object containing the outcome of the deletion process.
|
||
"""
|
||
from lightrag.utils_graph import adelete_by_relation
|
||
|
||
return await adelete_by_relation(
|
||
self.chunk_entity_relation_graph,
|
||
self.relationships_vdb,
|
||
source_entity,
|
||
target_entity,
|
||
)
|
||
|
||
def delete_by_relation(
|
||
self, source_entity: str, target_entity: str
|
||
) -> DeletionResult:
|
||
"""Synchronously delete a relation between two entities.
|
||
|
||
Args:
|
||
source_entity: Name of the source entity.
|
||
target_entity: Name of the target entity.
|
||
|
||
Returns:
|
||
DeletionResult: An object containing the outcome of the deletion process.
|
||
"""
|
||
loop = always_get_an_event_loop()
|
||
return loop.run_until_complete(
|
||
self.adelete_by_relation(source_entity, target_entity)
|
||
)
|
||
|
||
async def get_processing_status(self) -> dict[str, int]:
|
||
"""Get current document processing status counts
|
||
|
||
Returns:
|
||
Dict with counts for each status
|
||
"""
|
||
return await self.doc_status.get_status_counts()
|
||
|
||
async def aget_docs_by_track_id(
|
||
self, track_id: str
|
||
) -> dict[str, DocProcessingStatus]:
|
||
"""Get documents by track_id
|
||
|
||
Args:
|
||
track_id: The tracking ID to search for
|
||
|
||
Returns:
|
||
Dict with document id as keys and document status as values
|
||
"""
|
||
return await self.doc_status.get_docs_by_track_id(track_id)
|
||
|
||
async def get_entity_info(
|
||
self, entity_name: str, include_vector_data: bool = False
|
||
) -> dict[str, str | None | dict[str, str]]:
|
||
"""Get detailed information of an entity"""
|
||
from lightrag.utils_graph import get_entity_info
|
||
|
||
return await get_entity_info(
|
||
self.chunk_entity_relation_graph,
|
||
self.entities_vdb,
|
||
entity_name,
|
||
include_vector_data,
|
||
)
|
||
|
||
async def get_relation_info(
|
||
self, src_entity: str, tgt_entity: str, include_vector_data: bool = False
|
||
) -> dict[str, str | None | dict[str, str]]:
|
||
"""Get detailed information of a relationship"""
|
||
from lightrag.utils_graph import get_relation_info
|
||
|
||
return await get_relation_info(
|
||
self.chunk_entity_relation_graph,
|
||
self.relationships_vdb,
|
||
src_entity,
|
||
tgt_entity,
|
||
include_vector_data,
|
||
)
|
||
|
||
async def aedit_entity(
|
||
self,
|
||
entity_name: str,
|
||
updated_data: dict[str, str],
|
||
allow_rename: bool = True,
|
||
allow_merge: bool = False,
|
||
) -> dict[str, Any]:
|
||
"""Asynchronously edit entity information.
|
||
|
||
Updates entity information in the knowledge graph and re-embeds the entity in the vector database.
|
||
Also synchronizes entity_chunks_storage and relation_chunks_storage to track chunk references.
|
||
|
||
Args:
|
||
entity_name: Name of the entity to edit
|
||
updated_data: Dictionary containing updated attributes, e.g. {"description": "new description", "entity_type": "new type"}
|
||
allow_rename: Whether to allow entity renaming, defaults to True
|
||
allow_merge: Whether to merge into an existing entity when renaming to an existing name
|
||
|
||
Returns:
|
||
Dictionary containing updated entity information
|
||
"""
|
||
from lightrag.utils_graph import aedit_entity
|
||
|
||
return await aedit_entity(
|
||
self.chunk_entity_relation_graph,
|
||
self.entities_vdb,
|
||
self.relationships_vdb,
|
||
entity_name,
|
||
updated_data,
|
||
allow_rename,
|
||
allow_merge,
|
||
self.entity_chunks,
|
||
self.relation_chunks,
|
||
)
|
||
|
||
def edit_entity(
|
||
self,
|
||
entity_name: str,
|
||
updated_data: dict[str, str],
|
||
allow_rename: bool = True,
|
||
allow_merge: bool = False,
|
||
) -> dict[str, Any]:
|
||
loop = always_get_an_event_loop()
|
||
return loop.run_until_complete(
|
||
self.aedit_entity(entity_name, updated_data, allow_rename, allow_merge)
|
||
)
|
||
|
||
async def aedit_relation(
|
||
self, source_entity: str, target_entity: str, updated_data: dict[str, Any]
|
||
) -> dict[str, Any]:
|
||
"""Asynchronously edit relation information.
|
||
|
||
Updates relation (edge) information in the knowledge graph and re-embeds the relation in the vector database.
|
||
Also synchronizes the relation_chunks_storage to track which chunks reference this relation.
|
||
|
||
Args:
|
||
source_entity: Name of the source entity
|
||
target_entity: Name of the target entity
|
||
updated_data: Dictionary containing updated attributes, e.g. {"description": "new description", "keywords": "new keywords"}
|
||
|
||
Returns:
|
||
Dictionary containing updated relation information
|
||
"""
|
||
from lightrag.utils_graph import aedit_relation
|
||
|
||
return await aedit_relation(
|
||
self.chunk_entity_relation_graph,
|
||
self.entities_vdb,
|
||
self.relationships_vdb,
|
||
source_entity,
|
||
target_entity,
|
||
updated_data,
|
||
self.relation_chunks,
|
||
)
|
||
|
||
def edit_relation(
|
||
self, source_entity: str, target_entity: str, updated_data: dict[str, Any]
|
||
) -> dict[str, Any]:
|
||
loop = always_get_an_event_loop()
|
||
return loop.run_until_complete(
|
||
self.aedit_relation(source_entity, target_entity, updated_data)
|
||
)
|
||
|
||
async def acreate_entity(
|
||
self, entity_name: str, entity_data: dict[str, Any]
|
||
) -> dict[str, Any]:
|
||
"""Asynchronously create a new entity.
|
||
|
||
Creates a new entity in the knowledge graph and adds it to the vector database.
|
||
|
||
Args:
|
||
entity_name: Name of the new entity
|
||
entity_data: Dictionary containing entity attributes, e.g. {"description": "description", "entity_type": "type"}
|
||
|
||
Returns:
|
||
Dictionary containing created entity information
|
||
"""
|
||
from lightrag.utils_graph import acreate_entity
|
||
|
||
return await acreate_entity(
|
||
self.chunk_entity_relation_graph,
|
||
self.entities_vdb,
|
||
self.relationships_vdb,
|
||
entity_name,
|
||
entity_data,
|
||
)
|
||
|
||
def create_entity(
|
||
self, entity_name: str, entity_data: dict[str, Any]
|
||
) -> dict[str, Any]:
|
||
loop = always_get_an_event_loop()
|
||
return loop.run_until_complete(self.acreate_entity(entity_name, entity_data))
|
||
|
||
async def acreate_relation(
|
||
self, source_entity: str, target_entity: str, relation_data: dict[str, Any]
|
||
) -> dict[str, Any]:
|
||
"""Asynchronously create a new relation between entities.
|
||
|
||
Creates a new relation (edge) in the knowledge graph and adds it to the vector database.
|
||
|
||
Args:
|
||
source_entity: Name of the source entity
|
||
target_entity: Name of the target entity
|
||
relation_data: Dictionary containing relation attributes, e.g. {"description": "description", "keywords": "keywords"}
|
||
|
||
Returns:
|
||
Dictionary containing created relation information
|
||
"""
|
||
from lightrag.utils_graph import acreate_relation
|
||
|
||
return await acreate_relation(
|
||
self.chunk_entity_relation_graph,
|
||
self.entities_vdb,
|
||
self.relationships_vdb,
|
||
source_entity,
|
||
target_entity,
|
||
relation_data,
|
||
)
|
||
|
||
def create_relation(
|
||
self, source_entity: str, target_entity: str, relation_data: dict[str, Any]
|
||
) -> dict[str, Any]:
|
||
loop = always_get_an_event_loop()
|
||
return loop.run_until_complete(
|
||
self.acreate_relation(source_entity, target_entity, relation_data)
|
||
)
|
||
|
||
async def amerge_entities(
|
||
self,
|
||
source_entities: list[str],
|
||
target_entity: str,
|
||
merge_strategy: dict[str, str] = None,
|
||
target_entity_data: dict[str, Any] = None,
|
||
) -> dict[str, Any]:
|
||
"""Asynchronously merge multiple entities into one entity.
|
||
|
||
Merges multiple source entities into a target entity, handling all relationships,
|
||
and updating both the knowledge graph and vector database.
|
||
|
||
Args:
|
||
source_entities: List of source entity names to merge
|
||
target_entity: Name of the target entity after merging
|
||
merge_strategy: Merge strategy configuration, e.g. {"description": "concatenate", "entity_type": "keep_first"}
|
||
Supported strategies:
|
||
- "concatenate": Concatenate all values (for text fields)
|
||
- "keep_first": Keep the first non-empty value
|
||
- "keep_last": Keep the last non-empty value
|
||
- "join_unique": Join all unique values (for fields separated by delimiter)
|
||
target_entity_data: Dictionary of specific values to set for the target entity,
|
||
overriding any merged values, e.g. {"description": "custom description", "entity_type": "PERSON"}
|
||
|
||
Returns:
|
||
Dictionary containing the merged entity information
|
||
"""
|
||
from lightrag.utils_graph import amerge_entities
|
||
|
||
return await amerge_entities(
|
||
self.chunk_entity_relation_graph,
|
||
self.entities_vdb,
|
||
self.relationships_vdb,
|
||
source_entities,
|
||
target_entity,
|
||
merge_strategy,
|
||
target_entity_data,
|
||
self.entity_chunks,
|
||
self.relation_chunks,
|
||
)
|
||
|
||
def merge_entities(
|
||
self,
|
||
source_entities: list[str],
|
||
target_entity: str,
|
||
merge_strategy: dict[str, str] = None,
|
||
target_entity_data: dict[str, Any] = None,
|
||
) -> dict[str, Any]:
|
||
loop = always_get_an_event_loop()
|
||
return loop.run_until_complete(
|
||
self.amerge_entities(
|
||
source_entities, target_entity, merge_strategy, target_entity_data
|
||
)
|
||
)
|
||
|
||
async def aexport_data(
|
||
self,
|
||
output_path: str,
|
||
file_format: Literal["csv", "excel", "md", "txt"] = "csv",
|
||
include_vector_data: bool = False,
|
||
) -> None:
|
||
"""
|
||
Asynchronously exports all entities, relations, and relationships to various formats.
|
||
Args:
|
||
output_path: The path to the output file (including extension).
|
||
file_format: Output format - "csv", "excel", "md", "txt".
|
||
- csv: Comma-separated values file
|
||
- excel: Microsoft Excel file with multiple sheets
|
||
- md: Markdown tables
|
||
- txt: Plain text formatted output
|
||
- table: Print formatted tables to console
|
||
include_vector_data: Whether to include data from the vector database.
|
||
"""
|
||
from lightrag.utils import aexport_data as utils_aexport_data
|
||
|
||
await utils_aexport_data(
|
||
self.chunk_entity_relation_graph,
|
||
self.entities_vdb,
|
||
self.relationships_vdb,
|
||
output_path,
|
||
file_format,
|
||
include_vector_data,
|
||
)
|
||
|
||
def export_data(
|
||
self,
|
||
output_path: str,
|
||
file_format: Literal["csv", "excel", "md", "txt"] = "csv",
|
||
include_vector_data: bool = False,
|
||
) -> None:
|
||
"""
|
||
Synchronously exports all entities, relations, and relationships to various formats.
|
||
Args:
|
||
output_path: The path to the output file (including extension).
|
||
file_format: Output format - "csv", "excel", "md", "txt".
|
||
- csv: Comma-separated values file
|
||
- excel: Microsoft Excel file with multiple sheets
|
||
- md: Markdown tables
|
||
- txt: Plain text formatted output
|
||
- table: Print formatted tables to console
|
||
include_vector_data: Whether to include data from the vector database.
|
||
"""
|
||
try:
|
||
loop = asyncio.get_event_loop()
|
||
except RuntimeError:
|
||
loop = asyncio.new_event_loop()
|
||
asyncio.set_event_loop(loop)
|
||
|
||
loop.run_until_complete(
|
||
self.aexport_data(output_path, file_format, include_vector_data)
|
||
)
|