LightRAG/tests/test_postgres_migration.py
BukeLy 3b8a1e64b7 style: apply ruff formatting fixes to test files
Apply ruff-format fixes to 6 test files to pass pre-commit checks:
- test_dimension_mismatch.py
- test_e2e_multi_instance.py
- test_no_model_suffix_safety.py
- test_postgres_migration.py
- test_unified_lock_safety.py
- test_workspace_migration_isolation.py

Changes are primarily assert statement reformatting to match ruff style guide.
2025-11-23 16:59:02 +08:00

576 lines
19 KiB
Python

import pytest
from unittest.mock import patch, AsyncMock
import numpy as np
from lightrag.utils import EmbeddingFunc
from lightrag.kg.postgres_impl import (
PGVectorStorage,
)
from lightrag.namespace import NameSpace
# Mock PostgreSQLDB
@pytest.fixture
def mock_pg_db():
"""Mock PostgreSQL database connection"""
db = AsyncMock()
db.workspace = "test_workspace"
# Mock query responses with multirows support
async def mock_query(sql, params=None, multirows=False, **kwargs):
# Default return value
if multirows:
return [] # Return empty list for multirows
return {"exists": False, "count": 0}
# Mock for execute that mimics PostgreSQLDB.execute() behavior
async def mock_execute(sql, data=None, **kwargs):
"""
Mock that mimics PostgreSQLDB.execute() behavior:
- Accepts data as dict[str, Any] | None (second parameter)
- Internally converts dict.values() to tuple for AsyncPG
"""
# Mimic real execute() which accepts dict and converts to tuple
if data is not None and not isinstance(data, dict):
raise TypeError(
f"PostgreSQLDB.execute() expects data as dict, got {type(data).__name__}"
)
return None
db.query = AsyncMock(side_effect=mock_query)
db.execute = AsyncMock(side_effect=mock_execute)
return db
# Mock get_data_init_lock to avoid async lock issues in tests
@pytest.fixture(autouse=True)
def mock_data_init_lock():
with patch("lightrag.kg.postgres_impl.get_data_init_lock") as mock_lock:
mock_lock_ctx = AsyncMock()
mock_lock.return_value = mock_lock_ctx
yield mock_lock
# Mock ClientManager
@pytest.fixture
def mock_client_manager(mock_pg_db):
with patch("lightrag.kg.postgres_impl.ClientManager") as mock_manager:
mock_manager.get_client = AsyncMock(return_value=mock_pg_db)
mock_manager.release_client = AsyncMock()
yield mock_manager
# Mock Embedding function
@pytest.fixture
def mock_embedding_func():
async def embed_func(texts, **kwargs):
return np.array([[0.1] * 768 for _ in texts])
func = EmbeddingFunc(embedding_dim=768, func=embed_func, model_name="test_model")
return func
@pytest.mark.asyncio
async def test_postgres_table_naming(
mock_client_manager, mock_pg_db, mock_embedding_func
):
"""Test if table name is correctly generated with model suffix"""
config = {
"embedding_batch_num": 10,
"vector_db_storage_cls_kwargs": {"cosine_better_than_threshold": 0.8},
}
storage = PGVectorStorage(
namespace=NameSpace.VECTOR_STORE_CHUNKS,
global_config=config,
embedding_func=mock_embedding_func,
workspace="test_ws",
)
# Verify table name contains model suffix
expected_suffix = "test_model_768d"
assert expected_suffix in storage.table_name
assert storage.table_name == f"LIGHTRAG_VDB_CHUNKS_{expected_suffix}"
# Verify legacy table name
assert storage.legacy_table_name == "LIGHTRAG_VDB_CHUNKS"
@pytest.mark.asyncio
async def test_postgres_migration_trigger(
mock_client_manager, mock_pg_db, mock_embedding_func
):
"""Test if migration logic is triggered correctly"""
config = {
"embedding_batch_num": 10,
"vector_db_storage_cls_kwargs": {"cosine_better_than_threshold": 0.8},
}
storage = PGVectorStorage(
namespace=NameSpace.VECTOR_STORE_CHUNKS,
global_config=config,
embedding_func=mock_embedding_func,
workspace="test_ws",
)
# Setup mocks for migration scenario
# 1. New table does not exist, legacy table exists
async def mock_table_exists(db, table_name):
return table_name == storage.legacy_table_name
# 2. Legacy table has 100 records
mock_rows = [
{"id": f"test_id_{i}", "content": f"content_{i}", "workspace": "test_ws"}
for i in range(100)
]
async def mock_query(sql, params=None, multirows=False, **kwargs):
if "COUNT(*)" in sql:
return {"count": 100}
elif multirows and "SELECT *" in sql:
# Mock batch fetch for migration
# Handle workspace filtering: params = [workspace, offset, limit] or [offset, limit]
if "WHERE workspace" in sql:
# With workspace filter: params[0]=workspace, params[1]=offset, params[2]=limit
offset = params[1] if len(params) > 1 else 0
limit = params[2] if len(params) > 2 else 500
else:
# No workspace filter: params[0]=offset, params[1]=limit
offset = params[0] if params else 0
limit = params[1] if len(params) > 1 else 500
start = offset
end = min(offset + limit, len(mock_rows))
return mock_rows[start:end]
return {}
mock_pg_db.query = AsyncMock(side_effect=mock_query)
with (
patch(
"lightrag.kg.postgres_impl._pg_table_exists", side_effect=mock_table_exists
),
patch("lightrag.kg.postgres_impl._pg_create_table", AsyncMock()),
):
# Initialize storage (should trigger migration)
await storage.initialize()
# Verify migration was executed
# Check that execute was called for inserting rows
assert mock_pg_db.execute.call_count > 0
@pytest.mark.asyncio
async def test_postgres_no_migration_needed(
mock_client_manager, mock_pg_db, mock_embedding_func
):
"""Test scenario where new table already exists (no migration needed)"""
config = {
"embedding_batch_num": 10,
"vector_db_storage_cls_kwargs": {"cosine_better_than_threshold": 0.8},
}
storage = PGVectorStorage(
namespace=NameSpace.VECTOR_STORE_CHUNKS,
global_config=config,
embedding_func=mock_embedding_func,
workspace="test_ws",
)
# Mock: new table already exists
async def mock_table_exists(db, table_name):
return table_name == storage.table_name
with (
patch(
"lightrag.kg.postgres_impl._pg_table_exists", side_effect=mock_table_exists
),
patch("lightrag.kg.postgres_impl._pg_create_table", AsyncMock()) as mock_create,
):
await storage.initialize()
# Verify no table creation was attempted
mock_create.assert_not_called()
@pytest.mark.asyncio
async def test_scenario_1_new_workspace_creation(
mock_client_manager, mock_pg_db, mock_embedding_func
):
"""
Scenario 1: New workspace creation
Expected behavior:
- No legacy table exists
- Directly create new table with model suffix
- No migration needed
"""
config = {
"embedding_batch_num": 10,
"vector_db_storage_cls_kwargs": {"cosine_better_than_threshold": 0.8},
}
embedding_func = EmbeddingFunc(
embedding_dim=3072,
func=mock_embedding_func.func,
model_name="text-embedding-3-large",
)
storage = PGVectorStorage(
namespace=NameSpace.VECTOR_STORE_CHUNKS,
global_config=config,
embedding_func=embedding_func,
workspace="new_workspace",
)
# Mock: neither table exists
async def mock_table_exists(db, table_name):
return False
with (
patch(
"lightrag.kg.postgres_impl._pg_table_exists", side_effect=mock_table_exists
),
patch("lightrag.kg.postgres_impl._pg_create_table", AsyncMock()) as mock_create,
):
await storage.initialize()
# Verify table name format
assert "text_embedding_3_large_3072d" in storage.table_name
# Verify new table creation was called
mock_create.assert_called_once()
call_args = mock_create.call_args
assert (
call_args[0][1] == storage.table_name
) # table_name is second positional arg
@pytest.mark.asyncio
async def test_scenario_2_legacy_upgrade_migration(
mock_client_manager, mock_pg_db, mock_embedding_func
):
"""
Scenario 2: Upgrade from legacy version
Expected behavior:
- Legacy table exists (without model suffix)
- New table doesn't exist
- Automatically migrate data to new table with suffix
"""
config = {
"embedding_batch_num": 10,
"vector_db_storage_cls_kwargs": {"cosine_better_than_threshold": 0.8},
}
embedding_func = EmbeddingFunc(
embedding_dim=1536,
func=mock_embedding_func.func,
model_name="text-embedding-ada-002",
)
storage = PGVectorStorage(
namespace=NameSpace.VECTOR_STORE_CHUNKS,
global_config=config,
embedding_func=embedding_func,
workspace="legacy_workspace",
)
# Mock: only legacy table exists
async def mock_table_exists(db, table_name):
return table_name == storage.legacy_table_name
# Mock: legacy table has 50 records
mock_rows = [
{
"id": f"legacy_id_{i}",
"content": f"legacy_content_{i}",
"workspace": "legacy_workspace",
}
for i in range(50)
]
# Track which queries have been made for proper response
query_history = []
async def mock_query(sql, params=None, multirows=False, **kwargs):
query_history.append(sql)
if "COUNT(*)" in sql:
# Determine table type:
# - Legacy: contains base name but NOT model suffix
# - New: contains model suffix (e.g., text_embedding_ada_002_1536d)
sql_upper = sql.upper()
base_name = storage.legacy_table_name.upper()
# Check if this is querying the new table (has model suffix)
has_model_suffix = any(
suffix in sql_upper
for suffix in ["TEXT_EMBEDDING", "_1536D", "_768D", "_1024D", "_3072D"]
)
is_legacy_table = base_name in sql_upper and not has_model_suffix
is_new_table = has_model_suffix
has_workspace_filter = "WHERE workspace" in sql
if is_legacy_table and has_workspace_filter:
# Count for legacy table with workspace filter (before migration)
return {"count": 50}
elif is_legacy_table and not has_workspace_filter:
# Total count for legacy table (after deletion, checking remaining)
return {"count": 0}
elif is_new_table:
# Count for new table (verification after migration)
return {"count": 50}
else:
# Fallback
return {"count": 0}
elif multirows and "SELECT *" in sql:
# Mock batch fetch for migration
# Handle workspace filtering: params = [workspace, offset, limit] or [offset, limit]
if "WHERE workspace" in sql:
# With workspace filter: params[0]=workspace, params[1]=offset, params[2]=limit
offset = params[1] if len(params) > 1 else 0
limit = params[2] if len(params) > 2 else 500
else:
# No workspace filter: params[0]=offset, params[1]=limit
offset = params[0] if params else 0
limit = params[1] if len(params) > 1 else 500
start = offset
end = min(offset + limit, len(mock_rows))
return mock_rows[start:end]
return {}
mock_pg_db.query = AsyncMock(side_effect=mock_query)
with (
patch(
"lightrag.kg.postgres_impl._pg_table_exists", side_effect=mock_table_exists
),
patch("lightrag.kg.postgres_impl._pg_create_table", AsyncMock()) as mock_create,
):
await storage.initialize()
# Verify table name contains ada-002
assert "text_embedding_ada_002_1536d" in storage.table_name
# Verify migration was executed
assert mock_pg_db.execute.call_count >= 50 # At least one execute per row
mock_create.assert_called_once()
# Verify legacy table was automatically deleted after successful migration
# This prevents Case 1 warnings on next startup
delete_calls = [
call
for call in mock_pg_db.execute.call_args_list
if call[0][0] and "DROP TABLE" in call[0][0]
]
assert (
len(delete_calls) >= 1
), "Legacy table should be deleted after successful migration"
# Check if legacy table was dropped
dropped_table = storage.legacy_table_name
assert any(
dropped_table in str(call) for call in delete_calls
), f"Expected to drop '{dropped_table}'"
@pytest.mark.asyncio
async def test_scenario_3_multi_model_coexistence(
mock_client_manager, mock_pg_db, mock_embedding_func
):
"""
Scenario 3: Multiple embedding models coexist
Expected behavior:
- Different embedding models create separate tables
- Tables are isolated by model suffix
- No interference between different models
"""
config = {
"embedding_batch_num": 10,
"vector_db_storage_cls_kwargs": {"cosine_better_than_threshold": 0.8},
}
# Workspace A: uses bge-small (768d)
embedding_func_a = EmbeddingFunc(
embedding_dim=768, func=mock_embedding_func.func, model_name="bge-small"
)
storage_a = PGVectorStorage(
namespace=NameSpace.VECTOR_STORE_CHUNKS,
global_config=config,
embedding_func=embedding_func_a,
workspace="workspace_a",
)
# Workspace B: uses bge-large (1024d)
async def embed_func_b(texts, **kwargs):
return np.array([[0.1] * 1024 for _ in texts])
embedding_func_b = EmbeddingFunc(
embedding_dim=1024, func=embed_func_b, model_name="bge-large"
)
storage_b = PGVectorStorage(
namespace=NameSpace.VECTOR_STORE_CHUNKS,
global_config=config,
embedding_func=embedding_func_b,
workspace="workspace_b",
)
# Verify different table names
assert storage_a.table_name != storage_b.table_name
assert "bge_small_768d" in storage_a.table_name
assert "bge_large_1024d" in storage_b.table_name
# Mock: both tables don't exist yet
async def mock_table_exists(db, table_name):
return False
with (
patch(
"lightrag.kg.postgres_impl._pg_table_exists", side_effect=mock_table_exists
),
patch("lightrag.kg.postgres_impl._pg_create_table", AsyncMock()) as mock_create,
):
# Initialize both storages
await storage_a.initialize()
await storage_b.initialize()
# Verify two separate tables were created
assert mock_create.call_count == 2
# Verify table names are different
call_args_list = mock_create.call_args_list
table_names = [call[0][1] for call in call_args_list] # Second positional arg
assert len(set(table_names)) == 2 # Two unique table names
assert storage_a.table_name in table_names
assert storage_b.table_name in table_names
@pytest.mark.asyncio
async def test_case1_empty_legacy_auto_cleanup(
mock_client_manager, mock_pg_db, mock_embedding_func
):
"""
Case 1a: Both new and legacy tables exist, but legacy is EMPTY
Expected: Automatically delete empty legacy table (safe cleanup)
"""
config = {
"embedding_batch_num": 10,
"vector_db_storage_cls_kwargs": {"cosine_better_than_threshold": 0.8},
}
embedding_func = EmbeddingFunc(
embedding_dim=1536,
func=mock_embedding_func.func,
model_name="test-model",
)
storage = PGVectorStorage(
namespace=NameSpace.VECTOR_STORE_CHUNKS,
global_config=config,
embedding_func=embedding_func,
workspace="test_ws",
)
# Mock: Both tables exist
async def mock_table_exists(db, table_name):
return True # Both new and legacy exist
# Mock: Legacy table is empty (0 records)
async def mock_query(sql, params=None, multirows=False, **kwargs):
if "COUNT(*)" in sql:
if storage.legacy_table_name in sql:
return {"count": 0} # Empty legacy table
else:
return {"count": 100} # New table has data
return {}
mock_pg_db.query = AsyncMock(side_effect=mock_query)
with patch(
"lightrag.kg.postgres_impl._pg_table_exists", side_effect=mock_table_exists
):
await storage.initialize()
# Verify: Empty legacy table should be automatically cleaned up
# Empty tables are safe to delete without data loss risk
delete_calls = [
call
for call in mock_pg_db.execute.call_args_list
if call[0][0] and "DROP TABLE" in call[0][0]
]
assert len(delete_calls) >= 1, "Empty legacy table should be auto-deleted"
# Check if legacy table was dropped
dropped_table = storage.legacy_table_name
assert any(
dropped_table in str(call) for call in delete_calls
), f"Expected to drop empty legacy table '{dropped_table}'"
print(
f"✅ Case 1a: Empty legacy table '{dropped_table}' auto-deleted successfully"
)
@pytest.mark.asyncio
async def test_case1_nonempty_legacy_warning(
mock_client_manager, mock_pg_db, mock_embedding_func
):
"""
Case 1b: Both new and legacy tables exist, and legacy HAS DATA
Expected: Log warning, do not delete legacy (preserve data)
"""
config = {
"embedding_batch_num": 10,
"vector_db_storage_cls_kwargs": {"cosine_better_than_threshold": 0.8},
}
embedding_func = EmbeddingFunc(
embedding_dim=1536,
func=mock_embedding_func.func,
model_name="test-model",
)
storage = PGVectorStorage(
namespace=NameSpace.VECTOR_STORE_CHUNKS,
global_config=config,
embedding_func=embedding_func,
workspace="test_ws",
)
# Mock: Both tables exist
async def mock_table_exists(db, table_name):
return True # Both new and legacy exist
# Mock: Legacy table has data (50 records)
async def mock_query(sql, params=None, multirows=False, **kwargs):
if "COUNT(*)" in sql:
if storage.legacy_table_name in sql:
return {"count": 50} # Legacy has data
else:
return {"count": 100} # New table has data
return {}
mock_pg_db.query = AsyncMock(side_effect=mock_query)
with patch(
"lightrag.kg.postgres_impl._pg_table_exists", side_effect=mock_table_exists
):
await storage.initialize()
# Verify: Legacy table with data should be preserved
# We never auto-delete tables that contain data to prevent accidental data loss
delete_calls = [
call
for call in mock_pg_db.execute.call_args_list
if call[0][0] and "DROP TABLE" in call[0][0]
]
# Check if legacy table was deleted (it should not be)
dropped_table = storage.legacy_table_name
legacy_deleted = any(dropped_table in str(call) for call in delete_calls)
assert not legacy_deleted, "Legacy table with data should NOT be auto-deleted"
print(
f"✅ Case 1b: Legacy table '{dropped_table}' with data preserved (warning only)"
)