LightRAG/lightrag/utils.py
yangdx 23cbb9c9b2 Add data sanitization to JSON writing to prevent UTF-8 encoding errors
• Add _sanitize_json_data helper function
• Recursively clean strings in data
• Sanitize before JSON serialization
• Prevent encoding-related crashes
• Use existing sanitize_text_for_encoding
2025-11-17 12:54:32 +08:00

3063 lines
109 KiB
Python
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from __future__ import annotations
import weakref
import asyncio
import html
import csv
import json
import logging
import logging.handlers
import os
import re
import time
import uuid
from dataclasses import dataclass
from datetime import datetime
from functools import wraps
from hashlib import md5
from typing import (
Any,
Protocol,
Callable,
TYPE_CHECKING,
List,
Optional,
Iterable,
Sequence,
Collection,
)
import numpy as np
from dotenv import load_dotenv
from lightrag.constants import (
DEFAULT_LOG_MAX_BYTES,
DEFAULT_LOG_BACKUP_COUNT,
DEFAULT_LOG_FILENAME,
GRAPH_FIELD_SEP,
DEFAULT_MAX_TOTAL_TOKENS,
DEFAULT_SOURCE_IDS_LIMIT_METHOD,
VALID_SOURCE_IDS_LIMIT_METHODS,
SOURCE_IDS_LIMIT_METHOD_FIFO,
)
# Initialize logger with basic configuration
logger = logging.getLogger("lightrag")
logger.propagate = False # prevent log message send to root logger
logger.setLevel(logging.INFO)
# Add console handler if no handlers exist
if not logger.handlers:
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)
formatter = logging.Formatter("%(levelname)s: %(message)s")
console_handler.setFormatter(formatter)
logger.addHandler(console_handler)
# Set httpx logging level to WARNING
logging.getLogger("httpx").setLevel(logging.WARNING)
# Global import for pypinyin with startup-time logging
try:
import pypinyin
_PYPINYIN_AVAILABLE = True
# logger.info("pypinyin loaded successfully for Chinese pinyin sorting")
except ImportError:
pypinyin = None
_PYPINYIN_AVAILABLE = False
logger.warning(
"pypinyin is not installed. Chinese pinyin sorting will use simple string sorting."
)
async def safe_vdb_operation_with_exception(
operation: Callable,
operation_name: str,
entity_name: str = "",
max_retries: int = 3,
retry_delay: float = 0.2,
logger_func: Optional[Callable] = None,
) -> None:
"""
Safely execute vector database operations with retry mechanism and exception handling.
This function ensures that VDB operations are executed with proper error handling
and retry logic. If all retries fail, it raises an exception to maintain data consistency.
Args:
operation: The async operation to execute
operation_name: Operation name for logging purposes
entity_name: Entity name for logging purposes
max_retries: Maximum number of retry attempts
retry_delay: Delay between retries in seconds
logger_func: Logger function to use for error messages
Raises:
Exception: When operation fails after all retry attempts
"""
log_func = logger_func or logger.warning
for attempt in range(max_retries):
try:
await operation()
return # Success, return immediately
except Exception as e:
if attempt >= max_retries - 1:
error_msg = f"VDB {operation_name} failed for {entity_name} after {max_retries} attempts: {e}"
log_func(error_msg)
raise Exception(error_msg) from e
else:
log_func(
f"VDB {operation_name} attempt {attempt + 1} failed for {entity_name}: {e}, retrying..."
)
if retry_delay > 0:
await asyncio.sleep(retry_delay)
def get_env_value(
env_key: str, default: any, value_type: type = str, special_none: bool = False
) -> any:
"""
Get value from environment variable with type conversion
Args:
env_key (str): Environment variable key
default (any): Default value if env variable is not set
value_type (type): Type to convert the value to
special_none (bool): If True, return None when value is "None"
Returns:
any: Converted value from environment or default
"""
value = os.getenv(env_key)
if value is None:
return default
# Handle special case for "None" string
if special_none and value == "None":
return None
if value_type is bool:
return value.lower() in ("true", "1", "yes", "t", "on")
# Handle list type with JSON parsing
if value_type is list:
try:
import json
parsed_value = json.loads(value)
# Ensure the parsed value is actually a list
if isinstance(parsed_value, list):
return parsed_value
else:
logger.warning(
f"Environment variable {env_key} is not a valid JSON list, using default"
)
return default
except (json.JSONDecodeError, ValueError) as e:
logger.warning(
f"Failed to parse {env_key} as JSON list: {e}, using default"
)
return default
try:
return value_type(value)
except (ValueError, TypeError):
return default
# Use TYPE_CHECKING to avoid circular imports
if TYPE_CHECKING:
from lightrag.base import BaseKVStorage, BaseVectorStorage, QueryParam
# use the .env that is inside the current folder
# allows to use different .env file for each lightrag instance
# the OS environment variables take precedence over the .env file
load_dotenv(dotenv_path=".env", override=False)
VERBOSE_DEBUG = os.getenv("VERBOSE", "false").lower() == "true"
def verbose_debug(msg: str, *args, **kwargs):
"""Function for outputting detailed debug information.
When VERBOSE_DEBUG=True, outputs the complete message.
When VERBOSE_DEBUG=False, outputs only the first 50 characters.
Args:
msg: The message format string
*args: Arguments to be formatted into the message
**kwargs: Keyword arguments passed to logger.debug()
"""
if VERBOSE_DEBUG:
logger.debug(msg, *args, **kwargs)
else:
# Format the message with args first
if args:
formatted_msg = msg % args
else:
formatted_msg = msg
# Then truncate the formatted message
truncated_msg = (
formatted_msg[:150] + "..." if len(formatted_msg) > 150 else formatted_msg
)
# Remove consecutive newlines
truncated_msg = re.sub(r"\n+", "\n", truncated_msg)
logger.debug(truncated_msg, **kwargs)
def set_verbose_debug(enabled: bool):
"""Enable or disable verbose debug output"""
global VERBOSE_DEBUG
VERBOSE_DEBUG = enabled
statistic_data = {"llm_call": 0, "llm_cache": 0, "embed_call": 0}
class LightragPathFilter(logging.Filter):
"""Filter for lightrag logger to filter out frequent path access logs"""
def __init__(self):
super().__init__()
# Define paths to be filtered
self.filtered_paths = [
"/documents",
"/documents/paginated",
"/health",
"/webui/",
"/documents/pipeline_status",
]
# self.filtered_paths = ["/health", "/webui/"]
def filter(self, record):
try:
# Check if record has the required attributes for an access log
if not hasattr(record, "args") or not isinstance(record.args, tuple):
return True
if len(record.args) < 5:
return True
# Extract method, path and status from the record args
method = record.args[1]
path = record.args[2]
status = record.args[4]
# Filter out successful GET/POST requests to filtered paths
if (
(method == "GET" or method == "POST")
and (status == 200 or status == 304)
and path in self.filtered_paths
):
return False
return True
except Exception:
# In case of any error, let the message through
return True
def setup_logger(
logger_name: str,
level: str = "INFO",
add_filter: bool = False,
log_file_path: str | None = None,
enable_file_logging: bool = True,
):
"""Set up a logger with console and optionally file handlers
Args:
logger_name: Name of the logger to set up
level: Log level (DEBUG, INFO, WARNING, ERROR, CRITICAL)
add_filter: Whether to add LightragPathFilter to the logger
log_file_path: Path to the log file. If None and file logging is enabled, defaults to lightrag.log in LOG_DIR or cwd
enable_file_logging: Whether to enable logging to a file (defaults to True)
"""
# Configure formatters
detailed_formatter = logging.Formatter(
"%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
simple_formatter = logging.Formatter("%(levelname)s: %(message)s")
logger_instance = logging.getLogger(logger_name)
logger_instance.setLevel(level)
logger_instance.handlers = [] # Clear existing handlers
logger_instance.propagate = False
# Add console handler
console_handler = logging.StreamHandler()
console_handler.setFormatter(simple_formatter)
console_handler.setLevel(level)
logger_instance.addHandler(console_handler)
# Add file handler by default unless explicitly disabled
if enable_file_logging:
# Get log file path
if log_file_path is None:
log_dir = os.getenv("LOG_DIR", os.getcwd())
log_file_path = os.path.abspath(os.path.join(log_dir, DEFAULT_LOG_FILENAME))
# Ensure log directory exists
os.makedirs(os.path.dirname(log_file_path), exist_ok=True)
# Get log file max size and backup count from environment variables
log_max_bytes = get_env_value("LOG_MAX_BYTES", DEFAULT_LOG_MAX_BYTES, int)
log_backup_count = get_env_value(
"LOG_BACKUP_COUNT", DEFAULT_LOG_BACKUP_COUNT, int
)
try:
# Add file handler
file_handler = logging.handlers.RotatingFileHandler(
filename=log_file_path,
maxBytes=log_max_bytes,
backupCount=log_backup_count,
encoding="utf-8",
)
file_handler.setFormatter(detailed_formatter)
file_handler.setLevel(level)
logger_instance.addHandler(file_handler)
except PermissionError as e:
logger.warning(f"Could not create log file at {log_file_path}: {str(e)}")
logger.warning("Continuing with console logging only")
# Add path filter if requested
if add_filter:
path_filter = LightragPathFilter()
logger_instance.addFilter(path_filter)
class UnlimitedSemaphore:
"""A context manager that allows unlimited access."""
async def __aenter__(self):
pass
async def __aexit__(self, exc_type, exc, tb):
pass
@dataclass
class TaskState:
"""Task state tracking for priority queue management"""
future: asyncio.Future
start_time: float
execution_start_time: float = None
worker_started: bool = False
cancellation_requested: bool = False
cleanup_done: bool = False
@dataclass
class EmbeddingFunc:
embedding_dim: int
func: callable
max_token_size: int | None = None # deprecated keep it for compatible only
send_dimensions: bool = (
False # Control whether to send embedding_dim to the function
)
async def __call__(self, *args, **kwargs) -> np.ndarray:
# Only inject embedding_dim when send_dimensions is True
if self.send_dimensions:
# Check if user provided embedding_dim parameter
if "embedding_dim" in kwargs:
user_provided_dim = kwargs["embedding_dim"]
# If user's value differs from class attribute, output warning
if (
user_provided_dim is not None
and user_provided_dim != self.embedding_dim
):
logger.warning(
f"Ignoring user-provided embedding_dim={user_provided_dim}, "
f"using declared embedding_dim={self.embedding_dim} from decorator"
)
# Inject embedding_dim from decorator
kwargs["embedding_dim"] = self.embedding_dim
return await self.func(*args, **kwargs)
def compute_args_hash(*args: Any) -> str:
"""Compute a hash for the given arguments with safe Unicode handling.
Args:
*args: Arguments to hash
Returns:
str: Hash string
"""
# Convert all arguments to strings and join them
args_str = "".join([str(arg) for arg in args])
# Use 'replace' error handling to safely encode problematic Unicode characters
# This replaces invalid characters with Unicode replacement character (U+FFFD)
try:
return md5(args_str.encode("utf-8")).hexdigest()
except UnicodeEncodeError:
# Handle surrogate characters and other encoding issues
safe_bytes = args_str.encode("utf-8", errors="replace")
return md5(safe_bytes).hexdigest()
def compute_mdhash_id(content: str, prefix: str = "") -> str:
"""
Compute a unique ID for a given content string.
The ID is a combination of the given prefix and the MD5 hash of the content string.
"""
return prefix + compute_args_hash(content)
def generate_cache_key(mode: str, cache_type: str, hash_value: str) -> str:
"""Generate a flattened cache key in the format {mode}:{cache_type}:{hash}
Args:
mode: Cache mode (e.g., 'default', 'local', 'global')
cache_type: Type of cache (e.g., 'extract', 'query', 'keywords')
hash_value: Hash value from compute_args_hash
Returns:
str: Flattened cache key
"""
return f"{mode}:{cache_type}:{hash_value}"
def parse_cache_key(cache_key: str) -> tuple[str, str, str] | None:
"""Parse a flattened cache key back into its components
Args:
cache_key: Flattened cache key in format {mode}:{cache_type}:{hash}
Returns:
tuple[str, str, str] | None: (mode, cache_type, hash) or None if invalid format
"""
parts = cache_key.split(":", 2)
if len(parts) == 3:
return parts[0], parts[1], parts[2]
return None
# Custom exception classes
class QueueFullError(Exception):
"""Raised when the queue is full and the wait times out"""
pass
class WorkerTimeoutError(Exception):
"""Worker-level timeout exception with specific timeout information"""
def __init__(self, timeout_value: float, timeout_type: str = "execution"):
self.timeout_value = timeout_value
self.timeout_type = timeout_type
super().__init__(f"Worker {timeout_type} timeout after {timeout_value}s")
class HealthCheckTimeoutError(Exception):
"""Health Check-level timeout exception"""
def __init__(self, timeout_value: float, execution_duration: float):
self.timeout_value = timeout_value
self.execution_duration = execution_duration
super().__init__(
f"Task forcefully terminated due to execution timeout (>{timeout_value}s, actual: {execution_duration:.1f}s)"
)
def priority_limit_async_func_call(
max_size: int,
llm_timeout: float = None,
max_execution_timeout: float = None,
max_task_duration: float = None,
max_queue_size: int = 1000,
cleanup_timeout: float = 2.0,
queue_name: str = "limit_async",
):
"""
Enhanced priority-limited asynchronous function call decorator with robust timeout handling
This decorator provides a comprehensive solution for managing concurrent LLM requests with:
- Multi-layer timeout protection (LLM -> Worker -> Health Check -> User)
- Task state tracking to prevent race conditions
- Enhanced health check system with stuck task detection
- Proper resource cleanup and error recovery
Args:
max_size: Maximum number of concurrent calls
max_queue_size: Maximum queue capacity to prevent memory overflow
llm_timeout: LLM provider timeout (from global config), used to calculate other timeouts
max_execution_timeout: Maximum time for worker to execute function (defaults to llm_timeout + 30s)
max_task_duration: Maximum time before health check intervenes (defaults to llm_timeout + 60s)
cleanup_timeout: Maximum time to wait for cleanup operations (defaults to 2.0s)
queue_name: Optional queue name for logging identification (defaults to "limit_async")
Returns:
Decorator function
"""
def final_decro(func):
# Ensure func is callable
if not callable(func):
raise TypeError(f"Expected a callable object, got {type(func)}")
# Calculate timeout hierarchy if llm_timeout is provided (Dynamic Timeout Calculation)
if llm_timeout is not None:
nonlocal max_execution_timeout, max_task_duration
if max_execution_timeout is None:
max_execution_timeout = (
llm_timeout * 2
) # Reserved timeout buffer for low-level retry
if max_task_duration is None:
max_task_duration = (
llm_timeout * 2 + 15
) # Reserved timeout buffer for health check phase
queue = asyncio.PriorityQueue(maxsize=max_queue_size)
tasks = set()
initialization_lock = asyncio.Lock()
counter = 0
shutdown_event = asyncio.Event()
initialized = False
worker_health_check_task = None
# Enhanced task state management
task_states = {} # task_id -> TaskState
task_states_lock = asyncio.Lock()
active_futures = weakref.WeakSet()
reinit_count = 0
async def worker():
"""Enhanced worker that processes tasks with proper timeout and state management"""
try:
while not shutdown_event.is_set():
try:
# Get task from queue with timeout for shutdown checking
try:
(
priority,
count,
task_id,
args,
kwargs,
) = await asyncio.wait_for(queue.get(), timeout=1.0)
except asyncio.TimeoutError:
continue
# Get task state and mark worker as started
async with task_states_lock:
if task_id not in task_states:
queue.task_done()
continue
task_state = task_states[task_id]
task_state.worker_started = True
# Record execution start time when worker actually begins processing
task_state.execution_start_time = (
asyncio.get_event_loop().time()
)
# Check if task was cancelled before worker started
if (
task_state.cancellation_requested
or task_state.future.cancelled()
):
async with task_states_lock:
task_states.pop(task_id, None)
queue.task_done()
continue
try:
# Execute function with timeout protection
if max_execution_timeout is not None:
result = await asyncio.wait_for(
func(*args, **kwargs), timeout=max_execution_timeout
)
else:
result = await func(*args, **kwargs)
# Set result if future is still valid
if not task_state.future.done():
task_state.future.set_result(result)
except asyncio.TimeoutError:
# Worker-level timeout (max_execution_timeout exceeded)
logger.warning(
f"{queue_name}: Worker timeout for task {task_id} after {max_execution_timeout}s"
)
if not task_state.future.done():
task_state.future.set_exception(
WorkerTimeoutError(
max_execution_timeout, "execution"
)
)
except asyncio.CancelledError:
# Task was cancelled during execution
if not task_state.future.done():
task_state.future.cancel()
logger.debug(
f"{queue_name}: Task {task_id} cancelled during execution"
)
except Exception as e:
# Function execution error
logger.error(
f"{queue_name}: Error in decorated function for task {task_id}: {str(e)}"
)
if not task_state.future.done():
task_state.future.set_exception(e)
finally:
# Clean up task state
async with task_states_lock:
task_states.pop(task_id, None)
queue.task_done()
except Exception as e:
# Critical error in worker loop
logger.error(
f"{queue_name}: Critical error in worker: {str(e)}"
)
await asyncio.sleep(0.1)
finally:
logger.debug(f"{queue_name}: Worker exiting")
async def enhanced_health_check():
"""Enhanced health check with stuck task detection and recovery"""
nonlocal initialized
try:
while not shutdown_event.is_set():
await asyncio.sleep(5) # Check every 5 seconds
current_time = asyncio.get_event_loop().time()
# Detect and handle stuck tasks based on execution start time
if max_task_duration is not None:
stuck_tasks = []
async with task_states_lock:
for task_id, task_state in list(task_states.items()):
# Only check tasks that have started execution
if (
task_state.worker_started
and task_state.execution_start_time is not None
and current_time - task_state.execution_start_time
> max_task_duration
):
stuck_tasks.append(
(
task_id,
current_time
- task_state.execution_start_time,
)
)
# Force cleanup of stuck tasks
for task_id, execution_duration in stuck_tasks:
logger.warning(
f"{queue_name}: Detected stuck task {task_id} (execution time: {execution_duration:.1f}s), forcing cleanup"
)
async with task_states_lock:
if task_id in task_states:
task_state = task_states[task_id]
if not task_state.future.done():
task_state.future.set_exception(
HealthCheckTimeoutError(
max_task_duration, execution_duration
)
)
task_states.pop(task_id, None)
# Worker recovery logic
current_tasks = set(tasks)
done_tasks = {t for t in current_tasks if t.done()}
tasks.difference_update(done_tasks)
active_tasks_count = len(tasks)
workers_needed = max_size - active_tasks_count
if workers_needed > 0:
logger.info(
f"{queue_name}: Creating {workers_needed} new workers"
)
new_tasks = set()
for _ in range(workers_needed):
task = asyncio.create_task(worker())
new_tasks.add(task)
task.add_done_callback(tasks.discard)
tasks.update(new_tasks)
except Exception as e:
logger.error(f"{queue_name}: Error in enhanced health check: {str(e)}")
finally:
logger.debug(f"{queue_name}: Enhanced health check task exiting")
initialized = False
async def ensure_workers():
"""Ensure worker system is initialized with enhanced error handling"""
nonlocal initialized, worker_health_check_task, tasks, reinit_count
if initialized:
return
async with initialization_lock:
if initialized:
return
if reinit_count > 0:
reinit_count += 1
logger.warning(
f"{queue_name}: Reinitializing system (count: {reinit_count})"
)
else:
reinit_count = 1
# Clean up completed tasks
current_tasks = set(tasks)
done_tasks = {t for t in current_tasks if t.done()}
tasks.difference_update(done_tasks)
active_tasks_count = len(tasks)
if active_tasks_count > 0 and reinit_count > 1:
logger.warning(
f"{queue_name}: {active_tasks_count} tasks still running during reinitialization"
)
# Create worker tasks
workers_needed = max_size - active_tasks_count
for _ in range(workers_needed):
task = asyncio.create_task(worker())
tasks.add(task)
task.add_done_callback(tasks.discard)
# Start enhanced health check
worker_health_check_task = asyncio.create_task(enhanced_health_check())
initialized = True
# Log dynamic timeout configuration
timeout_info = []
if llm_timeout is not None:
timeout_info.append(f"Func: {llm_timeout}s")
if max_execution_timeout is not None:
timeout_info.append(f"Worker: {max_execution_timeout}s")
if max_task_duration is not None:
timeout_info.append(f"Health Check: {max_task_duration}s")
timeout_str = (
f"(Timeouts: {', '.join(timeout_info)})" if timeout_info else ""
)
logger.info(
f"{queue_name}: {workers_needed} new workers initialized {timeout_str}"
)
async def shutdown():
"""Gracefully shut down all workers and cleanup resources"""
logger.info(f"{queue_name}: Shutting down priority queue workers")
shutdown_event.set()
# Cancel all active futures
for future in list(active_futures):
if not future.done():
future.cancel()
# Cancel all pending tasks
async with task_states_lock:
for task_id, task_state in list(task_states.items()):
if not task_state.future.done():
task_state.future.cancel()
task_states.clear()
# Wait for queue to empty with timeout
try:
await asyncio.wait_for(queue.join(), timeout=5.0)
except asyncio.TimeoutError:
logger.warning(
f"{queue_name}: Timeout waiting for queue to empty during shutdown"
)
# Cancel worker tasks
for task in list(tasks):
if not task.done():
task.cancel()
# Wait for all tasks to complete
if tasks:
await asyncio.gather(*tasks, return_exceptions=True)
# Cancel health check task
if worker_health_check_task and not worker_health_check_task.done():
worker_health_check_task.cancel()
try:
await worker_health_check_task
except asyncio.CancelledError:
pass
logger.info(f"{queue_name}: Priority queue workers shutdown complete")
@wraps(func)
async def wait_func(
*args, _priority=10, _timeout=None, _queue_timeout=None, **kwargs
):
"""
Execute function with enhanced priority-based concurrency control and timeout handling
Args:
*args: Positional arguments passed to the function
_priority: Call priority (lower values have higher priority)
_timeout: Maximum time to wait for completion (in seconds, none means determinded by max_execution_timeout of the queue)
_queue_timeout: Maximum time to wait for entering the queue (in seconds)
**kwargs: Keyword arguments passed to the function
Returns:
The result of the function call
Raises:
TimeoutError: If the function call times out at any level
QueueFullError: If the queue is full and waiting times out
Any exception raised by the decorated function
"""
await ensure_workers()
# Generate unique task ID
task_id = f"{id(asyncio.current_task())}_{asyncio.get_event_loop().time()}"
future = asyncio.Future()
# Create task state
task_state = TaskState(
future=future, start_time=asyncio.get_event_loop().time()
)
try:
# Register task state
async with task_states_lock:
task_states[task_id] = task_state
active_futures.add(future)
# Get counter for FIFO ordering
nonlocal counter
async with initialization_lock:
current_count = counter
counter += 1
# Queue the task with timeout handling
try:
if _queue_timeout is not None:
await asyncio.wait_for(
queue.put(
(_priority, current_count, task_id, args, kwargs)
),
timeout=_queue_timeout,
)
else:
await queue.put(
(_priority, current_count, task_id, args, kwargs)
)
except asyncio.TimeoutError:
raise QueueFullError(
f"{queue_name}: Queue full, timeout after {_queue_timeout} seconds"
)
except Exception as e:
# Clean up on queue error
if not future.done():
future.set_exception(e)
raise
# Wait for result with timeout handling
try:
if _timeout is not None:
return await asyncio.wait_for(future, _timeout)
else:
return await future
except asyncio.TimeoutError:
# This is user-level timeout (asyncio.wait_for caused)
# Mark cancellation request
async with task_states_lock:
if task_id in task_states:
task_states[task_id].cancellation_requested = True
# Cancel future
if not future.done():
future.cancel()
# Wait for worker cleanup with timeout
cleanup_start = asyncio.get_event_loop().time()
while (
task_id in task_states
and asyncio.get_event_loop().time() - cleanup_start
< cleanup_timeout
):
await asyncio.sleep(0.1)
raise TimeoutError(
f"{queue_name}: User timeout after {_timeout} seconds"
)
except WorkerTimeoutError as e:
# This is Worker-level timeout, directly propagate exception information
raise TimeoutError(f"{queue_name}: {str(e)}")
except HealthCheckTimeoutError as e:
# This is Health Check-level timeout, directly propagate exception information
raise TimeoutError(f"{queue_name}: {str(e)}")
finally:
# Ensure cleanup
active_futures.discard(future)
async with task_states_lock:
task_states.pop(task_id, None)
# Add shutdown method to decorated function
wait_func.shutdown = shutdown
return wait_func
return final_decro
def wrap_embedding_func_with_attrs(**kwargs):
"""Wrap a function with attributes"""
def final_decro(func) -> EmbeddingFunc:
new_func = EmbeddingFunc(**kwargs, func=func)
return new_func
return final_decro
def load_json(file_name):
if not os.path.exists(file_name):
return None
with open(file_name, encoding="utf-8-sig") as f:
return json.load(f)
def _sanitize_json_data(data: Any) -> Any:
"""Recursively sanitize all string values in data structure for safe UTF-8 encoding
Args:
data: Data to sanitize (dict, list, str, or other types)
Returns:
Sanitized data with all strings cleaned of problematic characters
"""
if isinstance(data, dict):
return {k: _sanitize_json_data(v) for k, v in data.items()}
elif isinstance(data, list):
return [_sanitize_json_data(item) for item in data]
elif isinstance(data, str):
return sanitize_text_for_encoding(data, replacement_char="")
else:
return data
def write_json(json_obj, file_name):
# Sanitize data before writing to prevent UTF-8 encoding errors
sanitized_obj = _sanitize_json_data(json_obj)
with open(file_name, "w", encoding="utf-8") as f:
json.dump(sanitized_obj, f, indent=2, ensure_ascii=False)
class TokenizerInterface(Protocol):
"""
Defines the interface for a tokenizer, requiring encode and decode methods.
"""
def encode(self, content: str) -> List[int]:
"""Encodes a string into a list of tokens."""
...
def decode(self, tokens: List[int]) -> str:
"""Decodes a list of tokens into a string."""
...
class Tokenizer:
"""
A wrapper around a tokenizer to provide a consistent interface for encoding and decoding.
"""
def __init__(self, model_name: str, tokenizer: TokenizerInterface):
"""
Initializes the Tokenizer with a tokenizer model name and a tokenizer instance.
Args:
model_name: The associated model name for the tokenizer.
tokenizer: An instance of a class implementing the TokenizerInterface.
"""
self.model_name: str = model_name
self.tokenizer: TokenizerInterface = tokenizer
def encode(self, content: str) -> List[int]:
"""
Encodes a string into a list of tokens using the underlying tokenizer.
Args:
content: The string to encode.
Returns:
A list of integer tokens.
"""
return self.tokenizer.encode(content)
def decode(self, tokens: List[int]) -> str:
"""
Decodes a list of tokens into a string using the underlying tokenizer.
Args:
tokens: A list of integer tokens to decode.
Returns:
The decoded string.
"""
return self.tokenizer.decode(tokens)
class TiktokenTokenizer(Tokenizer):
"""
A Tokenizer implementation using the tiktoken library.
"""
def __init__(self, model_name: str = "gpt-4o-mini"):
"""
Initializes the TiktokenTokenizer with a specified model name.
Args:
model_name: The model name for the tiktoken tokenizer to use. Defaults to "gpt-4o-mini".
Raises:
ImportError: If tiktoken is not installed.
ValueError: If the model_name is invalid.
"""
try:
import tiktoken
except ImportError:
raise ImportError(
"tiktoken is not installed. Please install it with `pip install tiktoken` or define custom `tokenizer_func`."
)
try:
tokenizer = tiktoken.encoding_for_model(model_name)
super().__init__(model_name=model_name, tokenizer=tokenizer)
except KeyError:
raise ValueError(f"Invalid model_name: {model_name}.")
def pack_user_ass_to_openai_messages(*args: str):
roles = ["user", "assistant"]
return [
{"role": roles[i % 2], "content": content} for i, content in enumerate(args)
]
def split_string_by_multi_markers(content: str, markers: list[str]) -> list[str]:
"""Split a string by multiple markers"""
if not markers:
return [content]
content = content if content is not None else ""
results = re.split("|".join(re.escape(marker) for marker in markers), content)
return [r.strip() for r in results if r.strip()]
def is_float_regex(value: str) -> bool:
return bool(re.match(r"^[-+]?[0-9]*\.?[0-9]+$", value))
def truncate_list_by_token_size(
list_data: list[Any],
key: Callable[[Any], str],
max_token_size: int,
tokenizer: Tokenizer,
) -> list[int]:
"""Truncate a list of data by token size"""
if max_token_size <= 0:
return []
tokens = 0
for i, data in enumerate(list_data):
tokens += len(tokenizer.encode(key(data)))
if tokens > max_token_size:
return list_data[:i]
return list_data
def cosine_similarity(v1, v2):
"""Calculate cosine similarity between two vectors"""
dot_product = np.dot(v1, v2)
norm1 = np.linalg.norm(v1)
norm2 = np.linalg.norm(v2)
return dot_product / (norm1 * norm2)
async def handle_cache(
hashing_kv,
args_hash,
prompt,
mode="default",
cache_type="unknown",
) -> tuple[str, int] | None:
"""Generic cache handling function with flattened cache keys
Returns:
tuple[str, int] | None: (content, create_time) if cache hit, None if cache miss
"""
if hashing_kv is None:
return None
if mode != "default": # handle cache for all type of query
if not hashing_kv.global_config.get("enable_llm_cache"):
return None
else: # handle cache for entity extraction
if not hashing_kv.global_config.get("enable_llm_cache_for_entity_extract"):
return None
# Use flattened cache key format: {mode}:{cache_type}:{hash}
flattened_key = generate_cache_key(mode, cache_type, args_hash)
cache_entry = await hashing_kv.get_by_id(flattened_key)
if cache_entry:
logger.debug(f"Flattened cache hit(key:{flattened_key})")
content = cache_entry["return"]
timestamp = cache_entry.get("create_time", 0)
return content, timestamp
logger.debug(f"Cache missed(mode:{mode} type:{cache_type})")
return None
@dataclass
class CacheData:
args_hash: str
content: str
prompt: str
mode: str = "default"
cache_type: str = "query"
chunk_id: str | None = None
queryparam: dict | None = None
async def save_to_cache(hashing_kv, cache_data: CacheData):
"""Save data to cache using flattened key structure.
Args:
hashing_kv: The key-value storage for caching
cache_data: The cache data to save
"""
# Skip if storage is None or content is a streaming response
if hashing_kv is None or not cache_data.content:
return
# If content is a streaming response, don't cache it
if hasattr(cache_data.content, "__aiter__"):
logger.debug("Streaming response detected, skipping cache")
return
# Use flattened cache key format: {mode}:{cache_type}:{hash}
flattened_key = generate_cache_key(
cache_data.mode, cache_data.cache_type, cache_data.args_hash
)
# Check if we already have identical content cached
existing_cache = await hashing_kv.get_by_id(flattened_key)
if existing_cache:
existing_content = existing_cache.get("return")
if existing_content == cache_data.content:
logger.warning(
f"Cache duplication detected for {flattened_key}, skipping update"
)
return
# Create cache entry with flattened structure
cache_entry = {
"return": cache_data.content,
"cache_type": cache_data.cache_type,
"chunk_id": cache_data.chunk_id if cache_data.chunk_id is not None else None,
"original_prompt": cache_data.prompt,
"queryparam": cache_data.queryparam
if cache_data.queryparam is not None
else None,
}
logger.info(f" == LLM cache == saving: {flattened_key}")
# Save using flattened key
await hashing_kv.upsert({flattened_key: cache_entry})
def safe_unicode_decode(content):
# Regular expression to find all Unicode escape sequences of the form \uXXXX
unicode_escape_pattern = re.compile(r"\\u([0-9a-fA-F]{4})")
# Function to replace the Unicode escape with the actual character
def replace_unicode_escape(match):
# Convert the matched hexadecimal value into the actual Unicode character
return chr(int(match.group(1), 16))
# Perform the substitution
decoded_content = unicode_escape_pattern.sub(
replace_unicode_escape, content.decode("utf-8")
)
return decoded_content
def exists_func(obj, func_name: str) -> bool:
"""Check if a function exists in an object or not.
:param obj:
:param func_name:
:return: True / False
"""
if callable(getattr(obj, func_name, None)):
return True
else:
return False
def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
"""
Ensure that there is always an event loop available.
This function tries to get the current event loop. If the current event loop is closed or does not exist,
it creates a new event loop and sets it as the current event loop.
Returns:
asyncio.AbstractEventLoop: The current or newly created event loop.
"""
try:
# Try to get the current event loop
current_loop = asyncio.get_event_loop()
if current_loop.is_closed():
raise RuntimeError("Event loop is closed.")
return current_loop
except RuntimeError:
# If no event loop exists or it is closed, create a new one
logger.info("Creating a new event loop in main thread.")
new_loop = asyncio.new_event_loop()
asyncio.set_event_loop(new_loop)
return new_loop
async def aexport_data(
chunk_entity_relation_graph,
entities_vdb,
relationships_vdb,
output_path: str,
file_format: str = "csv",
include_vector_data: bool = False,
) -> None:
"""
Asynchronously exports all entities, relations, and relationships to various formats.
Args:
chunk_entity_relation_graph: Graph storage instance for entities and relations
entities_vdb: Vector database storage for entities
relationships_vdb: Vector database storage for relationships
output_path: The path to the output file (including extension).
file_format: Output format - "csv", "excel", "md", "txt".
- csv: Comma-separated values file
- excel: Microsoft Excel file with multiple sheets
- md: Markdown tables
- txt: Plain text formatted output
include_vector_data: Whether to include data from the vector database.
"""
# Collect data
entities_data = []
relations_data = []
relationships_data = []
# --- Entities ---
all_entities = await chunk_entity_relation_graph.get_all_labels()
for entity_name in all_entities:
# Get entity information from graph
node_data = await chunk_entity_relation_graph.get_node(entity_name)
source_id = node_data.get("source_id") if node_data else None
entity_info = {
"graph_data": node_data,
"source_id": source_id,
}
# Optional: Get vector database information
if include_vector_data:
entity_id = compute_mdhash_id(entity_name, prefix="ent-")
vector_data = await entities_vdb.get_by_id(entity_id)
entity_info["vector_data"] = vector_data
entity_row = {
"entity_name": entity_name,
"source_id": source_id,
"graph_data": str(
entity_info["graph_data"]
), # Convert to string to ensure compatibility
}
if include_vector_data and "vector_data" in entity_info:
entity_row["vector_data"] = str(entity_info["vector_data"])
entities_data.append(entity_row)
# --- Relations ---
for src_entity in all_entities:
for tgt_entity in all_entities:
if src_entity == tgt_entity:
continue
edge_exists = await chunk_entity_relation_graph.has_edge(
src_entity, tgt_entity
)
if edge_exists:
# Get edge information from graph
edge_data = await chunk_entity_relation_graph.get_edge(
src_entity, tgt_entity
)
source_id = edge_data.get("source_id") if edge_data else None
relation_info = {
"graph_data": edge_data,
"source_id": source_id,
}
# Optional: Get vector database information
if include_vector_data:
rel_id = compute_mdhash_id(src_entity + tgt_entity, prefix="rel-")
vector_data = await relationships_vdb.get_by_id(rel_id)
relation_info["vector_data"] = vector_data
relation_row = {
"src_entity": src_entity,
"tgt_entity": tgt_entity,
"source_id": relation_info["source_id"],
"graph_data": str(relation_info["graph_data"]), # Convert to string
}
if include_vector_data and "vector_data" in relation_info:
relation_row["vector_data"] = str(relation_info["vector_data"])
relations_data.append(relation_row)
# --- Relationships (from VectorDB) ---
all_relationships = await relationships_vdb.client_storage
for rel in all_relationships["data"]:
relationships_data.append(
{
"relationship_id": rel["__id__"],
"data": str(rel), # Convert to string for compatibility
}
)
# Export based on format
if file_format == "csv":
# CSV export
with open(output_path, "w", newline="", encoding="utf-8") as csvfile:
# Entities
if entities_data:
csvfile.write("# ENTITIES\n")
writer = csv.DictWriter(csvfile, fieldnames=entities_data[0].keys())
writer.writeheader()
writer.writerows(entities_data)
csvfile.write("\n\n")
# Relations
if relations_data:
csvfile.write("# RELATIONS\n")
writer = csv.DictWriter(csvfile, fieldnames=relations_data[0].keys())
writer.writeheader()
writer.writerows(relations_data)
csvfile.write("\n\n")
# Relationships
if relationships_data:
csvfile.write("# RELATIONSHIPS\n")
writer = csv.DictWriter(
csvfile, fieldnames=relationships_data[0].keys()
)
writer.writeheader()
writer.writerows(relationships_data)
elif file_format == "excel":
# Excel export
import pandas as pd
entities_df = pd.DataFrame(entities_data) if entities_data else pd.DataFrame()
relations_df = (
pd.DataFrame(relations_data) if relations_data else pd.DataFrame()
)
relationships_df = (
pd.DataFrame(relationships_data) if relationships_data else pd.DataFrame()
)
with pd.ExcelWriter(output_path, engine="xlsxwriter") as writer:
if not entities_df.empty:
entities_df.to_excel(writer, sheet_name="Entities", index=False)
if not relations_df.empty:
relations_df.to_excel(writer, sheet_name="Relations", index=False)
if not relationships_df.empty:
relationships_df.to_excel(
writer, sheet_name="Relationships", index=False
)
elif file_format == "md":
# Markdown export
with open(output_path, "w", encoding="utf-8") as mdfile:
mdfile.write("# LightRAG Data Export\n\n")
# Entities
mdfile.write("## Entities\n\n")
if entities_data:
# Write header
mdfile.write("| " + " | ".join(entities_data[0].keys()) + " |\n")
mdfile.write(
"| " + " | ".join(["---"] * len(entities_data[0].keys())) + " |\n"
)
# Write rows
for entity in entities_data:
mdfile.write(
"| " + " | ".join(str(v) for v in entity.values()) + " |\n"
)
mdfile.write("\n\n")
else:
mdfile.write("*No entity data available*\n\n")
# Relations
mdfile.write("## Relations\n\n")
if relations_data:
# Write header
mdfile.write("| " + " | ".join(relations_data[0].keys()) + " |\n")
mdfile.write(
"| " + " | ".join(["---"] * len(relations_data[0].keys())) + " |\n"
)
# Write rows
for relation in relations_data:
mdfile.write(
"| " + " | ".join(str(v) for v in relation.values()) + " |\n"
)
mdfile.write("\n\n")
else:
mdfile.write("*No relation data available*\n\n")
# Relationships
mdfile.write("## Relationships\n\n")
if relationships_data:
# Write header
mdfile.write("| " + " | ".join(relationships_data[0].keys()) + " |\n")
mdfile.write(
"| "
+ " | ".join(["---"] * len(relationships_data[0].keys()))
+ " |\n"
)
# Write rows
for relationship in relationships_data:
mdfile.write(
"| "
+ " | ".join(str(v) for v in relationship.values())
+ " |\n"
)
else:
mdfile.write("*No relationship data available*\n\n")
elif file_format == "txt":
# Plain text export
with open(output_path, "w", encoding="utf-8") as txtfile:
txtfile.write("LIGHTRAG DATA EXPORT\n")
txtfile.write("=" * 80 + "\n\n")
# Entities
txtfile.write("ENTITIES\n")
txtfile.write("-" * 80 + "\n")
if entities_data:
# Create fixed width columns
col_widths = {
k: max(len(k), max(len(str(e[k])) for e in entities_data))
for k in entities_data[0]
}
header = " ".join(k.ljust(col_widths[k]) for k in entities_data[0])
txtfile.write(header + "\n")
txtfile.write("-" * len(header) + "\n")
# Write rows
for entity in entities_data:
row = " ".join(
str(v).ljust(col_widths[k]) for k, v in entity.items()
)
txtfile.write(row + "\n")
txtfile.write("\n\n")
else:
txtfile.write("No entity data available\n\n")
# Relations
txtfile.write("RELATIONS\n")
txtfile.write("-" * 80 + "\n")
if relations_data:
# Create fixed width columns
col_widths = {
k: max(len(k), max(len(str(r[k])) for r in relations_data))
for k in relations_data[0]
}
header = " ".join(k.ljust(col_widths[k]) for k in relations_data[0])
txtfile.write(header + "\n")
txtfile.write("-" * len(header) + "\n")
# Write rows
for relation in relations_data:
row = " ".join(
str(v).ljust(col_widths[k]) for k, v in relation.items()
)
txtfile.write(row + "\n")
txtfile.write("\n\n")
else:
txtfile.write("No relation data available\n\n")
# Relationships
txtfile.write("RELATIONSHIPS\n")
txtfile.write("-" * 80 + "\n")
if relationships_data:
# Create fixed width columns
col_widths = {
k: max(len(k), max(len(str(r[k])) for r in relationships_data))
for k in relationships_data[0]
}
header = " ".join(
k.ljust(col_widths[k]) for k in relationships_data[0]
)
txtfile.write(header + "\n")
txtfile.write("-" * len(header) + "\n")
# Write rows
for relationship in relationships_data:
row = " ".join(
str(v).ljust(col_widths[k]) for k, v in relationship.items()
)
txtfile.write(row + "\n")
else:
txtfile.write("No relationship data available\n\n")
else:
raise ValueError(
f"Unsupported file format: {file_format}. Choose from: csv, excel, md, txt"
)
if file_format is not None:
print(f"Data exported to: {output_path} with format: {file_format}")
else:
print("Data displayed as table format")
def export_data(
chunk_entity_relation_graph,
entities_vdb,
relationships_vdb,
output_path: str,
file_format: str = "csv",
include_vector_data: bool = False,
) -> None:
"""
Synchronously exports all entities, relations, and relationships to various formats.
Args:
chunk_entity_relation_graph: Graph storage instance for entities and relations
entities_vdb: Vector database storage for entities
relationships_vdb: Vector database storage for relationships
output_path: The path to the output file (including extension).
file_format: Output format - "csv", "excel", "md", "txt".
- csv: Comma-separated values file
- excel: Microsoft Excel file with multiple sheets
- md: Markdown tables
- txt: Plain text formatted output
include_vector_data: Whether to include data from the vector database.
"""
try:
loop = asyncio.get_event_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
loop.run_until_complete(
aexport_data(
chunk_entity_relation_graph,
entities_vdb,
relationships_vdb,
output_path,
file_format,
include_vector_data,
)
)
def lazy_external_import(module_name: str, class_name: str) -> Callable[..., Any]:
"""Lazily import a class from an external module based on the package of the caller."""
# Get the caller's module and package
import inspect
caller_frame = inspect.currentframe().f_back
module = inspect.getmodule(caller_frame)
package = module.__package__ if module else None
def import_class(*args: Any, **kwargs: Any):
import importlib
module = importlib.import_module(module_name, package=package)
cls = getattr(module, class_name)
return cls(*args, **kwargs)
return import_class
async def update_chunk_cache_list(
chunk_id: str,
text_chunks_storage: "BaseKVStorage",
cache_keys: list[str],
cache_scenario: str = "batch_update",
) -> None:
"""Update chunk's llm_cache_list with the given cache keys
Args:
chunk_id: Chunk identifier
text_chunks_storage: Text chunks storage instance
cache_keys: List of cache keys to add to the list
cache_scenario: Description of the cache scenario for logging
"""
if not cache_keys:
return
try:
chunk_data = await text_chunks_storage.get_by_id(chunk_id)
if chunk_data:
# Ensure llm_cache_list exists
if "llm_cache_list" not in chunk_data:
chunk_data["llm_cache_list"] = []
# Add cache keys to the list if not already present
existing_keys = set(chunk_data["llm_cache_list"])
new_keys = [key for key in cache_keys if key not in existing_keys]
if new_keys:
chunk_data["llm_cache_list"].extend(new_keys)
# Update the chunk in storage
await text_chunks_storage.upsert({chunk_id: chunk_data})
logger.debug(
f"Updated chunk {chunk_id} with {len(new_keys)} cache keys ({cache_scenario})"
)
except Exception as e:
logger.warning(
f"Failed to update chunk {chunk_id} with cache references on {cache_scenario}: {e}"
)
def remove_think_tags(text: str) -> str:
"""Remove <think>...</think> tags from the text
Remove orphon ...</think> tags from the text also"""
return re.sub(
r"^(<think>.*?</think>|.*</think>)", "", text, flags=re.DOTALL
).strip()
async def use_llm_func_with_cache(
user_prompt: str,
use_llm_func: callable,
llm_response_cache: "BaseKVStorage | None" = None,
system_prompt: str | None = None,
max_tokens: int = None,
history_messages: list[dict[str, str]] = None,
cache_type: str = "extract",
chunk_id: str | None = None,
cache_keys_collector: list = None,
) -> tuple[str, int]:
"""Call LLM function with cache support and text sanitization
If cache is available and enabled (determined by handle_cache based on mode),
retrieve result from cache; otherwise call LLM function and save result to cache.
This function applies text sanitization to prevent UTF-8 encoding errors for all LLM providers.
Args:
input_text: Input text to send to LLM
use_llm_func: LLM function with higher priority
llm_response_cache: Cache storage instance
max_tokens: Maximum tokens for generation
history_messages: History messages list
cache_type: Type of cache
chunk_id: Chunk identifier to store in cache
text_chunks_storage: Text chunks storage to update llm_cache_list
cache_keys_collector: Optional list to collect cache keys for batch processing
Returns:
tuple[str, int]: (LLM response text, timestamp)
- For cache hits: (content, cache_create_time)
- For cache misses: (content, current_timestamp)
"""
# Sanitize input text to prevent UTF-8 encoding errors for all LLM providers
safe_user_prompt = sanitize_text_for_encoding(user_prompt)
safe_system_prompt = (
sanitize_text_for_encoding(system_prompt) if system_prompt else None
)
# Sanitize history messages if provided
safe_history_messages = None
if history_messages:
safe_history_messages = []
for i, msg in enumerate(history_messages):
safe_msg = msg.copy()
if "content" in safe_msg:
safe_msg["content"] = sanitize_text_for_encoding(safe_msg["content"])
safe_history_messages.append(safe_msg)
history = json.dumps(safe_history_messages, ensure_ascii=False)
else:
history = None
if llm_response_cache:
prompt_parts = []
if safe_user_prompt:
prompt_parts.append(safe_user_prompt)
if safe_system_prompt:
prompt_parts.append(safe_system_prompt)
if history:
prompt_parts.append(history)
_prompt = "\n".join(prompt_parts)
arg_hash = compute_args_hash(_prompt)
# Generate cache key for this LLM call
cache_key = generate_cache_key("default", cache_type, arg_hash)
cached_result = await handle_cache(
llm_response_cache,
arg_hash,
_prompt,
"default",
cache_type=cache_type,
)
if cached_result:
content, timestamp = cached_result
logger.debug(f"Found cache for {arg_hash}")
statistic_data["llm_cache"] += 1
# Add cache key to collector if provided
if cache_keys_collector is not None:
cache_keys_collector.append(cache_key)
return content, timestamp
statistic_data["llm_call"] += 1
# Call LLM with sanitized input
kwargs = {}
if safe_history_messages:
kwargs["history_messages"] = safe_history_messages
if max_tokens is not None:
kwargs["max_tokens"] = max_tokens
res: str = await use_llm_func(
safe_user_prompt, system_prompt=safe_system_prompt, **kwargs
)
res = remove_think_tags(res)
# Generate timestamp for cache miss (LLM call completion time)
current_timestamp = int(time.time())
if llm_response_cache.global_config.get("enable_llm_cache_for_entity_extract"):
await save_to_cache(
llm_response_cache,
CacheData(
args_hash=arg_hash,
content=res,
prompt=_prompt,
cache_type=cache_type,
chunk_id=chunk_id,
),
)
# Add cache key to collector if provided
if cache_keys_collector is not None:
cache_keys_collector.append(cache_key)
return res, current_timestamp
# When cache is disabled, directly call LLM with sanitized input
kwargs = {}
if safe_history_messages:
kwargs["history_messages"] = safe_history_messages
if max_tokens is not None:
kwargs["max_tokens"] = max_tokens
try:
res = await use_llm_func(
safe_user_prompt, system_prompt=safe_system_prompt, **kwargs
)
except Exception as e:
# Add [LLM func] prefix to error message
error_msg = f"[LLM func] {str(e)}"
# Re-raise with the same exception type but modified message
raise type(e)(error_msg) from e
# Generate timestamp for non-cached LLM call
current_timestamp = int(time.time())
return remove_think_tags(res), current_timestamp
def get_content_summary(content: str, max_length: int = 250) -> str:
"""Get summary of document content
Args:
content: Original document content
max_length: Maximum length of summary
Returns:
Truncated content with ellipsis if needed
"""
content = content.strip()
if len(content) <= max_length:
return content
return content[:max_length] + "..."
def sanitize_and_normalize_extracted_text(
input_text: str, remove_inner_quotes=False
) -> str:
"""Santitize and normalize extracted text
Args:
input_text: text string to be processed
is_name: whether the input text is a entity or relation name
Returns:
Santitized and normalized text string
"""
safe_input_text = sanitize_text_for_encoding(input_text)
if safe_input_text:
normalized_text = normalize_extracted_info(
safe_input_text, remove_inner_quotes=remove_inner_quotes
)
return normalized_text
return ""
def normalize_extracted_info(name: str, remove_inner_quotes=False) -> str:
"""Normalize entity/relation names and description with the following rules:
- Clean HTML tags (paragraph and line break tags)
- Convert Chinese symbols to English symbols
- Remove spaces between Chinese characters
- Remove spaces between Chinese characters and English letters/numbers
- Preserve spaces within English text and numbers
- Replace Chinese parentheses with English parentheses
- Replace Chinese dash with English dash
- Remove English quotation marks from the beginning and end of the text
- Remove English quotation marks in and around chinese
- Remove Chinese quotation marks
- Filter out short numeric-only text (length < 3 and only digits/dots)
- remove_inner_quotes = True
remove Chinese quotes
remove English quotes in and around chinese
Convert non-breaking spaces to regular spaces
Convert narrow non-breaking spaces after non-digits to regular spaces
Args:
name: Entity name to normalize
is_entity: Whether this is an entity name (affects quote handling)
Returns:
Normalized entity name
"""
# Clean HTML tags - remove paragraph and line break tags
name = re.sub(r"</p\s*>|<p\s*>|<p/>", "", name, flags=re.IGNORECASE)
name = re.sub(r"</br\s*>|<br\s*>|<br/>", "", name, flags=re.IGNORECASE)
# Chinese full-width letters to half-width (A-Z, a-z)
name = name.translate(
str.maketrans(
"",
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz",
)
)
# Chinese full-width numbers to half-width
name = name.translate(str.maketrans("", "0123456789"))
# Chinese full-width symbols to half-width
name = name.replace("", "-") # Chinese minus
name = name.replace("", "+") # Chinese plus
name = name.replace("", "/") # Chinese slash
name = name.replace("", "*") # Chinese asterisk
# Replace Chinese parentheses with English parentheses
name = name.replace("", "(").replace("", ")")
# Replace Chinese dash with English dash (additional patterns)
name = name.replace("", "-").replace("", "-")
# Chinese full-width space to regular space (after other replacements)
name = name.replace(" ", " ")
# Use regex to remove spaces between Chinese characters
# Regex explanation:
# (?<=[\u4e00-\u9fa5]): Positive lookbehind for Chinese character
# \s+: One or more whitespace characters
# (?=[\u4e00-\u9fa5]): Positive lookahead for Chinese character
name = re.sub(r"(?<=[\u4e00-\u9fa5])\s+(?=[\u4e00-\u9fa5])", "", name)
# Remove spaces between Chinese and English/numbers/symbols
name = re.sub(
r"(?<=[\u4e00-\u9fa5])\s+(?=[a-zA-Z0-9\(\)\[\]@#$%!&\*\-=+_])", "", name
)
name = re.sub(
r"(?<=[a-zA-Z0-9\(\)\[\]@#$%!&\*\-=+_])\s+(?=[\u4e00-\u9fa5])", "", name
)
# Remove outer quotes
if len(name) >= 2:
# Handle double quotes
if name.startswith('"') and name.endswith('"'):
inner_content = name[1:-1]
if '"' not in inner_content: # No double quotes inside
name = inner_content
# Handle single quotes
if name.startswith("'") and name.endswith("'"):
inner_content = name[1:-1]
if "'" not in inner_content: # No single quotes inside
name = inner_content
# Handle Chinese-style double quotes
if name.startswith("") and name.endswith(""):
inner_content = name[1:-1]
if "" not in inner_content and "" not in inner_content:
name = inner_content
if name.startswith("") and name.endswith(""):
inner_content = name[1:-1]
if "" not in inner_content and "" not in inner_content:
name = inner_content
# Handle Chinese-style book title mark
if name.startswith("") and name.endswith(""):
inner_content = name[1:-1]
if "" not in inner_content and "" not in inner_content:
name = inner_content
if remove_inner_quotes:
# Remove Chinese quotes
name = name.replace("", "").replace("", "").replace("", "").replace("", "")
# Remove English queotes in and around chinese
name = re.sub(r"['\"]+(?=[\u4e00-\u9fa5])", "", name)
name = re.sub(r"(?<=[\u4e00-\u9fa5])['\"]+", "", name)
# Convert non-breaking space to regular space
name = name.replace("\u00a0", " ")
# Convert narrow non-breaking space to regular space when after non-digits
name = re.sub(r"(?<=[^\d])\u202F", " ", name)
# Remove spaces from the beginning and end of the text
name = name.strip()
# Filter out pure numeric content with length < 3
if len(name) < 3 and re.match(r"^[0-9]+$", name):
return ""
def should_filter_by_dots(text):
"""
Check if the string consists only of dots and digits, with at least one dot
Filter cases include: 1.2.3, 12.3, .123, 123., 12.3., .1.23 etc.
"""
return all(c.isdigit() or c == "." for c in text) and "." in text
if len(name) < 6 and should_filter_by_dots(name):
# Filter out mixed numeric and dot content with length < 6
return ""
# Filter out mixed numeric and dot content with length < 6, requiring at least one dot
return ""
return name
def sanitize_text_for_encoding(text: str, replacement_char: str = "") -> str:
"""Sanitize text to ensure safe UTF-8 encoding by removing or replacing problematic characters.
This function handles:
- Surrogate characters (the main cause of encoding errors)
- Other invalid Unicode sequences
- Control characters that might cause issues
- Unescape HTML escapes
- Remove control characters
- Whitespace trimming
Args:
text: Input text to sanitize
replacement_char: Character to use for replacing invalid sequences
Returns:
Sanitized text that can be safely encoded as UTF-8
Raises:
ValueError: When text contains uncleanable encoding issues that cannot be safely processed
"""
if not text:
return text
try:
# First, strip whitespace
text = text.strip()
# Early return if text is empty after basic cleaning
if not text:
return text
# Try to encode/decode to catch any encoding issues early
text.encode("utf-8")
# Remove or replace surrogate characters (U+D800 to U+DFFF)
# These are the main cause of the encoding error
sanitized = ""
for char in text:
code_point = ord(char)
# Check for surrogate characters
if 0xD800 <= code_point <= 0xDFFF:
# Replace surrogate with replacement character
sanitized += replacement_char
continue
# Check for other problematic characters
elif code_point == 0xFFFE or code_point == 0xFFFF:
# These are non-characters in Unicode
sanitized += replacement_char
continue
else:
sanitized += char
# Additional cleanup: remove null bytes and other control characters that might cause issues
# (but preserve common whitespace like \t, \n, \r)
sanitized = re.sub(
r"[\x00-\x08\x0B\x0C\x0E-\x1F\x7F]", replacement_char, sanitized
)
# Test final encoding to ensure it's safe
sanitized.encode("utf-8")
# Unescape HTML escapes
sanitized = html.unescape(sanitized)
# Remove control characters but preserve common whitespace (\t, \n, \r)
sanitized = re.sub(r"[\x00-\x08\x0B\x0C\x0E-\x1F\x7F-\x9F]", "", sanitized)
return sanitized.strip()
except UnicodeEncodeError as e:
# Critical change: Don't return placeholder, raise exception for caller to handle
error_msg = f"Text contains uncleanable UTF-8 encoding issues: {str(e)[:100]}"
logger.error(f"Text sanitization failed: {error_msg}")
raise ValueError(error_msg) from e
except Exception as e:
logger.error(f"Text sanitization: Unexpected error: {str(e)}")
# For other exceptions, if no encoding issues detected, return original text
try:
text.encode("utf-8")
return text
except UnicodeEncodeError:
raise ValueError(
f"Text sanitization failed with unexpected error: {str(e)}"
) from e
def check_storage_env_vars(storage_name: str) -> None:
"""Check if all required environment variables for storage implementation exist
Args:
storage_name: Storage implementation name
Raises:
ValueError: If required environment variables are missing
"""
from lightrag.kg import STORAGE_ENV_REQUIREMENTS
required_vars = STORAGE_ENV_REQUIREMENTS.get(storage_name, [])
missing_vars = [var for var in required_vars if var not in os.environ]
if missing_vars:
raise ValueError(
f"Storage implementation '{storage_name}' requires the following "
f"environment variables: {', '.join(missing_vars)}"
)
def pick_by_weighted_polling(
entities_or_relations: list[dict],
max_related_chunks: int,
min_related_chunks: int = 1,
) -> list[str]:
"""
Linear gradient weighted polling algorithm for text chunk selection.
This algorithm ensures that entities/relations with higher importance get more text chunks,
forming a linear decreasing allocation pattern.
Args:
entities_or_relations: List of entities or relations sorted by importance (high to low)
max_related_chunks: Expected number of text chunks for the highest importance entity/relation
min_related_chunks: Expected number of text chunks for the lowest importance entity/relation
Returns:
List of selected text chunk IDs
"""
if not entities_or_relations:
return []
n = len(entities_or_relations)
if n == 1:
# Only one entity/relation, return its first max_related_chunks text chunks
entity_chunks = entities_or_relations[0].get("sorted_chunks", [])
return entity_chunks[:max_related_chunks]
# Calculate expected text chunk count for each position (linear decrease)
expected_counts = []
for i in range(n):
# Linear interpolation: from max_related_chunks to min_related_chunks
ratio = i / (n - 1) if n > 1 else 0
expected = max_related_chunks - ratio * (
max_related_chunks - min_related_chunks
)
expected_counts.append(int(round(expected)))
# First round allocation: allocate by expected values
selected_chunks = []
used_counts = [] # Track number of chunks used by each entity
total_remaining = 0 # Accumulate remaining quotas
for i, entity_rel in enumerate(entities_or_relations):
entity_chunks = entity_rel.get("sorted_chunks", [])
expected = expected_counts[i]
# Actual allocatable count
actual = min(expected, len(entity_chunks))
selected_chunks.extend(entity_chunks[:actual])
used_counts.append(actual)
# Accumulate remaining quota
remaining = expected - actual
if remaining > 0:
total_remaining += remaining
# Second round allocation: multi-round scanning to allocate remaining quotas
for _ in range(total_remaining):
allocated = False
# Scan entities one by one, allocate one chunk when finding unused chunks
for i, entity_rel in enumerate(entities_or_relations):
entity_chunks = entity_rel.get("sorted_chunks", [])
# Check if there are still unused chunks
if used_counts[i] < len(entity_chunks):
# Allocate one chunk
selected_chunks.append(entity_chunks[used_counts[i]])
used_counts[i] += 1
allocated = True
break
# If no chunks were allocated in this round, all entities are exhausted
if not allocated:
break
return selected_chunks
async def pick_by_vector_similarity(
query: str,
text_chunks_storage: "BaseKVStorage",
chunks_vdb: "BaseVectorStorage",
num_of_chunks: int,
entity_info: list[dict[str, Any]],
embedding_func: callable,
query_embedding=None,
) -> list[str]:
"""
Vector similarity-based text chunk selection algorithm.
This algorithm selects text chunks based on cosine similarity between
the query embedding and text chunk embeddings.
Args:
query: User's original query string
text_chunks_storage: Text chunks storage instance
chunks_vdb: Vector database storage for chunks
num_of_chunks: Number of chunks to select
entity_info: List of entity information containing chunk IDs
embedding_func: Embedding function to compute query embedding
Returns:
List of selected text chunk IDs sorted by similarity (highest first)
"""
logger.debug(
f"Vector similarity chunk selection: num_of_chunks={num_of_chunks}, entity_info_count={len(entity_info) if entity_info else 0}"
)
if not entity_info or num_of_chunks <= 0:
return []
# Collect all unique chunk IDs from entity info
all_chunk_ids = set()
for i, entity in enumerate(entity_info):
chunk_ids = entity.get("sorted_chunks", [])
all_chunk_ids.update(chunk_ids)
if not all_chunk_ids:
logger.warning(
"Vector similarity chunk selection: no chunk IDs found in entity_info"
)
return []
logger.debug(
f"Vector similarity chunk selection: {len(all_chunk_ids)} unique chunk IDs collected"
)
all_chunk_ids = list(all_chunk_ids)
try:
# Use pre-computed query embedding if provided, otherwise compute it
if query_embedding is None:
query_embedding = await embedding_func([query])
query_embedding = query_embedding[
0
] # Extract first embedding from batch result
logger.debug(
"Computed query embedding for vector similarity chunk selection"
)
else:
logger.debug(
"Using pre-computed query embedding for vector similarity chunk selection"
)
# Get chunk embeddings from vector database
chunk_vectors = await chunks_vdb.get_vectors_by_ids(all_chunk_ids)
logger.debug(
f"Vector similarity chunk selection: {len(chunk_vectors)} chunk vectors Retrieved"
)
if not chunk_vectors or len(chunk_vectors) != len(all_chunk_ids):
if not chunk_vectors:
logger.warning(
"Vector similarity chunk selection: no vectors retrieved from chunks_vdb"
)
else:
logger.warning(
f"Vector similarity chunk selection: found {len(chunk_vectors)} but expecting {len(all_chunk_ids)}"
)
return []
# Calculate cosine similarities
similarities = []
valid_vectors = 0
for chunk_id in all_chunk_ids:
if chunk_id in chunk_vectors:
chunk_embedding = chunk_vectors[chunk_id]
try:
# Calculate cosine similarity
similarity = cosine_similarity(query_embedding, chunk_embedding)
similarities.append((chunk_id, similarity))
valid_vectors += 1
except Exception as e:
logger.warning(
f"Vector similarity chunk selection: failed to calculate similarity for chunk {chunk_id}: {e}"
)
else:
logger.warning(
f"Vector similarity chunk selection: no vector found for chunk {chunk_id}"
)
# Sort by similarity (highest first) and select top num_of_chunks
similarities.sort(key=lambda x: x[1], reverse=True)
selected_chunks = [chunk_id for chunk_id, _ in similarities[:num_of_chunks]]
logger.debug(
f"Vector similarity chunk selection: {len(selected_chunks)} chunks from {len(all_chunk_ids)} candidates"
)
return selected_chunks
except Exception as e:
logger.error(f"[VECTOR_SIMILARITY] Error in vector similarity sorting: {e}")
import traceback
logger.error(f"[VECTOR_SIMILARITY] Traceback: {traceback.format_exc()}")
# Fallback to simple truncation
logger.debug("[VECTOR_SIMILARITY] Falling back to simple truncation")
return all_chunk_ids[:num_of_chunks]
class TokenTracker:
"""Track token usage for LLM calls."""
def __init__(self):
self.reset()
def __enter__(self):
self.reset()
return self
def __exit__(self, exc_type, exc_val, exc_tb):
print(self)
def reset(self):
self.prompt_tokens = 0
self.completion_tokens = 0
self.total_tokens = 0
self.call_count = 0
def add_usage(self, token_counts):
"""Add token usage from one LLM call.
Args:
token_counts: A dictionary containing prompt_tokens, completion_tokens, total_tokens
"""
self.prompt_tokens += token_counts.get("prompt_tokens", 0)
self.completion_tokens += token_counts.get("completion_tokens", 0)
# If total_tokens is provided, use it directly; otherwise calculate the sum
if "total_tokens" in token_counts:
self.total_tokens += token_counts["total_tokens"]
else:
self.total_tokens += token_counts.get(
"prompt_tokens", 0
) + token_counts.get("completion_tokens", 0)
self.call_count += 1
def get_usage(self):
"""Get current usage statistics."""
return {
"prompt_tokens": self.prompt_tokens,
"completion_tokens": self.completion_tokens,
"total_tokens": self.total_tokens,
"call_count": self.call_count,
}
def __str__(self):
usage = self.get_usage()
return (
f"LLM call count: {usage['call_count']}, "
f"Prompt tokens: {usage['prompt_tokens']}, "
f"Completion tokens: {usage['completion_tokens']}, "
f"Total tokens: {usage['total_tokens']}"
)
async def apply_rerank_if_enabled(
query: str,
retrieved_docs: list[dict],
global_config: dict,
enable_rerank: bool = True,
top_n: int = None,
) -> list[dict]:
"""
Apply reranking to retrieved documents if rerank is enabled.
Args:
query: The search query
retrieved_docs: List of retrieved documents
global_config: Global configuration containing rerank settings
enable_rerank: Whether to enable reranking from query parameter
top_n: Number of top documents to return after reranking
Returns:
Reranked documents if rerank is enabled, otherwise original documents
"""
if not enable_rerank or not retrieved_docs:
return retrieved_docs
rerank_func = global_config.get("rerank_model_func")
if not rerank_func:
logger.warning(
"Rerank is enabled but no rerank model is configured. Please set up a rerank model or set enable_rerank=False in query parameters."
)
return retrieved_docs
try:
# Extract document content for reranking
document_texts = []
for doc in retrieved_docs:
# Try multiple possible content fields
content = (
doc.get("content")
or doc.get("text")
or doc.get("chunk_content")
or doc.get("document")
or str(doc)
)
document_texts.append(content)
# Call the new rerank function that returns index-based results
rerank_results = await rerank_func(
query=query,
documents=document_texts,
top_n=top_n,
)
# Process rerank results based on return format
if rerank_results and len(rerank_results) > 0:
# Check if results are in the new index-based format
if isinstance(rerank_results[0], dict) and "index" in rerank_results[0]:
# New format: [{"index": 0, "relevance_score": 0.85}, ...]
reranked_docs = []
for result in rerank_results:
index = result["index"]
relevance_score = result["relevance_score"]
# Get original document and add rerank score
if 0 <= index < len(retrieved_docs):
doc = retrieved_docs[index].copy()
doc["rerank_score"] = relevance_score
reranked_docs.append(doc)
logger.info(
f"Successfully reranked: {len(reranked_docs)} chunks from {len(retrieved_docs)} original chunks"
)
return reranked_docs
else:
# Legacy format: assume it's already reranked documents
logger.info(f"Using legacy rerank format: {len(rerank_results)} chunks")
return rerank_results[:top_n] if top_n else rerank_results
else:
logger.warning("Rerank returned empty results, using original chunks")
return retrieved_docs
except Exception as e:
logger.error(f"Error during reranking: {e}, using original chunks")
return retrieved_docs
async def process_chunks_unified(
query: str,
unique_chunks: list[dict],
query_param: "QueryParam",
global_config: dict,
source_type: str = "mixed",
chunk_token_limit: int = None, # Add parameter for dynamic token limit
) -> list[dict]:
"""
Unified processing for text chunks: deduplication, chunk_top_k limiting, reranking, and token truncation.
Args:
query: Search query for reranking
chunks: List of text chunks to process
query_param: Query parameters containing configuration
global_config: Global configuration dictionary
source_type: Source type for logging ("vector", "entity", "relationship", "mixed")
chunk_token_limit: Dynamic token limit for chunks (if None, uses default)
Returns:
Processed and filtered list of text chunks
"""
if not unique_chunks:
return []
origin_count = len(unique_chunks)
# 1. Apply reranking if enabled and query is provided
if query_param.enable_rerank and query and unique_chunks:
rerank_top_k = query_param.chunk_top_k or len(unique_chunks)
unique_chunks = await apply_rerank_if_enabled(
query=query,
retrieved_docs=unique_chunks,
global_config=global_config,
enable_rerank=query_param.enable_rerank,
top_n=rerank_top_k,
)
# 2. Filter by minimum rerank score if reranking is enabled
if query_param.enable_rerank and unique_chunks:
min_rerank_score = global_config.get("min_rerank_score", 0.5)
if min_rerank_score > 0.0:
original_count = len(unique_chunks)
# Filter chunks with score below threshold
filtered_chunks = []
for chunk in unique_chunks:
rerank_score = chunk.get(
"rerank_score", 1.0
) # Default to 1.0 if no score
if rerank_score >= min_rerank_score:
filtered_chunks.append(chunk)
unique_chunks = filtered_chunks
filtered_count = original_count - len(unique_chunks)
if filtered_count > 0:
logger.info(
f"Rerank filtering: {len(unique_chunks)} chunks remained (min rerank score: {min_rerank_score})"
)
if not unique_chunks:
return []
# 3. Apply chunk_top_k limiting if specified
if query_param.chunk_top_k is not None and query_param.chunk_top_k > 0:
if len(unique_chunks) > query_param.chunk_top_k:
unique_chunks = unique_chunks[: query_param.chunk_top_k]
logger.debug(
f"Kept chunk_top-k: {len(unique_chunks)} chunks (deduplicated original: {origin_count})"
)
# 4. Token-based final truncation
tokenizer = global_config.get("tokenizer")
if tokenizer and unique_chunks:
# Set default chunk_token_limit if not provided
if chunk_token_limit is None:
# Get default from query_param or global_config
chunk_token_limit = getattr(
query_param,
"max_total_tokens",
global_config.get("MAX_TOTAL_TOKENS", DEFAULT_MAX_TOTAL_TOKENS),
)
original_count = len(unique_chunks)
unique_chunks = truncate_list_by_token_size(
unique_chunks,
key=lambda x: "\n".join(
json.dumps(item, ensure_ascii=False) for item in [x]
),
max_token_size=chunk_token_limit,
tokenizer=tokenizer,
)
logger.debug(
f"Token truncation: {len(unique_chunks)} chunks from {original_count} "
f"(chunk available tokens: {chunk_token_limit}, source: {source_type})"
)
# 5. add id field to each chunk
final_chunks = []
for i, chunk in enumerate(unique_chunks):
chunk_with_id = chunk.copy()
chunk_with_id["id"] = f"DC{i + 1}"
final_chunks.append(chunk_with_id)
return final_chunks
def normalize_source_ids_limit_method(method: str | None) -> str:
"""Normalize the source ID limiting strategy and fall back to default when invalid."""
if not method:
return DEFAULT_SOURCE_IDS_LIMIT_METHOD
normalized = method.upper()
if normalized not in VALID_SOURCE_IDS_LIMIT_METHODS:
logger.warning(
"Unknown SOURCE_IDS_LIMIT_METHOD '%s', falling back to %s",
method,
DEFAULT_SOURCE_IDS_LIMIT_METHOD,
)
return DEFAULT_SOURCE_IDS_LIMIT_METHOD
return normalized
def merge_source_ids(
existing_ids: Iterable[str] | None, new_ids: Iterable[str] | None
) -> list[str]:
"""Merge two iterables of source IDs while preserving order and removing duplicates."""
merged: list[str] = []
seen: set[str] = set()
for sequence in (existing_ids, new_ids):
if not sequence:
continue
for source_id in sequence:
if not source_id:
continue
if source_id not in seen:
seen.add(source_id)
merged.append(source_id)
return merged
def apply_source_ids_limit(
source_ids: Sequence[str],
limit: int,
method: str,
*,
identifier: str | None = None,
) -> list[str]:
"""Apply a limit strategy to a sequence of source IDs."""
if limit <= 0:
return []
source_ids_list = list(source_ids)
if len(source_ids_list) <= limit:
return source_ids_list
normalized_method = normalize_source_ids_limit_method(method)
if normalized_method == SOURCE_IDS_LIMIT_METHOD_FIFO:
truncated = source_ids_list[-limit:]
else: # IGNORE_NEW
truncated = source_ids_list[:limit]
if identifier and len(truncated) < len(source_ids_list):
logger.debug(
"Source_id truncated: %s | %s keeping %s of %s entries",
identifier,
normalized_method,
len(truncated),
len(source_ids_list),
)
return truncated
def compute_incremental_chunk_ids(
existing_full_chunk_ids: list[str],
old_chunk_ids: list[str],
new_chunk_ids: list[str],
) -> list[str]:
"""
Compute incrementally updated chunk IDs based on changes.
This function applies delta changes (additions and removals) to an existing
list of chunk IDs while maintaining order and ensuring deduplication.
Delta additions from new_chunk_ids are placed at the end.
Args:
existing_full_chunk_ids: Complete list of existing chunk IDs from storage
old_chunk_ids: Previous chunk IDs from source_id (chunks being replaced)
new_chunk_ids: New chunk IDs from updated source_id (chunks being added)
Returns:
Updated list of chunk IDs with deduplication
Example:
>>> existing = ['chunk-1', 'chunk-2', 'chunk-3']
>>> old = ['chunk-1', 'chunk-2']
>>> new = ['chunk-2', 'chunk-4']
>>> compute_incremental_chunk_ids(existing, old, new)
['chunk-3', 'chunk-2', 'chunk-4']
"""
# Calculate changes
chunks_to_remove = set(old_chunk_ids) - set(new_chunk_ids)
chunks_to_add = set(new_chunk_ids) - set(old_chunk_ids)
# Apply changes to full chunk_ids
# Step 1: Remove chunks that are no longer needed
updated_chunk_ids = [
cid for cid in existing_full_chunk_ids if cid not in chunks_to_remove
]
# Step 2: Add new chunks (preserving order from new_chunk_ids)
# Note: 'cid not in updated_chunk_ids' check ensures deduplication
for cid in new_chunk_ids:
if cid in chunks_to_add and cid not in updated_chunk_ids:
updated_chunk_ids.append(cid)
return updated_chunk_ids
def subtract_source_ids(
source_ids: Iterable[str],
ids_to_remove: Collection[str],
) -> list[str]:
"""Remove a collection of IDs from an ordered iterable while preserving order."""
removal_set = set(ids_to_remove)
if not removal_set:
return [source_id for source_id in source_ids if source_id]
return [
source_id
for source_id in source_ids
if source_id and source_id not in removal_set
]
def make_relation_chunk_key(src: str, tgt: str) -> str:
"""Create a deterministic storage key for relation chunk tracking."""
return GRAPH_FIELD_SEP.join(sorted((src, tgt)))
def parse_relation_chunk_key(key: str) -> tuple[str, str]:
"""Parse a relation chunk storage key back into its entity pair."""
parts = key.split(GRAPH_FIELD_SEP)
if len(parts) != 2:
raise ValueError(f"Invalid relation chunk key: {key}")
return parts[0], parts[1]
def generate_track_id(prefix: str = "upload") -> str:
"""Generate a unique tracking ID with timestamp and UUID
Args:
prefix: Prefix for the track ID (e.g., 'upload', 'insert')
Returns:
str: Unique tracking ID in format: {prefix}_{timestamp}_{uuid}
"""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
unique_id = str(uuid.uuid4())[:8] # Use first 8 characters of UUID
return f"{prefix}_{timestamp}_{unique_id}"
def get_pinyin_sort_key(text: str) -> str:
"""Generate sort key for Chinese pinyin sorting
This function uses pypinyin for true Chinese pinyin sorting.
If pypinyin is not available, it falls back to simple lowercase string sorting.
Args:
text: Text to generate sort key for
Returns:
str: Sort key that can be used for comparison and sorting
"""
if not text:
return ""
if _PYPINYIN_AVAILABLE:
try:
# Convert Chinese characters to pinyin, keep non-Chinese as-is
pinyin_list = pypinyin.lazy_pinyin(text, style=pypinyin.Style.NORMAL)
return "".join(pinyin_list).lower()
except Exception:
# Silently fall back to simple string sorting on any error
return text.lower()
else:
# pypinyin not available, use simple string sorting
return text.lower()
def fix_tuple_delimiter_corruption(
record: str, delimiter_core: str, tuple_delimiter: str
) -> str:
"""
Fix various forms of tuple_delimiter corruption from LLM output.
This function handles missing or replaced characters around the core delimiter.
It fixes common corruption patterns where the LLM output doesn't match the expected
tuple_delimiter format.
Args:
record: The text record to fix
delimiter_core: The core delimiter (e.g., "S" from "<|#|>")
tuple_delimiter: The complete tuple delimiter (e.g., "<|#|>")
Returns:
The corrected record with proper tuple_delimiter format
"""
if not record or not delimiter_core or not tuple_delimiter:
return record
# Escape the delimiter core for regex use
escaped_delimiter_core = re.escape(delimiter_core)
# Fix: <|##|> -> <|#|>, <|#||#|> -> <|#|>, <|#|||#|> -> <|#|>
record = re.sub(
rf"<\|{escaped_delimiter_core}\|*?{escaped_delimiter_core}\|>",
tuple_delimiter,
record,
)
# Fix: <|\#|> -> <|#|>
record = re.sub(
rf"<\|\\{escaped_delimiter_core}\|>",
tuple_delimiter,
record,
)
# Fix: <|> -> <|#|>, <||> -> <|#|>
record = re.sub(
r"<\|+>",
tuple_delimiter,
record,
)
# Fix: <X|#|> -> <|#|>, <|#|Y> -> <|#|>, <X|#|Y> -> <|#|>, <||#||> -> <|#|> (one extra characters outside pipes)
record = re.sub(
rf"<.?\|{escaped_delimiter_core}\|.?>",
tuple_delimiter,
record,
)
# Fix: <#>, <#|>, <|#> -> <|#|> (missing one or both pipes)
record = re.sub(
rf"<\|?{escaped_delimiter_core}\|?>",
tuple_delimiter,
record,
)
# Fix: <X#|> -> <|#|>, <|#X> -> <|#|> (one pipe is replaced by other character)
record = re.sub(
rf"<[^|]{escaped_delimiter_core}\|>|<\|{escaped_delimiter_core}[^|]>",
tuple_delimiter,
record,
)
# Fix: <|#| -> <|#|>, <|#|| -> <|#|> (missing closing >)
record = re.sub(
rf"<\|{escaped_delimiter_core}\|+(?!>)",
tuple_delimiter,
record,
)
# Fix <|#: -> <|#|> (missing closing >)
record = re.sub(
rf"<\|{escaped_delimiter_core}:(?!>)",
tuple_delimiter,
record,
)
# Fix: <||#> -> <|#|> (double pipe at start, missing pipe at end)
record = re.sub(
rf"<\|+{escaped_delimiter_core}>",
tuple_delimiter,
record,
)
# Fix: <|| -> <|#|>
record = re.sub(
r"<\|\|(?!>)",
tuple_delimiter,
record,
)
# Fix: |#|> -> <|#|> (missing opening <)
record = re.sub(
rf"(?<!<)\|{escaped_delimiter_core}\|>",
tuple_delimiter,
record,
)
# Fix: <|#|>| -> <|#|> ( this is a fix for: <|#|| -> <|#|> )
record = re.sub(
rf"<\|{escaped_delimiter_core}\|>\|",
tuple_delimiter,
record,
)
# Fix: ||#|| -> <|#|> (double pipes on both sides without angle brackets)
record = re.sub(
rf"\|\|{escaped_delimiter_core}\|\|",
tuple_delimiter,
record,
)
return record
def create_prefixed_exception(original_exception: Exception, prefix: str) -> Exception:
"""
Safely create a prefixed exception that adapts to all error types.
Args:
original_exception: The original exception.
prefix: The prefix to add.
Returns:
A new exception with the prefix, maintaining the original exception type if possible.
"""
try:
# Method 1: Try to reconstruct using original arguments.
if hasattr(original_exception, "args") and original_exception.args:
args = list(original_exception.args)
# Find the first string argument and prefix it. This is safer for
# exceptions like OSError where the first arg is an integer (errno).
found_str = False
for i, arg in enumerate(args):
if isinstance(arg, str):
args[i] = f"{prefix}: {arg}"
found_str = True
break
# If no string argument is found, prefix the first argument's string representation.
if not found_str:
args[0] = f"{prefix}: {args[0]}"
return type(original_exception)(*args)
else:
# Method 2: If no args, try single parameter construction.
return type(original_exception)(f"{prefix}: {str(original_exception)}")
except (TypeError, ValueError, AttributeError) as construct_error:
# Method 3: If reconstruction fails, wrap it in a RuntimeError.
# This is the safest fallback, as attempting to create the same type
# with a single string can fail if the constructor requires multiple arguments.
return RuntimeError(
f"{prefix}: {type(original_exception).__name__}: {str(original_exception)} "
f"(Original exception could not be reconstructed: {construct_error})"
)
def convert_to_user_format(
entities_context: list[dict],
relations_context: list[dict],
chunks: list[dict],
references: list[dict],
query_mode: str,
entity_id_to_original: dict = None,
relation_id_to_original: dict = None,
) -> dict[str, Any]:
"""Convert internal data format to user-friendly format using original database data"""
# Convert entities format using original data when available
formatted_entities = []
for entity in entities_context:
entity_name = entity.get("entity", "")
# Try to get original data first
original_entity = None
if entity_id_to_original and entity_name in entity_id_to_original:
original_entity = entity_id_to_original[entity_name]
if original_entity:
# Use original database data
formatted_entities.append(
{
"entity_name": original_entity.get("entity_name", entity_name),
"entity_type": original_entity.get("entity_type", "UNKNOWN"),
"description": original_entity.get("description", ""),
"source_id": original_entity.get("source_id", ""),
"file_path": original_entity.get("file_path", "unknown_source"),
"created_at": original_entity.get("created_at", ""),
}
)
else:
# Fallback to LLM context data (for backward compatibility)
formatted_entities.append(
{
"entity_name": entity_name,
"entity_type": entity.get("type", "UNKNOWN"),
"description": entity.get("description", ""),
"source_id": entity.get("source_id", ""),
"file_path": entity.get("file_path", "unknown_source"),
"created_at": entity.get("created_at", ""),
}
)
# Convert relationships format using original data when available
formatted_relationships = []
for relation in relations_context:
entity1 = relation.get("entity1", "")
entity2 = relation.get("entity2", "")
relation_key = (entity1, entity2)
# Try to get original data first
original_relation = None
if relation_id_to_original and relation_key in relation_id_to_original:
original_relation = relation_id_to_original[relation_key]
if original_relation:
# Use original database data
formatted_relationships.append(
{
"src_id": original_relation.get("src_id", entity1),
"tgt_id": original_relation.get("tgt_id", entity2),
"description": original_relation.get("description", ""),
"keywords": original_relation.get("keywords", ""),
"weight": original_relation.get("weight", 1.0),
"source_id": original_relation.get("source_id", ""),
"file_path": original_relation.get("file_path", "unknown_source"),
"created_at": original_relation.get("created_at", ""),
}
)
else:
# Fallback to LLM context data (for backward compatibility)
formatted_relationships.append(
{
"src_id": entity1,
"tgt_id": entity2,
"description": relation.get("description", ""),
"keywords": relation.get("keywords", ""),
"weight": relation.get("weight", 1.0),
"source_id": relation.get("source_id", ""),
"file_path": relation.get("file_path", "unknown_source"),
"created_at": relation.get("created_at", ""),
}
)
# Convert chunks format (chunks already contain complete data)
formatted_chunks = []
for i, chunk in enumerate(chunks):
chunk_data = {
"reference_id": chunk.get("reference_id", ""),
"content": chunk.get("content", ""),
"file_path": chunk.get("file_path", "unknown_source"),
"chunk_id": chunk.get("chunk_id", ""),
}
formatted_chunks.append(chunk_data)
logger.debug(
f"[convert_to_user_format] Formatted {len(formatted_chunks)}/{len(chunks)} chunks"
)
# Build basic metadata (metadata details will be added by calling functions)
metadata = {
"query_mode": query_mode,
"keywords": {
"high_level": [],
"low_level": [],
}, # Placeholder, will be set by calling functions
}
return {
"status": "success",
"message": "Query processed successfully",
"data": {
"entities": formatted_entities,
"relationships": formatted_relationships,
"chunks": formatted_chunks,
"references": references,
},
"metadata": metadata,
}
def generate_reference_list_from_chunks(
chunks: list[dict],
) -> tuple[list[dict], list[dict]]:
"""
Generate reference list from chunks, prioritizing by occurrence frequency.
This function extracts file_paths from chunks, counts their occurrences,
sorts by frequency and first appearance order, creates reference_id mappings,
and builds a reference_list structure.
Args:
chunks: List of chunk dictionaries with file_path information
Returns:
tuple: (reference_list, updated_chunks_with_reference_ids)
- reference_list: List of dicts with reference_id and file_path
- updated_chunks_with_reference_ids: Original chunks with reference_id field added
"""
if not chunks:
return [], []
# 1. Extract all valid file_paths and count their occurrences
file_path_counts = {}
for chunk in chunks:
file_path = chunk.get("file_path", "")
if file_path and file_path != "unknown_source":
file_path_counts[file_path] = file_path_counts.get(file_path, 0) + 1
# 2. Sort file paths by frequency (descending), then by first appearance order
# Create a list of (file_path, count, first_index) tuples
file_path_with_indices = []
seen_paths = set()
for i, chunk in enumerate(chunks):
file_path = chunk.get("file_path", "")
if file_path and file_path != "unknown_source" and file_path not in seen_paths:
file_path_with_indices.append((file_path, file_path_counts[file_path], i))
seen_paths.add(file_path)
# Sort by count (descending), then by first appearance index (ascending)
sorted_file_paths = sorted(file_path_with_indices, key=lambda x: (-x[1], x[2]))
unique_file_paths = [item[0] for item in sorted_file_paths]
# 3. Create mapping from file_path to reference_id (prioritized by frequency)
file_path_to_ref_id = {}
for i, file_path in enumerate(unique_file_paths):
file_path_to_ref_id[file_path] = str(i + 1)
# 4. Add reference_id field to each chunk
updated_chunks = []
for chunk in chunks:
chunk_copy = chunk.copy()
file_path = chunk_copy.get("file_path", "")
if file_path and file_path != "unknown_source":
chunk_copy["reference_id"] = file_path_to_ref_id[file_path]
else:
chunk_copy["reference_id"] = ""
updated_chunks.append(chunk_copy)
# 5. Build reference_list
reference_list = []
for i, file_path in enumerate(unique_file_paths):
reference_list.append({"reference_id": str(i + 1), "file_path": file_path})
return reference_list, updated_chunks