LightRAG/tests/test_workspace_isolation.py
BukeLy 1a1837028a docs: Update test file docstring to reflect all 11 test scenarios
Previous docstring mentioned only 4 scenarios but the file actually contains
11 comprehensive test cases. Updated to list all scenarios:

1. Pipeline Status Isolation
2. Lock Mechanism (Parallel/Serial)
3. Backward Compatibility
4. Multi-Workspace Concurrency
5. NamespaceLock Re-entrance Protection
6. Different Namespace Lock Isolation
7. Error Handling
8. Update Flags Workspace Isolation
9. Empty Workspace Standardization
10. JsonKVStorage Workspace Isolation
11. LightRAG End-to-End Workspace Isolation

This makes the file header accurately describe its contents.
2025-11-17 19:02:46 +08:00

900 lines
36 KiB
Python

#!/usr/bin/env python
"""
Test script for PR #2366: Workspace Isolation Feature
Comprehensive test suite covering workspace isolation in LightRAG:
1. Pipeline Status Isolation - Data isolation between workspaces
2. Lock Mechanism - Parallel execution for different workspaces, serial for same workspace
3. Backward Compatibility - Legacy code without workspace parameters
4. Multi-Workspace Concurrency - Concurrent operations on different workspaces
5. NamespaceLock Re-entrance Protection - Prevents deadlocks
6. Different Namespace Lock Isolation - Locks isolated by namespace
7. Error Handling - Invalid workspace configurations
8. Update Flags Workspace Isolation - Update flags properly isolated
9. Empty Workspace Standardization - Empty workspace handling
10. JsonKVStorage Workspace Isolation - Integration test for KV storage
11. LightRAG End-to-End Workspace Isolation - Complete E2E test with two instances
Total: 11 test scenarios
"""
import asyncio
import time
import os
import shutil
import tempfile
import numpy as np
import pytest
from pathlib import Path
from lightrag.kg.shared_storage import (
get_final_namespace,
get_namespace_lock,
get_default_workspace,
set_default_workspace,
initialize_share_data,
initialize_pipeline_status,
get_namespace_data,
set_all_update_flags,
clear_all_update_flags,
get_all_update_flags_status,
get_update_flag,
)
from lightrag.kg.json_kv_impl import JsonKVStorage
# =============================================================================
# Pytest Fixtures
# =============================================================================
@pytest.fixture(autouse=True)
def setup_shared_data():
"""Initialize shared data before each test"""
initialize_share_data()
yield
# Cleanup after test if needed
# =============================================================================
# Test 1: Pipeline Status Isolation Test
# =============================================================================
@pytest.mark.asyncio
async def test_pipeline_status_isolation():
"""
Test that pipeline status is isolated between different workspaces.
"""
print("\n" + "=" * 60)
print("TEST 1: Pipeline Status Isolation")
print("=" * 60)
# Initialize shared storage
initialize_share_data()
# Initialize pipeline status for two different workspaces
workspace1 = "test_workspace_1"
workspace2 = "test_workspace_2"
await initialize_pipeline_status(workspace1)
await initialize_pipeline_status(workspace2)
# Get pipeline status data for both workspaces
data1 = await get_namespace_data("pipeline_status", workspace=workspace1)
data2 = await get_namespace_data("pipeline_status", workspace=workspace2)
# Verify they are independent objects
assert data1 is not data2, "Pipeline status data objects are the same (should be different)"
# Modify workspace1's data and verify workspace2 is not affected
data1["test_key"] = "workspace1_value"
# Re-fetch to ensure we get the latest data
data1_check = await get_namespace_data("pipeline_status", workspace=workspace1)
data2_check = await get_namespace_data("pipeline_status", workspace=workspace2)
assert "test_key" in data1_check, "test_key not found in workspace1"
assert data1_check["test_key"] == "workspace1_value", f"workspace1 test_key value incorrect: {data1_check.get('test_key')}"
assert "test_key" not in data2_check, f"test_key leaked to workspace2: {data2_check.get('test_key')}"
print("✅ PASSED: Pipeline Status Isolation")
print(" Different workspaces have isolated pipeline status")
# =============================================================================
# Test 2: Lock Mechanism Test (No Deadlocks)
# =============================================================================
@pytest.mark.asyncio
async def test_lock_mechanism():
"""
Test that the new keyed lock mechanism works correctly without deadlocks.
Tests both parallel execution for different workspaces and serialization
for the same workspace.
"""
print("\n" + "=" * 60)
print("TEST 2: Lock Mechanism (No Deadlocks)")
print("=" * 60)
# Test 2.1: Different workspaces should run in parallel
print("\nTest 2.1: Different workspaces locks should be parallel")
async def acquire_lock_timed(workspace, namespace, hold_time):
"""Acquire a lock and hold it for specified time"""
lock = get_namespace_lock(namespace, workspace)
start = time.time()
async with lock:
print(
f" [{workspace}] acquired lock at {time.time() - start:.2f}s"
)
await asyncio.sleep(hold_time)
print(
f" [{workspace}] releasing lock at {time.time() - start:.2f}s"
)
start = time.time()
await asyncio.gather(
acquire_lock_timed("ws_a", "test_namespace", 0.5),
acquire_lock_timed("ws_b", "test_namespace", 0.5),
acquire_lock_timed("ws_c", "test_namespace", 0.5),
)
elapsed = time.time() - start
# If locks are properly isolated by workspace, this should take ~0.5s (parallel)
# If they block each other, it would take ~1.5s (serial)
assert elapsed < 1.0, f"Locks blocked each other: {elapsed:.2f}s (expected < 1.0s)"
print(f"✅ PASSED: Lock Mechanism - Parallel (Different Workspaces)")
print(f" Locks ran in parallel: {elapsed:.2f}s")
# Test 2.2: Same workspace should serialize
print("\nTest 2.2: Same workspace locks should serialize")
start = time.time()
await asyncio.gather(
acquire_lock_timed("ws_same", "test_namespace", 0.3),
acquire_lock_timed("ws_same", "test_namespace", 0.3),
)
elapsed = time.time() - start
# Same workspace should serialize, taking ~0.6s
assert elapsed >= 0.5, f"Locks didn't serialize: {elapsed:.2f}s (expected >= 0.5s)"
print(f"✅ PASSED: Lock Mechanism - Serial (Same Workspace)")
print(f" Locks serialized correctly: {elapsed:.2f}s")
# =============================================================================
# Test 3: Backward Compatibility Test
# =============================================================================
@pytest.mark.asyncio
async def test_backward_compatibility():
"""
Test that legacy code without workspace parameter still works correctly.
"""
print("\n" + "=" * 60)
print("TEST 3: Backward Compatibility")
print("=" * 60)
# Test 3.1: get_final_namespace with None should use default workspace
print("\nTest 3.1: get_final_namespace with workspace=None")
set_default_workspace("my_default_workspace")
final_ns = get_final_namespace("pipeline_status", workspace=None)
expected = "my_default_workspace:pipeline_status"
assert final_ns == expected, f"Expected {expected}, got {final_ns}"
print(f"✅ PASSED: Backward Compatibility - get_final_namespace")
print(f" Correctly uses default workspace: {final_ns}")
# Test 3.2: get_default_workspace
print("\nTest 3.2: get/set default workspace")
set_default_workspace("test_default")
retrieved = get_default_workspace()
assert retrieved == "test_default", f"Expected 'test_default', got {retrieved}"
print(f"✅ PASSED: Backward Compatibility - default workspace")
print(f" Default workspace set/get correctly: {retrieved}")
# Test 3.3: Empty workspace handling
print("\nTest 3.3: Empty workspace handling")
set_default_workspace("")
final_ns_empty = get_final_namespace("pipeline_status", workspace=None)
expected_empty = "pipeline_status" # Should be just the namespace without ':'
assert final_ns_empty == expected_empty, f"Expected '{expected_empty}', got '{final_ns_empty}'"
print(f"✅ PASSED: Backward Compatibility - empty workspace")
print(f" Empty workspace handled correctly: '{final_ns_empty}'")
# Test 3.4: None workspace with default set
print("\nTest 3.4: initialize_pipeline_status with workspace=None")
set_default_workspace("compat_test_workspace")
initialize_share_data()
await initialize_pipeline_status(workspace=None) # Should use default
# Try to get data using the default workspace explicitly
data = await get_namespace_data(
"pipeline_status", workspace="compat_test_workspace"
)
assert data is not None, "Failed to initialize pipeline status with default workspace"
print(f"✅ PASSED: Backward Compatibility - pipeline init with None")
print(f" Pipeline status initialized with default workspace")
# =============================================================================
# Test 4: Multi-Workspace Concurrency Test
# =============================================================================
@pytest.mark.asyncio
async def test_multi_workspace_concurrency():
"""
Test that multiple workspaces can operate concurrently without interference.
Simulates concurrent operations on different workspaces.
"""
print("\n" + "=" * 60)
print("TEST 4: Multi-Workspace Concurrency")
print("=" * 60)
initialize_share_data()
async def workspace_operations(workspace_id):
"""Simulate operations on a specific workspace"""
print(f"\n [{workspace_id}] Starting operations")
# Initialize pipeline status
await initialize_pipeline_status(workspace_id)
# Get lock and perform operations
lock = get_namespace_lock("test_operations", workspace_id)
async with lock:
# Get workspace data
data = await get_namespace_data("pipeline_status", workspace=workspace_id)
# Modify data
data[f"{workspace_id}_key"] = f"{workspace_id}_value"
data["timestamp"] = time.time()
# Simulate some work
await asyncio.sleep(0.1)
print(f" [{workspace_id}] Completed operations")
return workspace_id
# Run multiple workspaces concurrently
workspaces = ["concurrent_ws_1", "concurrent_ws_2", "concurrent_ws_3"]
start = time.time()
results_list = await asyncio.gather(
*[workspace_operations(ws) for ws in workspaces]
)
elapsed = time.time() - start
print(f"\n All workspaces completed in {elapsed:.2f}s")
# Verify all workspaces completed
assert set(results_list) == set(workspaces), "Not all workspaces completed"
print(f"✅ PASSED: Multi-Workspace Concurrency - Execution")
print(f" All {len(workspaces)} workspaces completed successfully in {elapsed:.2f}s")
# Verify data isolation - each workspace should have its own data
print("\n Verifying data isolation...")
for ws in workspaces:
data = await get_namespace_data("pipeline_status", workspace=ws)
expected_key = f"{ws}_key"
expected_value = f"{ws}_value"
assert expected_key in data, f"Data not properly isolated for {ws}: missing {expected_key}"
assert data[expected_key] == expected_value, f"Data not properly isolated for {ws}: {expected_key}={data[expected_key]} (expected {expected_value})"
print(f" [{ws}] Data correctly isolated: {expected_key}={data[expected_key]}")
print(f"✅ PASSED: Multi-Workspace Concurrency - Data Isolation")
print(f" All workspaces have properly isolated data")
# =============================================================================
# Test 5: NamespaceLock Re-entrance Protection
# =============================================================================
@pytest.mark.asyncio
async def test_namespace_lock_reentrance():
"""
Test that NamespaceLock prevents re-entrance in the same coroutine
and allows concurrent use in different coroutines.
"""
print("\n" + "=" * 60)
print("TEST 5: NamespaceLock Re-entrance Protection")
print("=" * 60)
# Test 5.1: Same coroutine re-entrance should fail
print("\nTest 5.1: Same coroutine re-entrance should raise RuntimeError")
lock = get_namespace_lock("test_reentrance", "test_ws")
reentrance_failed_correctly = False
try:
async with lock:
print(" Acquired lock first time")
# Try to acquire the same lock again in the same coroutine
async with lock:
print(" ERROR: Should not reach here - re-entrance succeeded!")
except RuntimeError as e:
if "already acquired" in str(e).lower():
print(f" ✓ Re-entrance correctly blocked: {e}")
reentrance_failed_correctly = True
else:
raise
assert reentrance_failed_correctly, "Re-entrance protection not working"
print(f"✅ PASSED: NamespaceLock Re-entrance Protection")
print(f" Re-entrance correctly raises RuntimeError")
# Test 5.2: Same NamespaceLock instance in different coroutines should succeed
print("\nTest 5.2: Same NamespaceLock instance in different coroutines")
shared_lock = get_namespace_lock("test_concurrent", "test_ws")
concurrent_results = []
async def use_shared_lock(coroutine_id):
"""Use the same NamespaceLock instance"""
async with shared_lock:
concurrent_results.append(f"coroutine_{coroutine_id}_start")
await asyncio.sleep(0.1)
concurrent_results.append(f"coroutine_{coroutine_id}_end")
# This should work because each coroutine gets its own ContextVar
await asyncio.gather(
use_shared_lock(1),
use_shared_lock(2),
)
# Both coroutines should have completed
expected_entries = 4 # 2 starts + 2 ends
assert len(concurrent_results) == expected_entries, f"Expected {expected_entries} entries, got {len(concurrent_results)}"
print(f"✅ PASSED: NamespaceLock Concurrent Reuse")
print(f" Same NamespaceLock instance used successfully in {expected_entries//2} concurrent coroutines")
# =============================================================================
# Test 6: Different Namespace Lock Isolation
# =============================================================================
@pytest.mark.asyncio
async def test_different_namespace_lock_isolation():
"""
Test that locks for different namespaces (same workspace) are independent.
"""
print("\n" + "=" * 60)
print("TEST 6: Different Namespace Lock Isolation")
print("=" * 60)
print("\nTesting locks with same workspace but different namespaces")
async def acquire_lock_timed(workspace, namespace, hold_time, name):
"""Acquire a lock and hold it for specified time"""
lock = get_namespace_lock(namespace, workspace)
start = time.time()
async with lock:
print(f" [{name}] acquired lock at {time.time() - start:.2f}s")
await asyncio.sleep(hold_time)
print(f" [{name}] releasing lock at {time.time() - start:.2f}s")
# These should run in parallel (different namespaces)
start = time.time()
await asyncio.gather(
acquire_lock_timed("same_ws", "namespace_a", 0.5, "ns_a"),
acquire_lock_timed("same_ws", "namespace_b", 0.5, "ns_b"),
acquire_lock_timed("same_ws", "namespace_c", 0.5, "ns_c"),
)
elapsed = time.time() - start
# If locks are properly isolated by namespace, this should take ~0.5s (parallel)
assert elapsed < 1.0, f"Different namespace locks blocked each other: {elapsed:.2f}s (expected < 1.0s)"
print(f"✅ PASSED: Different Namespace Lock Isolation")
print(f" Different namespace locks ran in parallel: {elapsed:.2f}s")
# =============================================================================
# Test 7: Error Handling
# =============================================================================
@pytest.mark.asyncio
async def test_error_handling():
"""
Test error handling for invalid workspace configurations.
"""
print("\n" + "=" * 60)
print("TEST 7: Error Handling")
print("=" * 60)
# Test 7.1: set_default_workspace(None) converts to empty string
print("\nTest 7.1: set_default_workspace(None) converts to empty string")
set_default_workspace(None)
default_ws = get_default_workspace()
# Should convert None to "" automatically
assert default_ws == "", f"Expected empty string, got: '{default_ws}'"
print(f"✅ PASSED: Error Handling - None to Empty String")
print(f" set_default_workspace(None) correctly converts to empty string: '{default_ws}'")
# Test 7.2: Empty string workspace behavior
print("\nTest 7.2: Empty string workspace creates valid namespace")
# With empty workspace, should create namespace without colon
final_ns = get_final_namespace("test_namespace", workspace="")
assert final_ns == "test_namespace", f"Unexpected namespace: '{final_ns}'"
print(f"✅ PASSED: Error Handling - Empty Workspace Namespace")
print(f" Empty workspace creates valid namespace: '{final_ns}'")
# Restore default workspace for other tests
set_default_workspace("")
# =============================================================================
# Test 8: Update Flags Workspace Isolation
# =============================================================================
@pytest.mark.asyncio
async def test_update_flags_workspace_isolation():
"""
Test that update flags are properly isolated between workspaces.
"""
print("\n" + "=" * 60)
print("TEST 8: Update Flags Workspace Isolation")
print("=" * 60)
initialize_share_data()
workspace1 = "update_flags_ws1"
workspace2 = "update_flags_ws2"
test_namespace = "test_update_flags_ns"
# Initialize namespaces for both workspaces
await initialize_pipeline_status(workspace1)
await initialize_pipeline_status(workspace2)
# Test 8.1: set_all_update_flags isolation
print("\nTest 8.1: set_all_update_flags workspace isolation")
# Create flags for both workspaces (simulating workers)
flag1_obj = await get_update_flag(test_namespace, workspace=workspace1)
flag2_obj = await get_update_flag(test_namespace, workspace=workspace2)
# Initial state should be False
assert flag1_obj.value is False, "Flag1 initial value should be False"
assert flag2_obj.value is False, "Flag2 initial value should be False"
# Set all flags for workspace1
await set_all_update_flags(test_namespace, workspace=workspace1)
# Check that only workspace1's flags are set
assert flag1_obj.value is True, f"Flag1 should be True after set_all_update_flags, got {flag1_obj.value}"
assert flag2_obj.value is False, f"Flag2 should still be False, got {flag2_obj.value}"
print(f"✅ PASSED: Update Flags - set_all_update_flags Isolation")
print(f" set_all_update_flags isolated: ws1={flag1_obj.value}, ws2={flag2_obj.value}")
# Test 8.2: clear_all_update_flags isolation
print("\nTest 8.2: clear_all_update_flags workspace isolation")
# Set flags for both workspaces
await set_all_update_flags(test_namespace, workspace=workspace1)
await set_all_update_flags(test_namespace, workspace=workspace2)
# Verify both are set
assert flag1_obj.value is True, "Flag1 should be True"
assert flag2_obj.value is True, "Flag2 should be True"
# Clear only workspace1
await clear_all_update_flags(test_namespace, workspace=workspace1)
# Check that only workspace1's flags are cleared
assert flag1_obj.value is False, f"Flag1 should be False after clear, got {flag1_obj.value}"
assert flag2_obj.value is True, f"Flag2 should still be True, got {flag2_obj.value}"
print(f"✅ PASSED: Update Flags - clear_all_update_flags Isolation")
print(f" clear_all_update_flags isolated: ws1={flag1_obj.value}, ws2={flag2_obj.value}")
# Test 8.3: get_all_update_flags_status workspace filtering
print("\nTest 8.3: get_all_update_flags_status workspace filtering")
# Initialize more namespaces for testing
await get_update_flag("ns_a", workspace=workspace1)
await get_update_flag("ns_b", workspace=workspace1)
await get_update_flag("ns_c", workspace=workspace2)
# Set flags for workspace1
await set_all_update_flags("ns_a", workspace=workspace1)
await set_all_update_flags("ns_b", workspace=workspace1)
# Set flags for workspace2
await set_all_update_flags("ns_c", workspace=workspace2)
# Get status for workspace1 only
status1 = await get_all_update_flags_status(workspace=workspace1)
# Check that workspace1's namespaces are present
# The keys should include workspace1's namespaces but not workspace2's
workspace1_keys = [k for k in status1.keys() if workspace1 in k]
workspace2_keys = [k for k in status1.keys() if workspace2 in k]
assert len(workspace1_keys) > 0, f"workspace1 keys should be present, got {len(workspace1_keys)}"
assert len(workspace2_keys) == 0, f"workspace2 keys should not be present, got {len(workspace2_keys)}"
print(f"✅ PASSED: Update Flags - get_all_update_flags_status Filtering")
print(f" Status correctly filtered: ws1 keys={len(workspace1_keys)}, ws2 keys={len(workspace2_keys)}")
# =============================================================================
# Test 9: Empty Workspace Standardization
# =============================================================================
@pytest.mark.asyncio
async def test_empty_workspace_standardization():
"""
Test that empty workspace is properly standardized to "" instead of "_".
"""
print("\n" + "=" * 60)
print("TEST 9: Empty Workspace Standardization")
print("=" * 60)
# Test 9.1: Empty string workspace creates namespace without colon
print("\nTest 9.1: Empty string workspace namespace format")
set_default_workspace("")
final_ns = get_final_namespace("test_namespace", workspace=None)
# Should be just "test_namespace" without colon prefix
assert final_ns == "test_namespace", f"Unexpected namespace format: '{final_ns}' (expected 'test_namespace')"
print(f"✅ PASSED: Empty Workspace Standardization - Format")
print(f" Empty workspace creates correct namespace: '{final_ns}'")
# Test 9.2: Empty workspace vs non-empty workspace behavior
print("\nTest 9.2: Empty vs non-empty workspace behavior")
initialize_share_data()
# Initialize with empty workspace
await initialize_pipeline_status(workspace="")
data_empty = await get_namespace_data("pipeline_status", workspace="")
# Initialize with non-empty workspace
await initialize_pipeline_status(workspace="test_ws")
data_nonempty = await get_namespace_data("pipeline_status", workspace="test_ws")
# They should be different objects
assert data_empty is not data_nonempty, "Empty and non-empty workspaces share data (should be independent)"
print(f"✅ PASSED: Empty Workspace Standardization - Behavior")
print(f" Empty and non-empty workspaces have independent data")
# =============================================================================
# Test 10: JsonKVStorage Workspace Isolation (Integration Test)
# =============================================================================
@pytest.mark.asyncio
async def test_json_kv_storage_workspace_isolation():
"""
Integration test: Verify JsonKVStorage properly isolates data between workspaces.
Creates two JsonKVStorage instances with different workspaces, writes different data,
and verifies they don't mix.
"""
print("\n" + "=" * 60)
print("TEST 10: JsonKVStorage Workspace Isolation (Integration)")
print("=" * 60)
# Create temporary test directory
test_dir = tempfile.mkdtemp(prefix="lightrag_test_kv_")
print(f"\n Using test directory: {test_dir}")
try:
initialize_share_data()
# Mock embedding function
async def mock_embedding_func(texts: list[str]) -> np.ndarray:
return np.random.rand(len(texts), 384) # 384-dimensional vectors
# Global config
global_config = {
"working_dir": test_dir,
"embedding_batch_num": 10,
}
# Test 10.1: Create two JsonKVStorage instances with different workspaces
print("\nTest 10.1: Create two JsonKVStorage instances with different workspaces")
from lightrag.kg.json_kv_impl import JsonKVStorage
storage1 = JsonKVStorage(
namespace="entities",
workspace="workspace1",
global_config=global_config,
embedding_func=mock_embedding_func,
)
storage2 = JsonKVStorage(
namespace="entities",
workspace="workspace2",
global_config=global_config,
embedding_func=mock_embedding_func,
)
# Initialize both storages
await storage1.initialize()
await storage2.initialize()
print(f" Storage1 created: workspace=workspace1, namespace=entities")
print(f" Storage2 created: workspace=workspace2, namespace=entities")
# Test 10.2: Write different data to each storage
print("\nTest 10.2: Write different data to each storage")
# Write to storage1 (upsert expects dict[str, dict])
await storage1.upsert({
"entity1": {"content": "Data from workspace1 - AI Research", "type": "entity"},
"entity2": {"content": "Data from workspace1 - Machine Learning", "type": "entity"}
})
print(f" Written to storage1: entity1, entity2")
# Write to storage2
await storage2.upsert({
"entity1": {"content": "Data from workspace2 - Deep Learning", "type": "entity"},
"entity2": {"content": "Data from workspace2 - Neural Networks", "type": "entity"}
})
print(f" Written to storage2: entity1, entity2")
# Test 10.3: Read data from each storage and verify isolation
print("\nTest 10.3: Read data and verify isolation")
# Read from storage1
result1_entity1 = await storage1.get_by_id("entity1")
result1_entity2 = await storage1.get_by_id("entity2")
# Read from storage2
result2_entity1 = await storage2.get_by_id("entity1")
result2_entity2 = await storage2.get_by_id("entity2")
print(f" Storage1 entity1: {result1_entity1}")
print(f" Storage1 entity2: {result1_entity2}")
print(f" Storage2 entity1: {result2_entity1}")
print(f" Storage2 entity2: {result2_entity2}")
# Verify isolation (get_by_id returns dict)
assert result1_entity1 is not None, "Storage1 entity1 should not be None"
assert result1_entity2 is not None, "Storage1 entity2 should not be None"
assert result2_entity1 is not None, "Storage2 entity1 should not be None"
assert result2_entity2 is not None, "Storage2 entity2 should not be None"
assert result1_entity1.get("content") == "Data from workspace1 - AI Research", f"Storage1 entity1 content mismatch"
assert result1_entity2.get("content") == "Data from workspace1 - Machine Learning", f"Storage1 entity2 content mismatch"
assert result2_entity1.get("content") == "Data from workspace2 - Deep Learning", f"Storage2 entity1 content mismatch"
assert result2_entity2.get("content") == "Data from workspace2 - Neural Networks", f"Storage2 entity2 content mismatch"
assert result1_entity1.get("content") != result2_entity1.get("content"), "Storage1 and Storage2 entity1 should have different content"
assert result1_entity2.get("content") != result2_entity2.get("content"), "Storage1 and Storage2 entity2 should have different content"
print(f"✅ PASSED: JsonKVStorage - Data Isolation")
print(f" Two storage instances correctly isolated: ws1 and ws2 have different data")
# Test 10.4: Verify file structure
print("\nTest 10.4: Verify file structure")
ws1_dir = Path(test_dir) / "workspace1"
ws2_dir = Path(test_dir) / "workspace2"
ws1_exists = ws1_dir.exists()
ws2_exists = ws2_dir.exists()
print(f" workspace1 directory exists: {ws1_exists}")
print(f" workspace2 directory exists: {ws2_exists}")
assert ws1_exists, "workspace1 directory should exist"
assert ws2_exists, "workspace2 directory should exist"
print(f"✅ PASSED: JsonKVStorage - File Structure")
print(f" Workspace directories correctly created: {ws1_dir} and {ws2_dir}")
finally:
# Cleanup test directory
if os.path.exists(test_dir):
shutil.rmtree(test_dir)
print(f"\n Cleaned up test directory: {test_dir}")
# =============================================================================
# Test 11: LightRAG End-to-End Integration Test
# =============================================================================
@pytest.mark.asyncio
async def test_lightrag_end_to_end_workspace_isolation():
"""
End-to-end test: Create two LightRAG instances with different workspaces,
insert different data, and verify file separation.
Uses mock LLM and embedding functions to avoid external API calls.
"""
print("\n" + "=" * 60)
print("TEST 11: LightRAG End-to-End Workspace Isolation")
print("=" * 60)
# Create temporary test directory
test_dir = tempfile.mkdtemp(prefix="lightrag_test_e2e_")
print(f"\n Using test directory: {test_dir}")
try:
# Mock LLM function
async def mock_llm_func(
prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
# Return a mock response that simulates entity extraction in the correct format
# Format: entity<|#|>entity_name<|#|>entity_type<|#|>entity_description
# Format: relation<|#|>source_entity<|#|>target_entity<|#|>keywords<|#|>description
return """entity<|#|>Artificial Intelligence<|#|>concept<|#|>AI is a field of computer science focused on creating intelligent machines.
entity<|#|>Machine Learning<|#|>concept<|#|>Machine Learning is a subset of AI that enables systems to learn from data.
relation<|#|>Machine Learning<|#|>Artificial Intelligence<|#|>subset, related field<|#|>Machine Learning is a key component and subset of Artificial Intelligence.
<|COMPLETE|>"""
# Mock embedding function
async def mock_embedding_func(texts: list[str]) -> np.ndarray:
return np.random.rand(len(texts), 384) # 384-dimensional vectors
# Test 11.1: Create two LightRAG instances with different workspaces
print("\nTest 11.1: Create two LightRAG instances with different workspaces")
from lightrag import LightRAG
from lightrag.utils import EmbeddingFunc
rag1 = LightRAG(
working_dir=test_dir,
workspace="project_a",
llm_model_func=mock_llm_func,
embedding_func=EmbeddingFunc(
embedding_dim=384,
max_token_size=8192,
func=mock_embedding_func,
),
)
rag2 = LightRAG(
working_dir=test_dir,
workspace="project_b",
llm_model_func=mock_llm_func,
embedding_func=EmbeddingFunc(
embedding_dim=384,
max_token_size=8192,
func=mock_embedding_func,
),
)
# Initialize storages
await rag1.initialize_storages()
await rag2.initialize_storages()
print(f" RAG1 created: workspace=project_a")
print(f" RAG2 created: workspace=project_b")
# Test 11.2: Insert different data to each RAG instance
print("\nTest 11.2: Insert different data to each RAG instance")
text_for_project_a = "This document is about Artificial Intelligence and Machine Learning. AI is transforming the world."
text_for_project_b = "This document is about Deep Learning and Neural Networks. Deep learning uses multiple layers."
# Insert to project_a
await rag1.ainsert(text_for_project_a)
print(f" Inserted to project_a: {len(text_for_project_a)} chars")
# Insert to project_b
await rag2.ainsert(text_for_project_b)
print(f" Inserted to project_b: {len(text_for_project_b)} chars")
# Test 11.3: Verify file structure
print("\nTest 11.3: Verify workspace directory structure")
project_a_dir = Path(test_dir) / "project_a"
project_b_dir = Path(test_dir) / "project_b"
project_a_exists = project_a_dir.exists()
project_b_exists = project_b_dir.exists()
print(f" project_a directory: {project_a_dir}")
print(f" project_a exists: {project_a_exists}")
print(f" project_b directory: {project_b_dir}")
print(f" project_b exists: {project_b_exists}")
assert project_a_exists, "project_a directory should exist"
assert project_b_exists, "project_b directory should exist"
# List files in each directory
print(f"\n Files in project_a/:")
for file in sorted(project_a_dir.glob("*")):
if file.is_file():
size = file.stat().st_size
print(f" - {file.name} ({size} bytes)")
print(f"\n Files in project_b/:")
for file in sorted(project_b_dir.glob("*")):
if file.is_file():
size = file.stat().st_size
print(f" - {file.name} ({size} bytes)")
print(f"✅ PASSED: LightRAG E2E - File Structure")
print(f" Workspace directories correctly created and separated")
# Test 11.4: Verify data isolation by checking file contents
print("\nTest 11.4: Verify data isolation (check file contents)")
# Check if full_docs storage files exist and contain different content
docs_a_file = project_a_dir / "kv_store_full_docs.json"
docs_b_file = project_b_dir / "kv_store_full_docs.json"
if docs_a_file.exists() and docs_b_file.exists():
import json
with open(docs_a_file, "r") as f:
docs_a_content = json.load(f)
with open(docs_b_file, "r") as f:
docs_b_content = json.load(f)
print(f" project_a doc count: {len(docs_a_content)}")
print(f" project_b doc count: {len(docs_b_content)}")
# Verify they contain different data
assert docs_a_content != docs_b_content, "Document storage not properly isolated"
# Verify each workspace contains its own text content
docs_a_str = json.dumps(docs_a_content)
docs_b_str = json.dumps(docs_b_content)
# Check project_a contains its text and NOT project_b's text
assert "Artificial Intelligence" in docs_a_str, "project_a should contain 'Artificial Intelligence'"
assert "Machine Learning" in docs_a_str, "project_a should contain 'Machine Learning'"
assert "Deep Learning" not in docs_a_str, "project_a should NOT contain 'Deep Learning' from project_b"
assert "Neural Networks" not in docs_a_str, "project_a should NOT contain 'Neural Networks' from project_b"
# Check project_b contains its text and NOT project_a's text
assert "Deep Learning" in docs_b_str, "project_b should contain 'Deep Learning'"
assert "Neural Networks" in docs_b_str, "project_b should contain 'Neural Networks'"
assert "Artificial Intelligence" not in docs_b_str, "project_b should NOT contain 'Artificial Intelligence' from project_a"
# Note: "Machine Learning" might appear in project_b's text, so we skip that check
print(f"✅ PASSED: LightRAG E2E - Data Isolation")
print(f" Document storage correctly isolated between workspaces")
print(f" project_a contains only its own data")
print(f" project_b contains only its own data")
else:
print(f" Document storage files not found (may not be created yet)")
print(f"✅ PASSED: LightRAG E2E - Data Isolation")
print(f" Skipped file content check (files not created)")
print(f"\n ✓ Test complete - workspace isolation verified at E2E level")
finally:
# Cleanup test directory
if os.path.exists(test_dir):
shutil.rmtree(test_dir)
print(f"\n Cleaned up test directory: {test_dir}")