LightRAG/lightrag/kg/qdrant_impl.py
yangdx 5f4a280458 Add Qdrant legacy collection migration with workspace support
- Add QdrantMigrationError exception
- Implement automatic data migration
- Support workspace-based partitioning
- Add migration verification logic
- Update collection naming scheme
2025-10-30 19:16:33 +08:00

722 lines
27 KiB
Python

import asyncio
import configparser
import hashlib
import os
import uuid
from dataclasses import dataclass
from typing import Any, List, final
import numpy as np
import pipmaster as pm
from ..base import BaseVectorStorage
from ..exceptions import QdrantMigrationError
from ..kg.shared_storage import get_data_init_lock, get_storage_lock
from ..utils import compute_mdhash_id, logger
if not pm.is_installed("qdrant-client"):
pm.install("qdrant-client")
from qdrant_client import QdrantClient, models # type: ignore
DEFAULT_WORKSPACE = "_"
WORKSPACE_ID_FIELD = "workspace_id"
ENTITY_PREFIX = "ent-"
CREATED_AT_FIELD = "created_at"
ID_FIELD = "id"
config = configparser.ConfigParser()
config.read("config.ini", "utf-8")
def compute_mdhash_id_for_qdrant(
content: str, prefix: str = "", style: str = "simple"
) -> str:
"""
Generate a UUID based on the content and support multiple formats.
:param content: The content used to generate the UUID.
:param style: The format of the UUID, optional values are "simple", "hyphenated", "urn".
:return: A UUID that meets the requirements of Qdrant.
"""
if not content:
raise ValueError("Content must not be empty.")
# Use the hash value of the content to create a UUID.
hashed_content = hashlib.sha256((prefix + content).encode("utf-8")).digest()
generated_uuid = uuid.UUID(bytes=hashed_content[:16], version=4)
# Return the UUID according to the specified format.
if style == "simple":
return generated_uuid.hex
elif style == "hyphenated":
return str(generated_uuid)
elif style == "urn":
return f"urn:uuid:{generated_uuid}"
else:
raise ValueError("Invalid style. Choose from 'simple', 'hyphenated', or 'urn'.")
def workspace_filter_condition(workspace: str) -> models.FieldCondition:
"""
Create a workspace filter condition for Qdrant queries.
"""
return models.FieldCondition(
key=WORKSPACE_ID_FIELD, match=models.MatchValue(value=workspace)
)
@final
@dataclass
class QdrantVectorDBStorage(BaseVectorStorage):
def __init__(
self, namespace, global_config, embedding_func, workspace=None, meta_fields=None
):
super().__init__(
namespace=namespace,
workspace=workspace or "",
global_config=global_config,
embedding_func=embedding_func,
meta_fields=meta_fields or set(),
)
self.__post_init__()
@staticmethod
def setup_collection(
client: QdrantClient,
collection_name: str,
legacy_namespace: str = None,
workspace: str = None,
**kwargs,
):
"""
Setup Qdrant collection with migration support from legacy collections.
Args:
client: QdrantClient instance
collection_name: Name of the new collection
legacy_namespace: Name of the legacy collection (if exists)
workspace: Workspace identifier for data isolation
**kwargs: Additional arguments for collection creation (vectors_config, hnsw_config, etc.)
"""
new_collection_exists = client.collection_exists(collection_name)
legacy_exists = legacy_namespace and client.collection_exists(legacy_namespace)
# Case 1: Both new and legacy collections exist - Warning only (no migration)
if new_collection_exists and legacy_exists:
logger.warning(
f"Qdrant: Legacy collection '{legacy_namespace}' still exist. Remove it if migration is complete."
)
return
# Case 2: Only new collection exists - Ensure index exists
if new_collection_exists:
# Check if workspace index exists, create if missing
try:
collection_info = client.get_collection(collection_name)
if WORKSPACE_ID_FIELD not in collection_info.payload_schema:
logger.info(
f"Qdrant: Creating missing workspace index for '{collection_name}'"
)
client.create_payload_index(
collection_name=collection_name,
field_name=WORKSPACE_ID_FIELD,
field_schema=models.KeywordIndexParams(
type=models.KeywordIndexType.KEYWORD,
is_tenant=True,
),
)
except Exception as e:
logger.warning(
f"Qdrant: Could not verify/create workspace index for '{collection_name}': {e}"
)
return
# Case 3: Neither exists - Create new collection
if not legacy_exists:
logger.info(f"Qdrant: Creating new collection '{collection_name}'")
client.create_collection(collection_name, **kwargs)
client.create_payload_index(
collection_name=collection_name,
field_name=WORKSPACE_ID_FIELD,
field_schema=models.KeywordIndexParams(
type=models.KeywordIndexType.KEYWORD,
is_tenant=True,
),
)
logger.info(f"Qdrant: Collection '{collection_name}' created successfully")
return
# Case 4: Only legacy exists - Migrate data
logger.info(
f"Qdrant: Migrating data from legacy collection '{legacy_namespace}'"
)
try:
# Get legacy collection count
legacy_count = client.count(
collection_name=legacy_namespace, exact=True
).count
logger.info(f"Qdrant: Found {legacy_count} records in legacy collection")
if legacy_count == 0:
logger.info("Qdrant: Legacy collection is empty, skipping migration")
# Create new empty collection
client.create_collection(collection_name, **kwargs)
client.create_payload_index(
collection_name=collection_name,
field_name=WORKSPACE_ID_FIELD,
field_schema=models.KeywordIndexParams(
type=models.KeywordIndexType.KEYWORD,
is_tenant=True,
),
)
return
# Create new collection first
logger.info(f"Qdrant: Creating new collection '{collection_name}'")
client.create_collection(collection_name, **kwargs)
# Batch migration (500 records per batch)
migrated_count = 0
offset = None
batch_size = 500
while True:
# Scroll through legacy data
result = client.scroll(
collection_name=legacy_namespace,
limit=batch_size,
offset=offset,
with_vectors=True,
with_payload=True,
)
points, next_offset = result
if not points:
break
# Transform points for new collection
new_points = []
for point in points:
# Add workspace_id to payload
new_payload = dict(point.payload or {})
new_payload[WORKSPACE_ID_FIELD] = workspace or DEFAULT_WORKSPACE
# Create new point with workspace-prefixed ID
original_id = new_payload.get(ID_FIELD)
if original_id:
new_point_id = compute_mdhash_id_for_qdrant(
original_id, prefix=workspace or DEFAULT_WORKSPACE
)
else:
# Fallback: use original point ID
new_point_id = str(point.id)
new_points.append(
models.PointStruct(
id=new_point_id,
vector=point.vector,
payload=new_payload,
)
)
# Upsert to new collection
client.upsert(
collection_name=collection_name, points=new_points, wait=True
)
migrated_count += len(points)
logger.info(f"Qdrant: {migrated_count}/{legacy_count} records migrated")
# Check if we've reached the end
if next_offset is None:
break
offset = next_offset
# Verify migration by comparing counts
logger.info("Verifying migration...")
new_count = client.count(collection_name=collection_name, exact=True).count
if new_count != legacy_count:
error_msg = f"Qdrant: Migration verification failed, expected {legacy_count} records, got {new_count} in new collection"
logger.error(error_msg)
raise QdrantMigrationError(error_msg)
logger.info(
f"Qdrant: Migration completed successfully: {migrated_count} records migrated"
)
# Create payload index after successful migration
logger.info("Qdrant: Creating workspace payload index...")
client.create_payload_index(
collection_name=collection_name,
field_name=WORKSPACE_ID_FIELD,
field_schema=models.KeywordIndexParams(
type=models.KeywordIndexType.KEYWORD,
is_tenant=True,
),
)
logger.info(
f"Qdrant: Migration from '{legacy_namespace}' to '{collection_name}' completed successfully"
)
except QdrantMigrationError:
# Re-raise migration errors without wrapping
raise
except Exception as e:
error_msg = f"Qdrant: Migration failed with error: {e}"
logger.error(error_msg)
raise QdrantMigrationError(error_msg) from e
def __post_init__(self):
# Check for QDRANT_WORKSPACE environment variable first (higher priority)
# This allows administrators to force a specific workspace for all Qdrant storage instances
qdrant_workspace = os.environ.get("QDRANT_WORKSPACE")
if qdrant_workspace and qdrant_workspace.strip():
# Use environment variable value, overriding the passed workspace parameter
effective_workspace = qdrant_workspace.strip()
logger.info(
f"Using QDRANT_WORKSPACE environment variable: '{effective_workspace}' (overriding passed workspace: '{self.workspace}')"
)
else:
# Use the workspace parameter passed during initialization
effective_workspace = self.workspace
if effective_workspace:
logger.debug(
f"Using passed workspace parameter: '{effective_workspace}'"
)
# Get legacy namespace for data migration from old version
if effective_workspace:
self.legacy_namespace = f"{effective_workspace}_{self.namespace}"
else:
self.legacy_namespace = self.namespace
self.effective_workspace = effective_workspace or DEFAULT_WORKSPACE
# Use a shared collection with payload-based partitioning (Qdrant's recommended approach)
# Ref: https://qdrant.tech/documentation/guides/multiple-partitions/
self.final_namespace = f"lightrag_vdb_{self.namespace}"
logger.debug(
f"Using shared collection '{self.final_namespace}' with workspace '{self.effective_workspace}' for payload-based partitioning"
)
kwargs = self.global_config.get("vector_db_storage_cls_kwargs", {})
cosine_threshold = kwargs.get("cosine_better_than_threshold")
if cosine_threshold is None:
raise ValueError(
"cosine_better_than_threshold must be specified in vector_db_storage_cls_kwargs"
)
self.cosine_better_than_threshold = cosine_threshold
# Initialize client as None - will be created in initialize() method
self._client = None
self._max_batch_size = self.global_config["embedding_batch_num"]
self._initialized = False
async def initialize(self):
"""Initialize Qdrant collection"""
async with get_data_init_lock():
if self._initialized:
return
try:
# Create QdrantClient if not already created
if self._client is None:
self._client = QdrantClient(
url=os.environ.get(
"QDRANT_URL", config.get("qdrant", "uri", fallback=None)
),
api_key=os.environ.get(
"QDRANT_API_KEY",
config.get("qdrant", "apikey", fallback=None),
),
)
logger.debug(
f"[{self.workspace}] QdrantClient created successfully"
)
# Setup collection (create if not exists and configure indexes)
# Pass legacy_namespace and workspace for migration support
QdrantVectorDBStorage.setup_collection(
self._client,
self.final_namespace,
legacy_namespace=self.legacy_namespace,
workspace=self.effective_workspace,
vectors_config=models.VectorParams(
size=self.embedding_func.embedding_dim,
distance=models.Distance.COSINE,
),
hnsw_config=models.HnswConfigDiff(
payload_m=16,
m=0,
),
)
self._initialized = True
logger.info(
f"[{self.workspace}] Qdrant collection '{self.namespace}' initialized successfully"
)
except Exception as e:
logger.error(
f"[{self.workspace}] Failed to initialize Qdrant collection '{self.namespace}': {e}"
)
raise
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
logger.debug(f"[{self.workspace}] Inserting {len(data)} to {self.namespace}")
if not data:
return
import time
current_time = int(time.time())
list_data = [
{
ID_FIELD: k,
WORKSPACE_ID_FIELD: self.effective_workspace,
CREATED_AT_FIELD: current_time,
**{k1: v1 for k1, v1 in v.items() if k1 in self.meta_fields},
}
for k, v in data.items()
]
contents = [v["content"] for v in data.values()]
batches = [
contents[i : i + self._max_batch_size]
for i in range(0, len(contents), self._max_batch_size)
]
embedding_tasks = [self.embedding_func(batch) for batch in batches]
embeddings_list = await asyncio.gather(*embedding_tasks)
embeddings = np.concatenate(embeddings_list)
list_points = []
for i, d in enumerate(list_data):
list_points.append(
models.PointStruct(
id=compute_mdhash_id_for_qdrant(
d[ID_FIELD], prefix=self.effective_workspace
),
vector=embeddings[i],
payload=d,
)
)
results = self._client.upsert(
collection_name=self.final_namespace, points=list_points, wait=True
)
return results
async def query(
self, query: str, top_k: int, query_embedding: list[float] = None
) -> list[dict[str, Any]]:
if query_embedding is not None:
embedding = query_embedding
else:
embedding_result = await self.embedding_func(
[query], _priority=5
) # higher priority for query
embedding = embedding_result[0]
results = self._client.query_points(
collection_name=self.final_namespace,
query=embedding,
limit=top_k,
with_payload=True,
score_threshold=self.cosine_better_than_threshold,
query_filter=models.Filter(
must=[workspace_filter_condition(self.effective_workspace)]
),
).points
return [
{
**dp.payload,
"distance": dp.score,
CREATED_AT_FIELD: dp.payload.get(CREATED_AT_FIELD),
}
for dp in results
]
async def index_done_callback(self) -> None:
# Qdrant handles persistence automatically
pass
async def delete(self, ids: List[str]) -> None:
"""Delete vectors with specified IDs
Args:
ids: List of vector IDs to be deleted
"""
try:
if not ids:
return
# Convert regular ids to Qdrant compatible ids
qdrant_ids = [
compute_mdhash_id_for_qdrant(id, prefix=self.effective_workspace)
for id in ids
]
# Delete points from the collection with workspace filtering
self._client.delete(
collection_name=self.final_namespace,
points_selector=models.PointIdsList(points=qdrant_ids),
wait=True,
)
logger.debug(
f"[{self.workspace}] Successfully deleted {len(ids)} vectors from {self.namespace}"
)
except Exception as e:
logger.error(
f"[{self.workspace}] Error while deleting vectors from {self.namespace}: {e}"
)
async def delete_entity(self, entity_name: str) -> None:
"""Delete an entity by name
Args:
entity_name: Name of the entity to delete
"""
try:
# Generate the entity ID using the same function as used for storage
entity_id = compute_mdhash_id(entity_name, prefix=ENTITY_PREFIX)
qdrant_entity_id = compute_mdhash_id_for_qdrant(
entity_id, prefix=self.effective_workspace
)
# Delete the entity point by its Qdrant ID directly
self._client.delete(
collection_name=self.final_namespace,
points_selector=models.PointIdsList(points=[qdrant_entity_id]),
wait=True,
)
logger.debug(
f"[{self.workspace}] Successfully deleted entity {entity_name}"
)
except Exception as e:
logger.error(f"[{self.workspace}] Error deleting entity {entity_name}: {e}")
async def delete_entity_relation(self, entity_name: str) -> None:
"""Delete all relations associated with an entity
Args:
entity_name: Name of the entity whose relations should be deleted
"""
try:
# Find relations where the entity is either source or target, with workspace filtering
results = self._client.scroll(
collection_name=self.final_namespace,
scroll_filter=models.Filter(
must=[workspace_filter_condition(self.effective_workspace)],
should=[
models.FieldCondition(
key="src_id", match=models.MatchValue(value=entity_name)
),
models.FieldCondition(
key="tgt_id", match=models.MatchValue(value=entity_name)
),
],
),
with_payload=True,
limit=1000, # Adjust as needed for your use case
)
# Extract points that need to be deleted
relation_points = results[0]
ids_to_delete = [point.id for point in relation_points]
if ids_to_delete:
# Delete the relations with workspace filtering
assert isinstance(self._client, QdrantClient)
self._client.delete(
collection_name=self.final_namespace,
points_selector=models.PointIdsList(points=ids_to_delete),
wait=True,
)
logger.debug(
f"[{self.workspace}] Deleted {len(ids_to_delete)} relations for {entity_name}"
)
else:
logger.debug(
f"[{self.workspace}] No relations found for entity {entity_name}"
)
except Exception as e:
logger.error(
f"[{self.workspace}] Error deleting relations for {entity_name}: {e}"
)
async def get_by_id(self, id: str) -> dict[str, Any] | None:
"""Get vector data by its ID
Args:
id: The unique identifier of the vector
Returns:
The vector data if found, or None if not found
"""
try:
# Convert to Qdrant compatible ID
qdrant_id = compute_mdhash_id_for_qdrant(
id, prefix=self.effective_workspace
)
# Retrieve the point by ID with workspace filtering
result = self._client.retrieve(
collection_name=self.final_namespace,
ids=[qdrant_id],
with_payload=True,
)
if not result:
return None
payload = result[0].payload
if CREATED_AT_FIELD not in payload:
payload[CREATED_AT_FIELD] = None
return payload
except Exception as e:
logger.error(
f"[{self.workspace}] Error retrieving vector data for ID {id}: {e}"
)
return None
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
"""Get multiple vector data by their IDs
Args:
ids: List of unique identifiers
Returns:
List of vector data objects that were found
"""
if not ids:
return []
try:
# Convert to Qdrant compatible IDs
qdrant_ids = [
compute_mdhash_id_for_qdrant(id, prefix=self.effective_workspace)
for id in ids
]
# Retrieve the points by IDs
results = self._client.retrieve(
collection_name=self.final_namespace,
ids=qdrant_ids,
with_payload=True,
)
# Ensure each result contains created_at field and preserve caller ordering
payload_by_original_id: dict[str, dict[str, Any]] = {}
payload_by_qdrant_id: dict[str, dict[str, Any]] = {}
for point in results:
payload = dict(point.payload or {})
if CREATED_AT_FIELD not in payload:
payload[CREATED_AT_FIELD] = None
qdrant_point_id = str(point.id) if point.id is not None else ""
if qdrant_point_id:
payload_by_qdrant_id[qdrant_point_id] = payload
original_id = payload.get(ID_FIELD)
if original_id is not None:
payload_by_original_id[str(original_id)] = payload
ordered_payloads: list[dict[str, Any] | None] = []
for requested_id, qdrant_id in zip(ids, qdrant_ids):
payload = payload_by_original_id.get(str(requested_id))
if payload is None:
payload = payload_by_qdrant_id.get(str(qdrant_id))
ordered_payloads.append(payload)
return ordered_payloads
except Exception as e:
logger.error(
f"[{self.workspace}] Error retrieving vector data for IDs {ids}: {e}"
)
return []
async def get_vectors_by_ids(self, ids: list[str]) -> dict[str, list[float]]:
"""Get vectors by their IDs, returning only ID and vector data for efficiency
Args:
ids: List of unique identifiers
Returns:
Dictionary mapping IDs to their vector embeddings
Format: {id: [vector_values], ...}
"""
if not ids:
return {}
try:
# Convert to Qdrant compatible IDs
qdrant_ids = [
compute_mdhash_id_for_qdrant(id, prefix=self.effective_workspace)
for id in ids
]
# Retrieve the points by IDs with vectors
results = self._client.retrieve(
collection_name=self.final_namespace,
ids=qdrant_ids,
with_vectors=True, # Important: request vectors
with_payload=True,
)
vectors_dict = {}
for point in results:
if point and point.vector is not None and point.payload:
# Get original ID from payload
original_id = point.payload.get(ID_FIELD)
if original_id:
# Convert numpy array to list if needed
vector_data = point.vector
if isinstance(vector_data, np.ndarray):
vector_data = vector_data.tolist()
vectors_dict[original_id] = vector_data
return vectors_dict
except Exception as e:
logger.error(
f"[{self.workspace}] Error retrieving vectors by IDs from {self.namespace}: {e}"
)
return {}
async def drop(self) -> dict[str, str]:
"""Drop all vector data from storage and clean up resources
This method will delete all data for the current workspace from the Qdrant collection.
Returns:
dict[str, str]: Operation status and message
- On success: {"status": "success", "message": "data dropped"}
- On failure: {"status": "error", "message": "<error details>"}
"""
async with get_storage_lock():
try:
# Delete all points for the current workspace
self._client.delete(
collection_name=self.final_namespace,
points_selector=models.FilterSelector(
filter=models.Filter(
must=[workspace_filter_condition(self.effective_workspace)]
)
),
wait=True,
)
logger.info(
f"[{self.workspace}] Process {os.getpid()} dropped workspace data from Qdrant collection {self.namespace}"
)
return {"status": "success", "message": "data dropped"}
except Exception as e:
logger.error(
f"[{self.workspace}] Error dropping workspace data from Qdrant collection {self.namespace}: {e}"
)
return {"status": "error", "message": str(e)}