from __future__ import annotations import weakref import asyncio import html import csv import json import logging import logging.handlers import os import re import time import uuid from dataclasses import dataclass from datetime import datetime from functools import wraps from hashlib import md5 from typing import ( Any, Protocol, Callable, TYPE_CHECKING, List, Optional, Iterable, Sequence, Collection, ) import numpy as np from dotenv import load_dotenv from lightrag.constants import ( DEFAULT_LOG_MAX_BYTES, DEFAULT_LOG_BACKUP_COUNT, DEFAULT_LOG_FILENAME, GRAPH_FIELD_SEP, DEFAULT_MAX_TOTAL_TOKENS, DEFAULT_SOURCE_IDS_LIMIT_METHOD, VALID_SOURCE_IDS_LIMIT_METHODS, SOURCE_IDS_LIMIT_METHOD_FIFO, ) # Initialize logger with basic configuration logger = logging.getLogger("lightrag") logger.propagate = False # prevent log message send to root logger logger.setLevel(logging.INFO) # Add console handler if no handlers exist if not logger.handlers: console_handler = logging.StreamHandler() console_handler.setLevel(logging.INFO) formatter = logging.Formatter("%(levelname)s: %(message)s") console_handler.setFormatter(formatter) logger.addHandler(console_handler) # Set httpx logging level to WARNING logging.getLogger("httpx").setLevel(logging.WARNING) # Global import for pypinyin with startup-time logging try: import pypinyin _PYPINYIN_AVAILABLE = True # logger.info("pypinyin loaded successfully for Chinese pinyin sorting") except ImportError: pypinyin = None _PYPINYIN_AVAILABLE = False logger.warning( "pypinyin is not installed. Chinese pinyin sorting will use simple string sorting." ) async def safe_vdb_operation_with_exception( operation: Callable, operation_name: str, entity_name: str = "", max_retries: int = 3, retry_delay: float = 0.2, logger_func: Optional[Callable] = None, ) -> None: """ Safely execute vector database operations with retry mechanism and exception handling. This function ensures that VDB operations are executed with proper error handling and retry logic. If all retries fail, it raises an exception to maintain data consistency. Args: operation: The async operation to execute operation_name: Operation name for logging purposes entity_name: Entity name for logging purposes max_retries: Maximum number of retry attempts retry_delay: Delay between retries in seconds logger_func: Logger function to use for error messages Raises: Exception: When operation fails after all retry attempts """ log_func = logger_func or logger.warning for attempt in range(max_retries): try: await operation() return # Success, return immediately except Exception as e: if attempt >= max_retries - 1: error_msg = f"VDB {operation_name} failed for {entity_name} after {max_retries} attempts: {e}" log_func(error_msg) raise Exception(error_msg) from e else: log_func( f"VDB {operation_name} attempt {attempt + 1} failed for {entity_name}: {e}, retrying..." ) if retry_delay > 0: await asyncio.sleep(retry_delay) def get_env_value( env_key: str, default: any, value_type: type = str, special_none: bool = False ) -> any: """ Get value from environment variable with type conversion Args: env_key (str): Environment variable key default (any): Default value if env variable is not set value_type (type): Type to convert the value to special_none (bool): If True, return None when value is "None" Returns: any: Converted value from environment or default """ value = os.getenv(env_key) if value is None: return default # Handle special case for "None" string if special_none and value == "None": return None if value_type is bool: return value.lower() in ("true", "1", "yes", "t", "on") # Handle list type with JSON parsing if value_type is list: try: import json parsed_value = json.loads(value) # Ensure the parsed value is actually a list if isinstance(parsed_value, list): return parsed_value else: logger.warning( f"Environment variable {env_key} is not a valid JSON list, using default" ) return default except (json.JSONDecodeError, ValueError) as e: logger.warning( f"Failed to parse {env_key} as JSON list: {e}, using default" ) return default try: return value_type(value) except (ValueError, TypeError): return default # Use TYPE_CHECKING to avoid circular imports if TYPE_CHECKING: from lightrag.base import BaseKVStorage, BaseVectorStorage, QueryParam # use the .env that is inside the current folder # allows to use different .env file for each lightrag instance # the OS environment variables take precedence over the .env file load_dotenv(dotenv_path=".env", override=False) VERBOSE_DEBUG = os.getenv("VERBOSE", "false").lower() == "true" def verbose_debug(msg: str, *args, **kwargs): """Function for outputting detailed debug information. When VERBOSE_DEBUG=True, outputs the complete message. When VERBOSE_DEBUG=False, outputs only the first 50 characters. Args: msg: The message format string *args: Arguments to be formatted into the message **kwargs: Keyword arguments passed to logger.debug() """ if VERBOSE_DEBUG: logger.debug(msg, *args, **kwargs) else: # Format the message with args first if args: formatted_msg = msg % args else: formatted_msg = msg # Then truncate the formatted message truncated_msg = ( formatted_msg[:150] + "..." if len(formatted_msg) > 150 else formatted_msg ) # Remove consecutive newlines truncated_msg = re.sub(r"\n+", "\n", truncated_msg) logger.debug(truncated_msg, **kwargs) def set_verbose_debug(enabled: bool): """Enable or disable verbose debug output""" global VERBOSE_DEBUG VERBOSE_DEBUG = enabled statistic_data = {"llm_call": 0, "llm_cache": 0, "embed_call": 0} class LightragPathFilter(logging.Filter): """Filter for lightrag logger to filter out frequent path access logs""" def __init__(self): super().__init__() # Define paths to be filtered self.filtered_paths = [ "/documents", "/documents/paginated", "/health", "/webui/", "/documents/pipeline_status", ] # self.filtered_paths = ["/health", "/webui/"] def filter(self, record): try: # Check if record has the required attributes for an access log if not hasattr(record, "args") or not isinstance(record.args, tuple): return True if len(record.args) < 5: return True # Extract method, path and status from the record args method = record.args[1] path = record.args[2] status = record.args[4] # Filter out successful GET/POST requests to filtered paths if ( (method == "GET" or method == "POST") and (status == 200 or status == 304) and path in self.filtered_paths ): return False return True except Exception: # In case of any error, let the message through return True def setup_logger( logger_name: str, level: str = "INFO", add_filter: bool = False, log_file_path: str | None = None, enable_file_logging: bool = True, ): """Set up a logger with console and optionally file handlers Args: logger_name: Name of the logger to set up level: Log level (DEBUG, INFO, WARNING, ERROR, CRITICAL) add_filter: Whether to add LightragPathFilter to the logger log_file_path: Path to the log file. If None and file logging is enabled, defaults to lightrag.log in LOG_DIR or cwd enable_file_logging: Whether to enable logging to a file (defaults to True) """ # Configure formatters detailed_formatter = logging.Formatter( "%(asctime)s - %(name)s - %(levelname)s - %(message)s" ) simple_formatter = logging.Formatter("%(levelname)s: %(message)s") logger_instance = logging.getLogger(logger_name) logger_instance.setLevel(level) logger_instance.handlers = [] # Clear existing handlers logger_instance.propagate = False # Add console handler console_handler = logging.StreamHandler() console_handler.setFormatter(simple_formatter) console_handler.setLevel(level) logger_instance.addHandler(console_handler) # Add file handler by default unless explicitly disabled if enable_file_logging: # Get log file path if log_file_path is None: log_dir = os.getenv("LOG_DIR", os.getcwd()) log_file_path = os.path.abspath(os.path.join(log_dir, DEFAULT_LOG_FILENAME)) # Ensure log directory exists os.makedirs(os.path.dirname(log_file_path), exist_ok=True) # Get log file max size and backup count from environment variables log_max_bytes = get_env_value("LOG_MAX_BYTES", DEFAULT_LOG_MAX_BYTES, int) log_backup_count = get_env_value( "LOG_BACKUP_COUNT", DEFAULT_LOG_BACKUP_COUNT, int ) try: # Add file handler file_handler = logging.handlers.RotatingFileHandler( filename=log_file_path, maxBytes=log_max_bytes, backupCount=log_backup_count, encoding="utf-8", ) file_handler.setFormatter(detailed_formatter) file_handler.setLevel(level) logger_instance.addHandler(file_handler) except PermissionError as e: logger.warning(f"Could not create log file at {log_file_path}: {str(e)}") logger.warning("Continuing with console logging only") # Add path filter if requested if add_filter: path_filter = LightragPathFilter() logger_instance.addFilter(path_filter) class UnlimitedSemaphore: """A context manager that allows unlimited access.""" async def __aenter__(self): pass async def __aexit__(self, exc_type, exc, tb): pass @dataclass class TaskState: """Task state tracking for priority queue management""" future: asyncio.Future start_time: float execution_start_time: float = None worker_started: bool = False cancellation_requested: bool = False cleanup_done: bool = False @dataclass class EmbeddingFunc: embedding_dim: int func: callable max_token_size: int | None = None # deprecated keep it for compatible only send_dimensions: bool = ( False # Control whether to send embedding_dim to the function ) async def __call__(self, *args, **kwargs) -> np.ndarray: # Only inject embedding_dim when send_dimensions is True if self.send_dimensions: # Check if user provided embedding_dim parameter if "embedding_dim" in kwargs: user_provided_dim = kwargs["embedding_dim"] # If user's value differs from class attribute, output warning if ( user_provided_dim is not None and user_provided_dim != self.embedding_dim ): logger.warning( f"Ignoring user-provided embedding_dim={user_provided_dim}, " f"using declared embedding_dim={self.embedding_dim} from decorator" ) # Inject embedding_dim from decorator kwargs["embedding_dim"] = self.embedding_dim return await self.func(*args, **kwargs) def compute_args_hash(*args: Any) -> str: """Compute a hash for the given arguments with safe Unicode handling. Args: *args: Arguments to hash Returns: str: Hash string """ # Convert all arguments to strings and join them args_str = "".join([str(arg) for arg in args]) # Use 'replace' error handling to safely encode problematic Unicode characters # This replaces invalid characters with Unicode replacement character (U+FFFD) try: return md5(args_str.encode("utf-8")).hexdigest() except UnicodeEncodeError: # Handle surrogate characters and other encoding issues safe_bytes = args_str.encode("utf-8", errors="replace") return md5(safe_bytes).hexdigest() def compute_mdhash_id(content: str, prefix: str = "") -> str: """ Compute a unique ID for a given content string. The ID is a combination of the given prefix and the MD5 hash of the content string. """ return prefix + compute_args_hash(content) def generate_cache_key(mode: str, cache_type: str, hash_value: str) -> str: """Generate a flattened cache key in the format {mode}:{cache_type}:{hash} Args: mode: Cache mode (e.g., 'default', 'local', 'global') cache_type: Type of cache (e.g., 'extract', 'query', 'keywords') hash_value: Hash value from compute_args_hash Returns: str: Flattened cache key """ return f"{mode}:{cache_type}:{hash_value}" def parse_cache_key(cache_key: str) -> tuple[str, str, str] | None: """Parse a flattened cache key back into its components Args: cache_key: Flattened cache key in format {mode}:{cache_type}:{hash} Returns: tuple[str, str, str] | None: (mode, cache_type, hash) or None if invalid format """ parts = cache_key.split(":", 2) if len(parts) == 3: return parts[0], parts[1], parts[2] return None # Custom exception classes class QueueFullError(Exception): """Raised when the queue is full and the wait times out""" pass class WorkerTimeoutError(Exception): """Worker-level timeout exception with specific timeout information""" def __init__(self, timeout_value: float, timeout_type: str = "execution"): self.timeout_value = timeout_value self.timeout_type = timeout_type super().__init__(f"Worker {timeout_type} timeout after {timeout_value}s") class HealthCheckTimeoutError(Exception): """Health Check-level timeout exception""" def __init__(self, timeout_value: float, execution_duration: float): self.timeout_value = timeout_value self.execution_duration = execution_duration super().__init__( f"Task forcefully terminated due to execution timeout (>{timeout_value}s, actual: {execution_duration:.1f}s)" ) def priority_limit_async_func_call( max_size: int, llm_timeout: float = None, max_execution_timeout: float = None, max_task_duration: float = None, max_queue_size: int = 1000, cleanup_timeout: float = 2.0, queue_name: str = "limit_async", ): """ Enhanced priority-limited asynchronous function call decorator with robust timeout handling This decorator provides a comprehensive solution for managing concurrent LLM requests with: - Multi-layer timeout protection (LLM -> Worker -> Health Check -> User) - Task state tracking to prevent race conditions - Enhanced health check system with stuck task detection - Proper resource cleanup and error recovery Args: max_size: Maximum number of concurrent calls max_queue_size: Maximum queue capacity to prevent memory overflow llm_timeout: LLM provider timeout (from global config), used to calculate other timeouts max_execution_timeout: Maximum time for worker to execute function (defaults to llm_timeout + 30s) max_task_duration: Maximum time before health check intervenes (defaults to llm_timeout + 60s) cleanup_timeout: Maximum time to wait for cleanup operations (defaults to 2.0s) queue_name: Optional queue name for logging identification (defaults to "limit_async") Returns: Decorator function """ def final_decro(func): # Ensure func is callable if not callable(func): raise TypeError(f"Expected a callable object, got {type(func)}") # Calculate timeout hierarchy if llm_timeout is provided (Dynamic Timeout Calculation) if llm_timeout is not None: nonlocal max_execution_timeout, max_task_duration if max_execution_timeout is None: max_execution_timeout = ( llm_timeout * 2 ) # Reserved timeout buffer for low-level retry if max_task_duration is None: max_task_duration = ( llm_timeout * 2 + 15 ) # Reserved timeout buffer for health check phase queue = asyncio.PriorityQueue(maxsize=max_queue_size) tasks = set() initialization_lock = asyncio.Lock() counter = 0 shutdown_event = asyncio.Event() initialized = False worker_health_check_task = None # Enhanced task state management task_states = {} # task_id -> TaskState task_states_lock = asyncio.Lock() active_futures = weakref.WeakSet() reinit_count = 0 async def worker(): """Enhanced worker that processes tasks with proper timeout and state management""" try: while not shutdown_event.is_set(): try: # Get task from queue with timeout for shutdown checking try: ( priority, count, task_id, args, kwargs, ) = await asyncio.wait_for(queue.get(), timeout=1.0) except asyncio.TimeoutError: continue # Get task state and mark worker as started async with task_states_lock: if task_id not in task_states: queue.task_done() continue task_state = task_states[task_id] task_state.worker_started = True # Record execution start time when worker actually begins processing task_state.execution_start_time = ( asyncio.get_event_loop().time() ) # Check if task was cancelled before worker started if ( task_state.cancellation_requested or task_state.future.cancelled() ): async with task_states_lock: task_states.pop(task_id, None) queue.task_done() continue try: # Execute function with timeout protection if max_execution_timeout is not None: result = await asyncio.wait_for( func(*args, **kwargs), timeout=max_execution_timeout ) else: result = await func(*args, **kwargs) # Set result if future is still valid if not task_state.future.done(): task_state.future.set_result(result) except asyncio.TimeoutError: # Worker-level timeout (max_execution_timeout exceeded) logger.warning( f"{queue_name}: Worker timeout for task {task_id} after {max_execution_timeout}s" ) if not task_state.future.done(): task_state.future.set_exception( WorkerTimeoutError( max_execution_timeout, "execution" ) ) except asyncio.CancelledError: # Task was cancelled during execution if not task_state.future.done(): task_state.future.cancel() logger.debug( f"{queue_name}: Task {task_id} cancelled during execution" ) except Exception as e: # Function execution error logger.error( f"{queue_name}: Error in decorated function for task {task_id}: {str(e)}" ) if not task_state.future.done(): task_state.future.set_exception(e) finally: # Clean up task state async with task_states_lock: task_states.pop(task_id, None) queue.task_done() except Exception as e: # Critical error in worker loop logger.error( f"{queue_name}: Critical error in worker: {str(e)}" ) await asyncio.sleep(0.1) finally: logger.debug(f"{queue_name}: Worker exiting") async def enhanced_health_check(): """Enhanced health check with stuck task detection and recovery""" nonlocal initialized try: while not shutdown_event.is_set(): await asyncio.sleep(5) # Check every 5 seconds current_time = asyncio.get_event_loop().time() # Detect and handle stuck tasks based on execution start time if max_task_duration is not None: stuck_tasks = [] async with task_states_lock: for task_id, task_state in list(task_states.items()): # Only check tasks that have started execution if ( task_state.worker_started and task_state.execution_start_time is not None and current_time - task_state.execution_start_time > max_task_duration ): stuck_tasks.append( ( task_id, current_time - task_state.execution_start_time, ) ) # Force cleanup of stuck tasks for task_id, execution_duration in stuck_tasks: logger.warning( f"{queue_name}: Detected stuck task {task_id} (execution time: {execution_duration:.1f}s), forcing cleanup" ) async with task_states_lock: if task_id in task_states: task_state = task_states[task_id] if not task_state.future.done(): task_state.future.set_exception( HealthCheckTimeoutError( max_task_duration, execution_duration ) ) task_states.pop(task_id, None) # Worker recovery logic current_tasks = set(tasks) done_tasks = {t for t in current_tasks if t.done()} tasks.difference_update(done_tasks) active_tasks_count = len(tasks) workers_needed = max_size - active_tasks_count if workers_needed > 0: logger.info( f"{queue_name}: Creating {workers_needed} new workers" ) new_tasks = set() for _ in range(workers_needed): task = asyncio.create_task(worker()) new_tasks.add(task) task.add_done_callback(tasks.discard) tasks.update(new_tasks) except Exception as e: logger.error(f"{queue_name}: Error in enhanced health check: {str(e)}") finally: logger.debug(f"{queue_name}: Enhanced health check task exiting") initialized = False async def ensure_workers(): """Ensure worker system is initialized with enhanced error handling""" nonlocal initialized, worker_health_check_task, tasks, reinit_count if initialized: return async with initialization_lock: if initialized: return if reinit_count > 0: reinit_count += 1 logger.warning( f"{queue_name}: Reinitializing system (count: {reinit_count})" ) else: reinit_count = 1 # Clean up completed tasks current_tasks = set(tasks) done_tasks = {t for t in current_tasks if t.done()} tasks.difference_update(done_tasks) active_tasks_count = len(tasks) if active_tasks_count > 0 and reinit_count > 1: logger.warning( f"{queue_name}: {active_tasks_count} tasks still running during reinitialization" ) # Create worker tasks workers_needed = max_size - active_tasks_count for _ in range(workers_needed): task = asyncio.create_task(worker()) tasks.add(task) task.add_done_callback(tasks.discard) # Start enhanced health check worker_health_check_task = asyncio.create_task(enhanced_health_check()) initialized = True # Log dynamic timeout configuration timeout_info = [] if llm_timeout is not None: timeout_info.append(f"Func: {llm_timeout}s") if max_execution_timeout is not None: timeout_info.append(f"Worker: {max_execution_timeout}s") if max_task_duration is not None: timeout_info.append(f"Health Check: {max_task_duration}s") timeout_str = ( f"(Timeouts: {', '.join(timeout_info)})" if timeout_info else "" ) logger.info( f"{queue_name}: {workers_needed} new workers initialized {timeout_str}" ) async def shutdown(): """Gracefully shut down all workers and cleanup resources""" logger.info(f"{queue_name}: Shutting down priority queue workers") shutdown_event.set() # Cancel all active futures for future in list(active_futures): if not future.done(): future.cancel() # Cancel all pending tasks async with task_states_lock: for task_id, task_state in list(task_states.items()): if not task_state.future.done(): task_state.future.cancel() task_states.clear() # Wait for queue to empty with timeout try: await asyncio.wait_for(queue.join(), timeout=5.0) except asyncio.TimeoutError: logger.warning( f"{queue_name}: Timeout waiting for queue to empty during shutdown" ) # Cancel worker tasks for task in list(tasks): if not task.done(): task.cancel() # Wait for all tasks to complete if tasks: await asyncio.gather(*tasks, return_exceptions=True) # Cancel health check task if worker_health_check_task and not worker_health_check_task.done(): worker_health_check_task.cancel() try: await worker_health_check_task except asyncio.CancelledError: pass logger.info(f"{queue_name}: Priority queue workers shutdown complete") @wraps(func) async def wait_func( *args, _priority=10, _timeout=None, _queue_timeout=None, **kwargs ): """ Execute function with enhanced priority-based concurrency control and timeout handling Args: *args: Positional arguments passed to the function _priority: Call priority (lower values have higher priority) _timeout: Maximum time to wait for completion (in seconds, none means determinded by max_execution_timeout of the queue) _queue_timeout: Maximum time to wait for entering the queue (in seconds) **kwargs: Keyword arguments passed to the function Returns: The result of the function call Raises: TimeoutError: If the function call times out at any level QueueFullError: If the queue is full and waiting times out Any exception raised by the decorated function """ await ensure_workers() # Generate unique task ID task_id = f"{id(asyncio.current_task())}_{asyncio.get_event_loop().time()}" future = asyncio.Future() # Create task state task_state = TaskState( future=future, start_time=asyncio.get_event_loop().time() ) try: # Register task state async with task_states_lock: task_states[task_id] = task_state active_futures.add(future) # Get counter for FIFO ordering nonlocal counter async with initialization_lock: current_count = counter counter += 1 # Queue the task with timeout handling try: if _queue_timeout is not None: await asyncio.wait_for( queue.put( (_priority, current_count, task_id, args, kwargs) ), timeout=_queue_timeout, ) else: await queue.put( (_priority, current_count, task_id, args, kwargs) ) except asyncio.TimeoutError: raise QueueFullError( f"{queue_name}: Queue full, timeout after {_queue_timeout} seconds" ) except Exception as e: # Clean up on queue error if not future.done(): future.set_exception(e) raise # Wait for result with timeout handling try: if _timeout is not None: return await asyncio.wait_for(future, _timeout) else: return await future except asyncio.TimeoutError: # This is user-level timeout (asyncio.wait_for caused) # Mark cancellation request async with task_states_lock: if task_id in task_states: task_states[task_id].cancellation_requested = True # Cancel future if not future.done(): future.cancel() # Wait for worker cleanup with timeout cleanup_start = asyncio.get_event_loop().time() while ( task_id in task_states and asyncio.get_event_loop().time() - cleanup_start < cleanup_timeout ): await asyncio.sleep(0.1) raise TimeoutError( f"{queue_name}: User timeout after {_timeout} seconds" ) except WorkerTimeoutError as e: # This is Worker-level timeout, directly propagate exception information raise TimeoutError(f"{queue_name}: {str(e)}") except HealthCheckTimeoutError as e: # This is Health Check-level timeout, directly propagate exception information raise TimeoutError(f"{queue_name}: {str(e)}") finally: # Ensure cleanup active_futures.discard(future) async with task_states_lock: task_states.pop(task_id, None) # Add shutdown method to decorated function wait_func.shutdown = shutdown return wait_func return final_decro def wrap_embedding_func_with_attrs(**kwargs): """Wrap a function with attributes""" def final_decro(func) -> EmbeddingFunc: new_func = EmbeddingFunc(**kwargs, func=func) return new_func return final_decro def load_json(file_name): if not os.path.exists(file_name): return None with open(file_name, encoding="utf-8-sig") as f: return json.load(f) def _sanitize_string_for_json(text: str) -> str: """Remove characters that cannot be encoded in UTF-8 for JSON serialization. This is a simpler sanitizer specifically for JSON that directly removes problematic characters without attempting to encode first. Args: text: String to sanitize Returns: Sanitized string safe for UTF-8 encoding in JSON """ if not text: return text # Directly filter out problematic characters without pre-validation sanitized = "" for char in text: code_point = ord(char) # Skip surrogate characters (U+D800 to U+DFFF) - main cause of encoding errors if 0xD800 <= code_point <= 0xDFFF: continue # Skip other non-characters in Unicode elif code_point == 0xFFFE or code_point == 0xFFFF: continue else: sanitized += char return sanitized def _sanitize_json_data(data: Any) -> Any: """Recursively sanitize all string values in data structure for safe UTF-8 encoding DEPRECATED: This function creates a deep copy of the data which can be memory-intensive. For new code, prefer using write_json with SanitizingJSONEncoder which sanitizes during serialization without creating copies. Handles all JSON-serializable types including: - Dictionary keys and values - Lists and tuples (preserves type) - Nested structures - Strings at any level Args: data: Data to sanitize (dict, list, tuple, str, or other types) Returns: Sanitized data with all strings cleaned of problematic characters """ if isinstance(data, dict): # Sanitize both keys and values return { _sanitize_string_for_json(k) if isinstance(k, str) else k: _sanitize_json_data(v) for k, v in data.items() } elif isinstance(data, (list, tuple)): # Handle both lists and tuples, preserve original type sanitized = [_sanitize_json_data(item) for item in data] return type(data)(sanitized) elif isinstance(data, str): return _sanitize_string_for_json(data) else: # Numbers, booleans, None, etc. - return as-is return data class SanitizingJSONEncoder(json.JSONEncoder): """ Custom JSON encoder that sanitizes data during serialization. This encoder cleans strings during the encoding process without creating a full copy of the data structure, making it memory-efficient for large datasets. """ def encode(self, o): """Override encode method to handle simple string cases""" if isinstance(o, str): return json.encoder.encode_basestring(_sanitize_string_for_json(o)) return super().encode(o) def iterencode(self, o, _one_shot=False): """ Override iterencode to sanitize strings during serialization. This is the core method that handles complex nested structures. """ # Preprocess: sanitize all strings in the object sanitized = self._sanitize_for_encoding(o) # Call parent's iterencode with sanitized data for chunk in super().iterencode(sanitized, _one_shot): yield chunk def _sanitize_for_encoding(self, obj): """ Recursively sanitize strings in an object. Creates new objects only when necessary to avoid deep copies. Args: obj: Object to sanitize Returns: Sanitized object with cleaned strings """ if isinstance(obj, str): return _sanitize_string_for_json(obj) elif isinstance(obj, dict): # Create new dict with sanitized keys and values new_dict = {} for k, v in obj.items(): clean_k = _sanitize_string_for_json(k) if isinstance(k, str) else k clean_v = self._sanitize_for_encoding(v) new_dict[clean_k] = clean_v return new_dict elif isinstance(obj, (list, tuple)): # Sanitize list/tuple elements cleaned = [self._sanitize_for_encoding(item) for item in obj] return type(obj)(cleaned) if isinstance(obj, tuple) else cleaned else: # Numbers, booleans, None, etc. remain unchanged return obj def write_json(json_obj, file_name): """ Write JSON data to file with optimized sanitization strategy. This function uses a two-stage approach: 1. Fast path: Try direct serialization (works for clean data ~99% of time) 2. Slow path: Use custom encoder that sanitizes during serialization The custom encoder approach avoids creating a deep copy of the data, making it memory-efficient. When sanitization occurs, the caller should reload the cleaned data from the file to update shared memory. Args: json_obj: Object to serialize (may be a shallow copy from shared memory) file_name: Output file path Returns: bool: True if sanitization was applied (caller should reload data), False if direct write succeeded (no reload needed) """ try: # Strategy 1: Fast path - try direct serialization with open(file_name, "w", encoding="utf-8") as f: json.dump(json_obj, f, indent=2, ensure_ascii=False) return False # No sanitization needed, no reload required except (UnicodeEncodeError, UnicodeDecodeError) as e: logger.debug(f"Direct JSON write failed, using sanitizing encoder: {e}") # Strategy 2: Use custom encoder (sanitizes during serialization, zero memory copy) with open(file_name, "w", encoding="utf-8") as f: json.dump(json_obj, f, indent=2, ensure_ascii=False, cls=SanitizingJSONEncoder) logger.info(f"JSON sanitization applied during write: {file_name}") return True # Sanitization applied, reload recommended class TokenizerInterface(Protocol): """ Defines the interface for a tokenizer, requiring encode and decode methods. """ def encode(self, content: str) -> List[int]: """Encodes a string into a list of tokens.""" ... def decode(self, tokens: List[int]) -> str: """Decodes a list of tokens into a string.""" ... class Tokenizer: """ A wrapper around a tokenizer to provide a consistent interface for encoding and decoding. """ def __init__(self, model_name: str, tokenizer: TokenizerInterface): """ Initializes the Tokenizer with a tokenizer model name and a tokenizer instance. Args: model_name: The associated model name for the tokenizer. tokenizer: An instance of a class implementing the TokenizerInterface. """ self.model_name: str = model_name self.tokenizer: TokenizerInterface = tokenizer def encode(self, content: str) -> List[int]: """ Encodes a string into a list of tokens using the underlying tokenizer. Args: content: The string to encode. Returns: A list of integer tokens. """ return self.tokenizer.encode(content) def decode(self, tokens: List[int]) -> str: """ Decodes a list of tokens into a string using the underlying tokenizer. Args: tokens: A list of integer tokens to decode. Returns: The decoded string. """ return self.tokenizer.decode(tokens) class TiktokenTokenizer(Tokenizer): """ A Tokenizer implementation using the tiktoken library. """ def __init__(self, model_name: str = "gpt-4o-mini"): """ Initializes the TiktokenTokenizer with a specified model name. Args: model_name: The model name for the tiktoken tokenizer to use. Defaults to "gpt-4o-mini". Raises: ImportError: If tiktoken is not installed. ValueError: If the model_name is invalid. """ try: import tiktoken except ImportError: raise ImportError( "tiktoken is not installed. Please install it with `pip install tiktoken` or define custom `tokenizer_func`." ) try: tokenizer = tiktoken.encoding_for_model(model_name) super().__init__(model_name=model_name, tokenizer=tokenizer) except KeyError: raise ValueError(f"Invalid model_name: {model_name}.") def pack_user_ass_to_openai_messages(*args: str): roles = ["user", "assistant"] return [ {"role": roles[i % 2], "content": content} for i, content in enumerate(args) ] def split_string_by_multi_markers(content: str, markers: list[str]) -> list[str]: """Split a string by multiple markers""" if not markers: return [content] content = content if content is not None else "" results = re.split("|".join(re.escape(marker) for marker in markers), content) return [r.strip() for r in results if r.strip()] def is_float_regex(value: str) -> bool: return bool(re.match(r"^[-+]?[0-9]*\.?[0-9]+$", value)) def truncate_list_by_token_size( list_data: list[Any], key: Callable[[Any], str], max_token_size: int, tokenizer: Tokenizer, ) -> list[int]: """Truncate a list of data by token size""" if max_token_size <= 0: return [] tokens = 0 for i, data in enumerate(list_data): tokens += len(tokenizer.encode(key(data))) if tokens > max_token_size: return list_data[:i] return list_data def cosine_similarity(v1, v2): """Calculate cosine similarity between two vectors""" dot_product = np.dot(v1, v2) norm1 = np.linalg.norm(v1) norm2 = np.linalg.norm(v2) return dot_product / (norm1 * norm2) async def handle_cache( hashing_kv, args_hash, prompt, mode="default", cache_type="unknown", ) -> tuple[str, int] | None: """Generic cache handling function with flattened cache keys Returns: tuple[str, int] | None: (content, create_time) if cache hit, None if cache miss """ if hashing_kv is None: return None if mode != "default": # handle cache for all type of query if not hashing_kv.global_config.get("enable_llm_cache"): return None else: # handle cache for entity extraction if not hashing_kv.global_config.get("enable_llm_cache_for_entity_extract"): return None # Use flattened cache key format: {mode}:{cache_type}:{hash} flattened_key = generate_cache_key(mode, cache_type, args_hash) cache_entry = await hashing_kv.get_by_id(flattened_key) if cache_entry: logger.debug(f"Flattened cache hit(key:{flattened_key})") content = cache_entry["return"] timestamp = cache_entry.get("create_time", 0) return content, timestamp logger.debug(f"Cache missed(mode:{mode} type:{cache_type})") return None @dataclass class CacheData: args_hash: str content: str prompt: str mode: str = "default" cache_type: str = "query" chunk_id: str | None = None queryparam: dict | None = None async def save_to_cache(hashing_kv, cache_data: CacheData): """Save data to cache using flattened key structure. Args: hashing_kv: The key-value storage for caching cache_data: The cache data to save """ # Skip if storage is None or content is a streaming response if hashing_kv is None or not cache_data.content: return # If content is a streaming response, don't cache it if hasattr(cache_data.content, "__aiter__"): logger.debug("Streaming response detected, skipping cache") return # Use flattened cache key format: {mode}:{cache_type}:{hash} flattened_key = generate_cache_key( cache_data.mode, cache_data.cache_type, cache_data.args_hash ) # Check if we already have identical content cached existing_cache = await hashing_kv.get_by_id(flattened_key) if existing_cache: existing_content = existing_cache.get("return") if existing_content == cache_data.content: logger.warning( f"Cache duplication detected for {flattened_key}, skipping update" ) return # Create cache entry with flattened structure cache_entry = { "return": cache_data.content, "cache_type": cache_data.cache_type, "chunk_id": cache_data.chunk_id if cache_data.chunk_id is not None else None, "original_prompt": cache_data.prompt, "queryparam": cache_data.queryparam if cache_data.queryparam is not None else None, } logger.info(f" == LLM cache == saving: {flattened_key}") # Save using flattened key await hashing_kv.upsert({flattened_key: cache_entry}) def safe_unicode_decode(content): # Regular expression to find all Unicode escape sequences of the form \uXXXX unicode_escape_pattern = re.compile(r"\\u([0-9a-fA-F]{4})") # Function to replace the Unicode escape with the actual character def replace_unicode_escape(match): # Convert the matched hexadecimal value into the actual Unicode character return chr(int(match.group(1), 16)) # Perform the substitution decoded_content = unicode_escape_pattern.sub( replace_unicode_escape, content.decode("utf-8") ) return decoded_content def exists_func(obj, func_name: str) -> bool: """Check if a function exists in an object or not. :param obj: :param func_name: :return: True / False """ if callable(getattr(obj, func_name, None)): return True else: return False def always_get_an_event_loop() -> asyncio.AbstractEventLoop: """ Ensure that there is always an event loop available. This function tries to get the current event loop. If the current event loop is closed or does not exist, it creates a new event loop and sets it as the current event loop. Returns: asyncio.AbstractEventLoop: The current or newly created event loop. """ try: # Try to get the current event loop current_loop = asyncio.get_event_loop() if current_loop.is_closed(): raise RuntimeError("Event loop is closed.") return current_loop except RuntimeError: # If no event loop exists or it is closed, create a new one logger.info("Creating a new event loop in main thread.") new_loop = asyncio.new_event_loop() asyncio.set_event_loop(new_loop) return new_loop async def aexport_data( chunk_entity_relation_graph, entities_vdb, relationships_vdb, output_path: str, file_format: str = "csv", include_vector_data: bool = False, ) -> None: """ Asynchronously exports all entities, relations, and relationships to various formats. Args: chunk_entity_relation_graph: Graph storage instance for entities and relations entities_vdb: Vector database storage for entities relationships_vdb: Vector database storage for relationships output_path: The path to the output file (including extension). file_format: Output format - "csv", "excel", "md", "txt". - csv: Comma-separated values file - excel: Microsoft Excel file with multiple sheets - md: Markdown tables - txt: Plain text formatted output include_vector_data: Whether to include data from the vector database. """ # Collect data entities_data = [] relations_data = [] relationships_data = [] # --- Entities --- all_entities = await chunk_entity_relation_graph.get_all_labels() for entity_name in all_entities: # Get entity information from graph node_data = await chunk_entity_relation_graph.get_node(entity_name) source_id = node_data.get("source_id") if node_data else None entity_info = { "graph_data": node_data, "source_id": source_id, } # Optional: Get vector database information if include_vector_data: entity_id = compute_mdhash_id(entity_name, prefix="ent-") vector_data = await entities_vdb.get_by_id(entity_id) entity_info["vector_data"] = vector_data entity_row = { "entity_name": entity_name, "source_id": source_id, "graph_data": str( entity_info["graph_data"] ), # Convert to string to ensure compatibility } if include_vector_data and "vector_data" in entity_info: entity_row["vector_data"] = str(entity_info["vector_data"]) entities_data.append(entity_row) # --- Relations --- for src_entity in all_entities: for tgt_entity in all_entities: if src_entity == tgt_entity: continue edge_exists = await chunk_entity_relation_graph.has_edge( src_entity, tgt_entity ) if edge_exists: # Get edge information from graph edge_data = await chunk_entity_relation_graph.get_edge( src_entity, tgt_entity ) source_id = edge_data.get("source_id") if edge_data else None relation_info = { "graph_data": edge_data, "source_id": source_id, } # Optional: Get vector database information if include_vector_data: rel_id = compute_mdhash_id(src_entity + tgt_entity, prefix="rel-") vector_data = await relationships_vdb.get_by_id(rel_id) relation_info["vector_data"] = vector_data relation_row = { "src_entity": src_entity, "tgt_entity": tgt_entity, "source_id": relation_info["source_id"], "graph_data": str(relation_info["graph_data"]), # Convert to string } if include_vector_data and "vector_data" in relation_info: relation_row["vector_data"] = str(relation_info["vector_data"]) relations_data.append(relation_row) # --- Relationships (from VectorDB) --- all_relationships = await relationships_vdb.client_storage for rel in all_relationships["data"]: relationships_data.append( { "relationship_id": rel["__id__"], "data": str(rel), # Convert to string for compatibility } ) # Export based on format if file_format == "csv": # CSV export with open(output_path, "w", newline="", encoding="utf-8") as csvfile: # Entities if entities_data: csvfile.write("# ENTITIES\n") writer = csv.DictWriter(csvfile, fieldnames=entities_data[0].keys()) writer.writeheader() writer.writerows(entities_data) csvfile.write("\n\n") # Relations if relations_data: csvfile.write("# RELATIONS\n") writer = csv.DictWriter(csvfile, fieldnames=relations_data[0].keys()) writer.writeheader() writer.writerows(relations_data) csvfile.write("\n\n") # Relationships if relationships_data: csvfile.write("# RELATIONSHIPS\n") writer = csv.DictWriter( csvfile, fieldnames=relationships_data[0].keys() ) writer.writeheader() writer.writerows(relationships_data) elif file_format == "excel": # Excel export import pandas as pd entities_df = pd.DataFrame(entities_data) if entities_data else pd.DataFrame() relations_df = ( pd.DataFrame(relations_data) if relations_data else pd.DataFrame() ) relationships_df = ( pd.DataFrame(relationships_data) if relationships_data else pd.DataFrame() ) with pd.ExcelWriter(output_path, engine="xlsxwriter") as writer: if not entities_df.empty: entities_df.to_excel(writer, sheet_name="Entities", index=False) if not relations_df.empty: relations_df.to_excel(writer, sheet_name="Relations", index=False) if not relationships_df.empty: relationships_df.to_excel( writer, sheet_name="Relationships", index=False ) elif file_format == "md": # Markdown export with open(output_path, "w", encoding="utf-8") as mdfile: mdfile.write("# LightRAG Data Export\n\n") # Entities mdfile.write("## Entities\n\n") if entities_data: # Write header mdfile.write("| " + " | ".join(entities_data[0].keys()) + " |\n") mdfile.write( "| " + " | ".join(["---"] * len(entities_data[0].keys())) + " |\n" ) # Write rows for entity in entities_data: mdfile.write( "| " + " | ".join(str(v) for v in entity.values()) + " |\n" ) mdfile.write("\n\n") else: mdfile.write("*No entity data available*\n\n") # Relations mdfile.write("## Relations\n\n") if relations_data: # Write header mdfile.write("| " + " | ".join(relations_data[0].keys()) + " |\n") mdfile.write( "| " + " | ".join(["---"] * len(relations_data[0].keys())) + " |\n" ) # Write rows for relation in relations_data: mdfile.write( "| " + " | ".join(str(v) for v in relation.values()) + " |\n" ) mdfile.write("\n\n") else: mdfile.write("*No relation data available*\n\n") # Relationships mdfile.write("## Relationships\n\n") if relationships_data: # Write header mdfile.write("| " + " | ".join(relationships_data[0].keys()) + " |\n") mdfile.write( "| " + " | ".join(["---"] * len(relationships_data[0].keys())) + " |\n" ) # Write rows for relationship in relationships_data: mdfile.write( "| " + " | ".join(str(v) for v in relationship.values()) + " |\n" ) else: mdfile.write("*No relationship data available*\n\n") elif file_format == "txt": # Plain text export with open(output_path, "w", encoding="utf-8") as txtfile: txtfile.write("LIGHTRAG DATA EXPORT\n") txtfile.write("=" * 80 + "\n\n") # Entities txtfile.write("ENTITIES\n") txtfile.write("-" * 80 + "\n") if entities_data: # Create fixed width columns col_widths = { k: max(len(k), max(len(str(e[k])) for e in entities_data)) for k in entities_data[0] } header = " ".join(k.ljust(col_widths[k]) for k in entities_data[0]) txtfile.write(header + "\n") txtfile.write("-" * len(header) + "\n") # Write rows for entity in entities_data: row = " ".join( str(v).ljust(col_widths[k]) for k, v in entity.items() ) txtfile.write(row + "\n") txtfile.write("\n\n") else: txtfile.write("No entity data available\n\n") # Relations txtfile.write("RELATIONS\n") txtfile.write("-" * 80 + "\n") if relations_data: # Create fixed width columns col_widths = { k: max(len(k), max(len(str(r[k])) for r in relations_data)) for k in relations_data[0] } header = " ".join(k.ljust(col_widths[k]) for k in relations_data[0]) txtfile.write(header + "\n") txtfile.write("-" * len(header) + "\n") # Write rows for relation in relations_data: row = " ".join( str(v).ljust(col_widths[k]) for k, v in relation.items() ) txtfile.write(row + "\n") txtfile.write("\n\n") else: txtfile.write("No relation data available\n\n") # Relationships txtfile.write("RELATIONSHIPS\n") txtfile.write("-" * 80 + "\n") if relationships_data: # Create fixed width columns col_widths = { k: max(len(k), max(len(str(r[k])) for r in relationships_data)) for k in relationships_data[0] } header = " ".join( k.ljust(col_widths[k]) for k in relationships_data[0] ) txtfile.write(header + "\n") txtfile.write("-" * len(header) + "\n") # Write rows for relationship in relationships_data: row = " ".join( str(v).ljust(col_widths[k]) for k, v in relationship.items() ) txtfile.write(row + "\n") else: txtfile.write("No relationship data available\n\n") else: raise ValueError( f"Unsupported file format: {file_format}. Choose from: csv, excel, md, txt" ) if file_format is not None: print(f"Data exported to: {output_path} with format: {file_format}") else: print("Data displayed as table format") def export_data( chunk_entity_relation_graph, entities_vdb, relationships_vdb, output_path: str, file_format: str = "csv", include_vector_data: bool = False, ) -> None: """ Synchronously exports all entities, relations, and relationships to various formats. Args: chunk_entity_relation_graph: Graph storage instance for entities and relations entities_vdb: Vector database storage for entities relationships_vdb: Vector database storage for relationships output_path: The path to the output file (including extension). file_format: Output format - "csv", "excel", "md", "txt". - csv: Comma-separated values file - excel: Microsoft Excel file with multiple sheets - md: Markdown tables - txt: Plain text formatted output include_vector_data: Whether to include data from the vector database. """ try: loop = asyncio.get_event_loop() except RuntimeError: loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) loop.run_until_complete( aexport_data( chunk_entity_relation_graph, entities_vdb, relationships_vdb, output_path, file_format, include_vector_data, ) ) def lazy_external_import(module_name: str, class_name: str) -> Callable[..., Any]: """Lazily import a class from an external module based on the package of the caller.""" # Get the caller's module and package import inspect caller_frame = inspect.currentframe().f_back module = inspect.getmodule(caller_frame) package = module.__package__ if module else None def import_class(*args: Any, **kwargs: Any): import importlib module = importlib.import_module(module_name, package=package) cls = getattr(module, class_name) return cls(*args, **kwargs) return import_class async def update_chunk_cache_list( chunk_id: str, text_chunks_storage: "BaseKVStorage", cache_keys: list[str], cache_scenario: str = "batch_update", ) -> None: """Update chunk's llm_cache_list with the given cache keys Args: chunk_id: Chunk identifier text_chunks_storage: Text chunks storage instance cache_keys: List of cache keys to add to the list cache_scenario: Description of the cache scenario for logging """ if not cache_keys: return try: chunk_data = await text_chunks_storage.get_by_id(chunk_id) if chunk_data: # Ensure llm_cache_list exists if "llm_cache_list" not in chunk_data: chunk_data["llm_cache_list"] = [] # Add cache keys to the list if not already present existing_keys = set(chunk_data["llm_cache_list"]) new_keys = [key for key in cache_keys if key not in existing_keys] if new_keys: chunk_data["llm_cache_list"].extend(new_keys) # Update the chunk in storage await text_chunks_storage.upsert({chunk_id: chunk_data}) logger.debug( f"Updated chunk {chunk_id} with {len(new_keys)} cache keys ({cache_scenario})" ) except Exception as e: logger.warning( f"Failed to update chunk {chunk_id} with cache references on {cache_scenario}: {e}" ) def remove_think_tags(text: str) -> str: """Remove ... tags from the text Remove orphon ... tags from the text also""" return re.sub( r"^(.*?|.*)", "", text, flags=re.DOTALL ).strip() async def use_llm_func_with_cache( user_prompt: str, use_llm_func: callable, llm_response_cache: "BaseKVStorage | None" = None, system_prompt: str | None = None, max_tokens: int = None, history_messages: list[dict[str, str]] = None, cache_type: str = "extract", chunk_id: str | None = None, cache_keys_collector: list = None, ) -> tuple[str, int]: """Call LLM function with cache support and text sanitization If cache is available and enabled (determined by handle_cache based on mode), retrieve result from cache; otherwise call LLM function and save result to cache. This function applies text sanitization to prevent UTF-8 encoding errors for all LLM providers. Args: input_text: Input text to send to LLM use_llm_func: LLM function with higher priority llm_response_cache: Cache storage instance max_tokens: Maximum tokens for generation history_messages: History messages list cache_type: Type of cache chunk_id: Chunk identifier to store in cache text_chunks_storage: Text chunks storage to update llm_cache_list cache_keys_collector: Optional list to collect cache keys for batch processing Returns: tuple[str, int]: (LLM response text, timestamp) - For cache hits: (content, cache_create_time) - For cache misses: (content, current_timestamp) """ # Sanitize input text to prevent UTF-8 encoding errors for all LLM providers safe_user_prompt = sanitize_text_for_encoding(user_prompt) safe_system_prompt = ( sanitize_text_for_encoding(system_prompt) if system_prompt else None ) # Sanitize history messages if provided safe_history_messages = None if history_messages: safe_history_messages = [] for i, msg in enumerate(history_messages): safe_msg = msg.copy() if "content" in safe_msg: safe_msg["content"] = sanitize_text_for_encoding(safe_msg["content"]) safe_history_messages.append(safe_msg) history = json.dumps(safe_history_messages, ensure_ascii=False) else: history = None if llm_response_cache: prompt_parts = [] if safe_user_prompt: prompt_parts.append(safe_user_prompt) if safe_system_prompt: prompt_parts.append(safe_system_prompt) if history: prompt_parts.append(history) _prompt = "\n".join(prompt_parts) arg_hash = compute_args_hash(_prompt) # Generate cache key for this LLM call cache_key = generate_cache_key("default", cache_type, arg_hash) cached_result = await handle_cache( llm_response_cache, arg_hash, _prompt, "default", cache_type=cache_type, ) if cached_result: content, timestamp = cached_result logger.debug(f"Found cache for {arg_hash}") statistic_data["llm_cache"] += 1 # Add cache key to collector if provided if cache_keys_collector is not None: cache_keys_collector.append(cache_key) return content, timestamp statistic_data["llm_call"] += 1 # Call LLM with sanitized input kwargs = {} if safe_history_messages: kwargs["history_messages"] = safe_history_messages if max_tokens is not None: kwargs["max_tokens"] = max_tokens res: str = await use_llm_func( safe_user_prompt, system_prompt=safe_system_prompt, **kwargs ) res = remove_think_tags(res) # Generate timestamp for cache miss (LLM call completion time) current_timestamp = int(time.time()) if llm_response_cache.global_config.get("enable_llm_cache_for_entity_extract"): await save_to_cache( llm_response_cache, CacheData( args_hash=arg_hash, content=res, prompt=_prompt, cache_type=cache_type, chunk_id=chunk_id, ), ) # Add cache key to collector if provided if cache_keys_collector is not None: cache_keys_collector.append(cache_key) return res, current_timestamp # When cache is disabled, directly call LLM with sanitized input kwargs = {} if safe_history_messages: kwargs["history_messages"] = safe_history_messages if max_tokens is not None: kwargs["max_tokens"] = max_tokens try: res = await use_llm_func( safe_user_prompt, system_prompt=safe_system_prompt, **kwargs ) except Exception as e: # Add [LLM func] prefix to error message error_msg = f"[LLM func] {str(e)}" # Re-raise with the same exception type but modified message raise type(e)(error_msg) from e # Generate timestamp for non-cached LLM call current_timestamp = int(time.time()) return remove_think_tags(res), current_timestamp def get_content_summary(content: str, max_length: int = 250) -> str: """Get summary of document content Args: content: Original document content max_length: Maximum length of summary Returns: Truncated content with ellipsis if needed """ content = content.strip() if len(content) <= max_length: return content return content[:max_length] + "..." def sanitize_and_normalize_extracted_text( input_text: str, remove_inner_quotes=False ) -> str: """Santitize and normalize extracted text Args: input_text: text string to be processed is_name: whether the input text is a entity or relation name Returns: Santitized and normalized text string """ safe_input_text = sanitize_text_for_encoding(input_text) if safe_input_text: normalized_text = normalize_extracted_info( safe_input_text, remove_inner_quotes=remove_inner_quotes ) return normalized_text return "" def normalize_extracted_info(name: str, remove_inner_quotes=False) -> str: """Normalize entity/relation names and description with the following rules: - Clean HTML tags (paragraph and line break tags) - Convert Chinese symbols to English symbols - Remove spaces between Chinese characters - Remove spaces between Chinese characters and English letters/numbers - Preserve spaces within English text and numbers - Replace Chinese parentheses with English parentheses - Replace Chinese dash with English dash - Remove English quotation marks from the beginning and end of the text - Remove English quotation marks in and around chinese - Remove Chinese quotation marks - Filter out short numeric-only text (length < 3 and only digits/dots) - remove_inner_quotes = True remove Chinese quotes remove English quotes in and around chinese Convert non-breaking spaces to regular spaces Convert narrow non-breaking spaces after non-digits to regular spaces Args: name: Entity name to normalize is_entity: Whether this is an entity name (affects quote handling) Returns: Normalized entity name """ # Clean HTML tags - remove paragraph and line break tags name = re.sub(r"||

", "", name, flags=re.IGNORECASE) name = re.sub(r"||
", "", name, flags=re.IGNORECASE) # Chinese full-width letters to half-width (A-Z, a-z) name = name.translate( str.maketrans( "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz", "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz", ) ) # Chinese full-width numbers to half-width name = name.translate(str.maketrans("0123456789", "0123456789")) # Chinese full-width symbols to half-width name = name.replace("-", "-") # Chinese minus name = name.replace("+", "+") # Chinese plus name = name.replace("/", "/") # Chinese slash name = name.replace("*", "*") # Chinese asterisk # Replace Chinese parentheses with English parentheses name = name.replace("(", "(").replace(")", ")") # Replace Chinese dash with English dash (additional patterns) name = name.replace("—", "-").replace("-", "-") # Chinese full-width space to regular space (after other replacements) name = name.replace(" ", " ") # Use regex to remove spaces between Chinese characters # Regex explanation: # (?<=[\u4e00-\u9fa5]): Positive lookbehind for Chinese character # \s+: One or more whitespace characters # (?=[\u4e00-\u9fa5]): Positive lookahead for Chinese character name = re.sub(r"(?<=[\u4e00-\u9fa5])\s+(?=[\u4e00-\u9fa5])", "", name) # Remove spaces between Chinese and English/numbers/symbols name = re.sub( r"(?<=[\u4e00-\u9fa5])\s+(?=[a-zA-Z0-9\(\)\[\]@#$%!&\*\-=+_])", "", name ) name = re.sub( r"(?<=[a-zA-Z0-9\(\)\[\]@#$%!&\*\-=+_])\s+(?=[\u4e00-\u9fa5])", "", name ) # Remove outer quotes if len(name) >= 2: # Handle double quotes if name.startswith('"') and name.endswith('"'): inner_content = name[1:-1] if '"' not in inner_content: # No double quotes inside name = inner_content # Handle single quotes if name.startswith("'") and name.endswith("'"): inner_content = name[1:-1] if "'" not in inner_content: # No single quotes inside name = inner_content # Handle Chinese-style double quotes if name.startswith("“") and name.endswith("”"): inner_content = name[1:-1] if "“" not in inner_content and "”" not in inner_content: name = inner_content if name.startswith("‘") and name.endswith("’"): inner_content = name[1:-1] if "‘" not in inner_content and "’" not in inner_content: name = inner_content # Handle Chinese-style book title mark if name.startswith("《") and name.endswith("》"): inner_content = name[1:-1] if "《" not in inner_content and "》" not in inner_content: name = inner_content if remove_inner_quotes: # Remove Chinese quotes name = name.replace("“", "").replace("”", "").replace("‘", "").replace("’", "") # Remove English queotes in and around chinese name = re.sub(r"['\"]+(?=[\u4e00-\u9fa5])", "", name) name = re.sub(r"(?<=[\u4e00-\u9fa5])['\"]+", "", name) # Convert non-breaking space to regular space name = name.replace("\u00a0", " ") # Convert narrow non-breaking space to regular space when after non-digits name = re.sub(r"(?<=[^\d])\u202F", " ", name) # Remove spaces from the beginning and end of the text name = name.strip() # Filter out pure numeric content with length < 3 if len(name) < 3 and re.match(r"^[0-9]+$", name): return "" def should_filter_by_dots(text): """ Check if the string consists only of dots and digits, with at least one dot Filter cases include: 1.2.3, 12.3, .123, 123., 12.3., .1.23 etc. """ return all(c.isdigit() or c == "." for c in text) and "." in text if len(name) < 6 and should_filter_by_dots(name): # Filter out mixed numeric and dot content with length < 6 return "" # Filter out mixed numeric and dot content with length < 6, requiring at least one dot return "" return name def sanitize_text_for_encoding(text: str, replacement_char: str = "") -> str: """Sanitize text to ensure safe UTF-8 encoding by removing or replacing problematic characters. This function handles: - Surrogate characters (the main cause of encoding errors) - Other invalid Unicode sequences - Control characters that might cause issues - Unescape HTML escapes - Remove control characters - Whitespace trimming Args: text: Input text to sanitize replacement_char: Character to use for replacing invalid sequences Returns: Sanitized text that can be safely encoded as UTF-8 Raises: ValueError: When text contains uncleanable encoding issues that cannot be safely processed """ if not text: return text try: # First, strip whitespace text = text.strip() # Early return if text is empty after basic cleaning if not text: return text # Try to encode/decode to catch any encoding issues early text.encode("utf-8") # Remove or replace surrogate characters (U+D800 to U+DFFF) # These are the main cause of the encoding error sanitized = "" for char in text: code_point = ord(char) # Check for surrogate characters if 0xD800 <= code_point <= 0xDFFF: # Replace surrogate with replacement character sanitized += replacement_char continue # Check for other problematic characters elif code_point == 0xFFFE or code_point == 0xFFFF: # These are non-characters in Unicode sanitized += replacement_char continue else: sanitized += char # Additional cleanup: remove null bytes and other control characters that might cause issues # (but preserve common whitespace like \t, \n, \r) sanitized = re.sub( r"[\x00-\x08\x0B\x0C\x0E-\x1F\x7F]", replacement_char, sanitized ) # Test final encoding to ensure it's safe sanitized.encode("utf-8") # Unescape HTML escapes sanitized = html.unescape(sanitized) # Remove control characters but preserve common whitespace (\t, \n, \r) sanitized = re.sub(r"[\x00-\x08\x0B\x0C\x0E-\x1F\x7F-\x9F]", "", sanitized) return sanitized.strip() except UnicodeEncodeError as e: # Critical change: Don't return placeholder, raise exception for caller to handle error_msg = f"Text contains uncleanable UTF-8 encoding issues: {str(e)[:100]}" logger.error(f"Text sanitization failed: {error_msg}") raise ValueError(error_msg) from e except Exception as e: logger.error(f"Text sanitization: Unexpected error: {str(e)}") # For other exceptions, if no encoding issues detected, return original text try: text.encode("utf-8") return text except UnicodeEncodeError: raise ValueError( f"Text sanitization failed with unexpected error: {str(e)}" ) from e def check_storage_env_vars(storage_name: str) -> None: """Check if all required environment variables for storage implementation exist Args: storage_name: Storage implementation name Raises: ValueError: If required environment variables are missing """ from lightrag.kg import STORAGE_ENV_REQUIREMENTS required_vars = STORAGE_ENV_REQUIREMENTS.get(storage_name, []) missing_vars = [var for var in required_vars if var not in os.environ] if missing_vars: raise ValueError( f"Storage implementation '{storage_name}' requires the following " f"environment variables: {', '.join(missing_vars)}" ) def pick_by_weighted_polling( entities_or_relations: list[dict], max_related_chunks: int, min_related_chunks: int = 1, ) -> list[str]: """ Linear gradient weighted polling algorithm for text chunk selection. This algorithm ensures that entities/relations with higher importance get more text chunks, forming a linear decreasing allocation pattern. Args: entities_or_relations: List of entities or relations sorted by importance (high to low) max_related_chunks: Expected number of text chunks for the highest importance entity/relation min_related_chunks: Expected number of text chunks for the lowest importance entity/relation Returns: List of selected text chunk IDs """ if not entities_or_relations: return [] n = len(entities_or_relations) if n == 1: # Only one entity/relation, return its first max_related_chunks text chunks entity_chunks = entities_or_relations[0].get("sorted_chunks", []) return entity_chunks[:max_related_chunks] # Calculate expected text chunk count for each position (linear decrease) expected_counts = [] for i in range(n): # Linear interpolation: from max_related_chunks to min_related_chunks ratio = i / (n - 1) if n > 1 else 0 expected = max_related_chunks - ratio * ( max_related_chunks - min_related_chunks ) expected_counts.append(int(round(expected))) # First round allocation: allocate by expected values selected_chunks = [] used_counts = [] # Track number of chunks used by each entity total_remaining = 0 # Accumulate remaining quotas for i, entity_rel in enumerate(entities_or_relations): entity_chunks = entity_rel.get("sorted_chunks", []) expected = expected_counts[i] # Actual allocatable count actual = min(expected, len(entity_chunks)) selected_chunks.extend(entity_chunks[:actual]) used_counts.append(actual) # Accumulate remaining quota remaining = expected - actual if remaining > 0: total_remaining += remaining # Second round allocation: multi-round scanning to allocate remaining quotas for _ in range(total_remaining): allocated = False # Scan entities one by one, allocate one chunk when finding unused chunks for i, entity_rel in enumerate(entities_or_relations): entity_chunks = entity_rel.get("sorted_chunks", []) # Check if there are still unused chunks if used_counts[i] < len(entity_chunks): # Allocate one chunk selected_chunks.append(entity_chunks[used_counts[i]]) used_counts[i] += 1 allocated = True break # If no chunks were allocated in this round, all entities are exhausted if not allocated: break return selected_chunks async def pick_by_vector_similarity( query: str, text_chunks_storage: "BaseKVStorage", chunks_vdb: "BaseVectorStorage", num_of_chunks: int, entity_info: list[dict[str, Any]], embedding_func: callable, query_embedding=None, ) -> list[str]: """ Vector similarity-based text chunk selection algorithm. This algorithm selects text chunks based on cosine similarity between the query embedding and text chunk embeddings. Args: query: User's original query string text_chunks_storage: Text chunks storage instance chunks_vdb: Vector database storage for chunks num_of_chunks: Number of chunks to select entity_info: List of entity information containing chunk IDs embedding_func: Embedding function to compute query embedding Returns: List of selected text chunk IDs sorted by similarity (highest first) """ logger.debug( f"Vector similarity chunk selection: num_of_chunks={num_of_chunks}, entity_info_count={len(entity_info) if entity_info else 0}" ) if not entity_info or num_of_chunks <= 0: return [] # Collect all unique chunk IDs from entity info all_chunk_ids = set() for i, entity in enumerate(entity_info): chunk_ids = entity.get("sorted_chunks", []) all_chunk_ids.update(chunk_ids) if not all_chunk_ids: logger.warning( "Vector similarity chunk selection: no chunk IDs found in entity_info" ) return [] logger.debug( f"Vector similarity chunk selection: {len(all_chunk_ids)} unique chunk IDs collected" ) all_chunk_ids = list(all_chunk_ids) try: # Use pre-computed query embedding if provided, otherwise compute it if query_embedding is None: query_embedding = await embedding_func([query]) query_embedding = query_embedding[ 0 ] # Extract first embedding from batch result logger.debug( "Computed query embedding for vector similarity chunk selection" ) else: logger.debug( "Using pre-computed query embedding for vector similarity chunk selection" ) # Get chunk embeddings from vector database chunk_vectors = await chunks_vdb.get_vectors_by_ids(all_chunk_ids) logger.debug( f"Vector similarity chunk selection: {len(chunk_vectors)} chunk vectors Retrieved" ) if not chunk_vectors or len(chunk_vectors) != len(all_chunk_ids): if not chunk_vectors: logger.warning( "Vector similarity chunk selection: no vectors retrieved from chunks_vdb" ) else: logger.warning( f"Vector similarity chunk selection: found {len(chunk_vectors)} but expecting {len(all_chunk_ids)}" ) return [] # Calculate cosine similarities similarities = [] valid_vectors = 0 for chunk_id in all_chunk_ids: if chunk_id in chunk_vectors: chunk_embedding = chunk_vectors[chunk_id] try: # Calculate cosine similarity similarity = cosine_similarity(query_embedding, chunk_embedding) similarities.append((chunk_id, similarity)) valid_vectors += 1 except Exception as e: logger.warning( f"Vector similarity chunk selection: failed to calculate similarity for chunk {chunk_id}: {e}" ) else: logger.warning( f"Vector similarity chunk selection: no vector found for chunk {chunk_id}" ) # Sort by similarity (highest first) and select top num_of_chunks similarities.sort(key=lambda x: x[1], reverse=True) selected_chunks = [chunk_id for chunk_id, _ in similarities[:num_of_chunks]] logger.debug( f"Vector similarity chunk selection: {len(selected_chunks)} chunks from {len(all_chunk_ids)} candidates" ) return selected_chunks except Exception as e: logger.error(f"[VECTOR_SIMILARITY] Error in vector similarity sorting: {e}") import traceback logger.error(f"[VECTOR_SIMILARITY] Traceback: {traceback.format_exc()}") # Fallback to simple truncation logger.debug("[VECTOR_SIMILARITY] Falling back to simple truncation") return all_chunk_ids[:num_of_chunks] class TokenTracker: """Track token usage for LLM calls.""" def __init__(self): self.reset() def __enter__(self): self.reset() return self def __exit__(self, exc_type, exc_val, exc_tb): print(self) def reset(self): self.prompt_tokens = 0 self.completion_tokens = 0 self.total_tokens = 0 self.call_count = 0 def add_usage(self, token_counts): """Add token usage from one LLM call. Args: token_counts: A dictionary containing prompt_tokens, completion_tokens, total_tokens """ self.prompt_tokens += token_counts.get("prompt_tokens", 0) self.completion_tokens += token_counts.get("completion_tokens", 0) # If total_tokens is provided, use it directly; otherwise calculate the sum if "total_tokens" in token_counts: self.total_tokens += token_counts["total_tokens"] else: self.total_tokens += token_counts.get( "prompt_tokens", 0 ) + token_counts.get("completion_tokens", 0) self.call_count += 1 def get_usage(self): """Get current usage statistics.""" return { "prompt_tokens": self.prompt_tokens, "completion_tokens": self.completion_tokens, "total_tokens": self.total_tokens, "call_count": self.call_count, } def __str__(self): usage = self.get_usage() return ( f"LLM call count: {usage['call_count']}, " f"Prompt tokens: {usage['prompt_tokens']}, " f"Completion tokens: {usage['completion_tokens']}, " f"Total tokens: {usage['total_tokens']}" ) async def apply_rerank_if_enabled( query: str, retrieved_docs: list[dict], global_config: dict, enable_rerank: bool = True, top_n: int = None, ) -> list[dict]: """ Apply reranking to retrieved documents if rerank is enabled. Args: query: The search query retrieved_docs: List of retrieved documents global_config: Global configuration containing rerank settings enable_rerank: Whether to enable reranking from query parameter top_n: Number of top documents to return after reranking Returns: Reranked documents if rerank is enabled, otherwise original documents """ if not enable_rerank or not retrieved_docs: return retrieved_docs rerank_func = global_config.get("rerank_model_func") if not rerank_func: logger.warning( "Rerank is enabled but no rerank model is configured. Please set up a rerank model or set enable_rerank=False in query parameters." ) return retrieved_docs try: # Extract document content for reranking document_texts = [] for doc in retrieved_docs: # Try multiple possible content fields content = ( doc.get("content") or doc.get("text") or doc.get("chunk_content") or doc.get("document") or str(doc) ) document_texts.append(content) # Call the new rerank function that returns index-based results rerank_results = await rerank_func( query=query, documents=document_texts, top_n=top_n, ) # Process rerank results based on return format if rerank_results and len(rerank_results) > 0: # Check if results are in the new index-based format if isinstance(rerank_results[0], dict) and "index" in rerank_results[0]: # New format: [{"index": 0, "relevance_score": 0.85}, ...] reranked_docs = [] for result in rerank_results: index = result["index"] relevance_score = result["relevance_score"] # Get original document and add rerank score if 0 <= index < len(retrieved_docs): doc = retrieved_docs[index].copy() doc["rerank_score"] = relevance_score reranked_docs.append(doc) logger.info( f"Successfully reranked: {len(reranked_docs)} chunks from {len(retrieved_docs)} original chunks" ) return reranked_docs else: # Legacy format: assume it's already reranked documents logger.info(f"Using legacy rerank format: {len(rerank_results)} chunks") return rerank_results[:top_n] if top_n else rerank_results else: logger.warning("Rerank returned empty results, using original chunks") return retrieved_docs except Exception as e: logger.error(f"Error during reranking: {e}, using original chunks") return retrieved_docs async def process_chunks_unified( query: str, unique_chunks: list[dict], query_param: "QueryParam", global_config: dict, source_type: str = "mixed", chunk_token_limit: int = None, # Add parameter for dynamic token limit ) -> list[dict]: """ Unified processing for text chunks: deduplication, chunk_top_k limiting, reranking, and token truncation. Args: query: Search query for reranking chunks: List of text chunks to process query_param: Query parameters containing configuration global_config: Global configuration dictionary source_type: Source type for logging ("vector", "entity", "relationship", "mixed") chunk_token_limit: Dynamic token limit for chunks (if None, uses default) Returns: Processed and filtered list of text chunks """ if not unique_chunks: return [] origin_count = len(unique_chunks) # 1. Apply reranking if enabled and query is provided if query_param.enable_rerank and query and unique_chunks: rerank_top_k = query_param.chunk_top_k or len(unique_chunks) unique_chunks = await apply_rerank_if_enabled( query=query, retrieved_docs=unique_chunks, global_config=global_config, enable_rerank=query_param.enable_rerank, top_n=rerank_top_k, ) # 2. Filter by minimum rerank score if reranking is enabled if query_param.enable_rerank and unique_chunks: min_rerank_score = global_config.get("min_rerank_score", 0.5) if min_rerank_score > 0.0: original_count = len(unique_chunks) # Filter chunks with score below threshold filtered_chunks = [] for chunk in unique_chunks: rerank_score = chunk.get( "rerank_score", 1.0 ) # Default to 1.0 if no score if rerank_score >= min_rerank_score: filtered_chunks.append(chunk) unique_chunks = filtered_chunks filtered_count = original_count - len(unique_chunks) if filtered_count > 0: logger.info( f"Rerank filtering: {len(unique_chunks)} chunks remained (min rerank score: {min_rerank_score})" ) if not unique_chunks: return [] # 3. Apply chunk_top_k limiting if specified if query_param.chunk_top_k is not None and query_param.chunk_top_k > 0: if len(unique_chunks) > query_param.chunk_top_k: unique_chunks = unique_chunks[: query_param.chunk_top_k] logger.debug( f"Kept chunk_top-k: {len(unique_chunks)} chunks (deduplicated original: {origin_count})" ) # 4. Token-based final truncation tokenizer = global_config.get("tokenizer") if tokenizer and unique_chunks: # Set default chunk_token_limit if not provided if chunk_token_limit is None: # Get default from query_param or global_config chunk_token_limit = getattr( query_param, "max_total_tokens", global_config.get("MAX_TOTAL_TOKENS", DEFAULT_MAX_TOTAL_TOKENS), ) original_count = len(unique_chunks) unique_chunks = truncate_list_by_token_size( unique_chunks, key=lambda x: "\n".join( json.dumps(item, ensure_ascii=False) for item in [x] ), max_token_size=chunk_token_limit, tokenizer=tokenizer, ) logger.debug( f"Token truncation: {len(unique_chunks)} chunks from {original_count} " f"(chunk available tokens: {chunk_token_limit}, source: {source_type})" ) # 5. add id field to each chunk final_chunks = [] for i, chunk in enumerate(unique_chunks): chunk_with_id = chunk.copy() chunk_with_id["id"] = f"DC{i + 1}" final_chunks.append(chunk_with_id) return final_chunks def normalize_source_ids_limit_method(method: str | None) -> str: """Normalize the source ID limiting strategy and fall back to default when invalid.""" if not method: return DEFAULT_SOURCE_IDS_LIMIT_METHOD normalized = method.upper() if normalized not in VALID_SOURCE_IDS_LIMIT_METHODS: logger.warning( "Unknown SOURCE_IDS_LIMIT_METHOD '%s', falling back to %s", method, DEFAULT_SOURCE_IDS_LIMIT_METHOD, ) return DEFAULT_SOURCE_IDS_LIMIT_METHOD return normalized def merge_source_ids( existing_ids: Iterable[str] | None, new_ids: Iterable[str] | None ) -> list[str]: """Merge two iterables of source IDs while preserving order and removing duplicates.""" merged: list[str] = [] seen: set[str] = set() for sequence in (existing_ids, new_ids): if not sequence: continue for source_id in sequence: if not source_id: continue if source_id not in seen: seen.add(source_id) merged.append(source_id) return merged def apply_source_ids_limit( source_ids: Sequence[str], limit: int, method: str, *, identifier: str | None = None, ) -> list[str]: """Apply a limit strategy to a sequence of source IDs.""" if limit <= 0: return [] source_ids_list = list(source_ids) if len(source_ids_list) <= limit: return source_ids_list normalized_method = normalize_source_ids_limit_method(method) if normalized_method == SOURCE_IDS_LIMIT_METHOD_FIFO: truncated = source_ids_list[-limit:] else: # IGNORE_NEW truncated = source_ids_list[:limit] if identifier and len(truncated) < len(source_ids_list): logger.debug( "Source_id truncated: %s | %s keeping %s of %s entries", identifier, normalized_method, len(truncated), len(source_ids_list), ) return truncated def compute_incremental_chunk_ids( existing_full_chunk_ids: list[str], old_chunk_ids: list[str], new_chunk_ids: list[str], ) -> list[str]: """ Compute incrementally updated chunk IDs based on changes. This function applies delta changes (additions and removals) to an existing list of chunk IDs while maintaining order and ensuring deduplication. Delta additions from new_chunk_ids are placed at the end. Args: existing_full_chunk_ids: Complete list of existing chunk IDs from storage old_chunk_ids: Previous chunk IDs from source_id (chunks being replaced) new_chunk_ids: New chunk IDs from updated source_id (chunks being added) Returns: Updated list of chunk IDs with deduplication Example: >>> existing = ['chunk-1', 'chunk-2', 'chunk-3'] >>> old = ['chunk-1', 'chunk-2'] >>> new = ['chunk-2', 'chunk-4'] >>> compute_incremental_chunk_ids(existing, old, new) ['chunk-3', 'chunk-2', 'chunk-4'] """ # Calculate changes chunks_to_remove = set(old_chunk_ids) - set(new_chunk_ids) chunks_to_add = set(new_chunk_ids) - set(old_chunk_ids) # Apply changes to full chunk_ids # Step 1: Remove chunks that are no longer needed updated_chunk_ids = [ cid for cid in existing_full_chunk_ids if cid not in chunks_to_remove ] # Step 2: Add new chunks (preserving order from new_chunk_ids) # Note: 'cid not in updated_chunk_ids' check ensures deduplication for cid in new_chunk_ids: if cid in chunks_to_add and cid not in updated_chunk_ids: updated_chunk_ids.append(cid) return updated_chunk_ids def subtract_source_ids( source_ids: Iterable[str], ids_to_remove: Collection[str], ) -> list[str]: """Remove a collection of IDs from an ordered iterable while preserving order.""" removal_set = set(ids_to_remove) if not removal_set: return [source_id for source_id in source_ids if source_id] return [ source_id for source_id in source_ids if source_id and source_id not in removal_set ] def make_relation_chunk_key(src: str, tgt: str) -> str: """Create a deterministic storage key for relation chunk tracking.""" return GRAPH_FIELD_SEP.join(sorted((src, tgt))) def parse_relation_chunk_key(key: str) -> tuple[str, str]: """Parse a relation chunk storage key back into its entity pair.""" parts = key.split(GRAPH_FIELD_SEP) if len(parts) != 2: raise ValueError(f"Invalid relation chunk key: {key}") return parts[0], parts[1] def generate_track_id(prefix: str = "upload") -> str: """Generate a unique tracking ID with timestamp and UUID Args: prefix: Prefix for the track ID (e.g., 'upload', 'insert') Returns: str: Unique tracking ID in format: {prefix}_{timestamp}_{uuid} """ timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") unique_id = str(uuid.uuid4())[:8] # Use first 8 characters of UUID return f"{prefix}_{timestamp}_{unique_id}" def get_pinyin_sort_key(text: str) -> str: """Generate sort key for Chinese pinyin sorting This function uses pypinyin for true Chinese pinyin sorting. If pypinyin is not available, it falls back to simple lowercase string sorting. Args: text: Text to generate sort key for Returns: str: Sort key that can be used for comparison and sorting """ if not text: return "" if _PYPINYIN_AVAILABLE: try: # Convert Chinese characters to pinyin, keep non-Chinese as-is pinyin_list = pypinyin.lazy_pinyin(text, style=pypinyin.Style.NORMAL) return "".join(pinyin_list).lower() except Exception: # Silently fall back to simple string sorting on any error return text.lower() else: # pypinyin not available, use simple string sorting return text.lower() def fix_tuple_delimiter_corruption( record: str, delimiter_core: str, tuple_delimiter: str ) -> str: """ Fix various forms of tuple_delimiter corruption from LLM output. This function handles missing or replaced characters around the core delimiter. It fixes common corruption patterns where the LLM output doesn't match the expected tuple_delimiter format. Args: record: The text record to fix delimiter_core: The core delimiter (e.g., "S" from "<|#|>") tuple_delimiter: The complete tuple delimiter (e.g., "<|#|>") Returns: The corrected record with proper tuple_delimiter format """ if not record or not delimiter_core or not tuple_delimiter: return record # Escape the delimiter core for regex use escaped_delimiter_core = re.escape(delimiter_core) # Fix: <|##|> -> <|#|>, <|#||#|> -> <|#|>, <|#|||#|> -> <|#|> record = re.sub( rf"<\|{escaped_delimiter_core}\|*?{escaped_delimiter_core}\|>", tuple_delimiter, record, ) # Fix: <|\#|> -> <|#|> record = re.sub( rf"<\|\\{escaped_delimiter_core}\|>", tuple_delimiter, record, ) # Fix: <|> -> <|#|>, <||> -> <|#|> record = re.sub( r"<\|+>", tuple_delimiter, record, ) # Fix: -> <|#|>, <|#|Y> -> <|#|>, -> <|#|>, <||#||> -> <|#|> (one extra characters outside pipes) record = re.sub( rf"<.?\|{escaped_delimiter_core}\|.?>", tuple_delimiter, record, ) # Fix: <#>, <#|>, <|#> -> <|#|> (missing one or both pipes) record = re.sub( rf"<\|?{escaped_delimiter_core}\|?>", tuple_delimiter, record, ) # Fix: -> <|#|>, <|#X> -> <|#|> (one pipe is replaced by other character) record = re.sub( rf"<[^|]{escaped_delimiter_core}\|>|<\|{escaped_delimiter_core}[^|]>", tuple_delimiter, record, ) # Fix: <|#| -> <|#|>, <|#|| -> <|#|> (missing closing >) record = re.sub( rf"<\|{escaped_delimiter_core}\|+(?!>)", tuple_delimiter, record, ) # Fix <|#: -> <|#|> (missing closing >) record = re.sub( rf"<\|{escaped_delimiter_core}:(?!>)", tuple_delimiter, record, ) # Fix: <||#> -> <|#|> (double pipe at start, missing pipe at end) record = re.sub( rf"<\|+{escaped_delimiter_core}>", tuple_delimiter, record, ) # Fix: <|| -> <|#|> record = re.sub( r"<\|\|(?!>)", tuple_delimiter, record, ) # Fix: |#|> -> <|#|> (missing opening <) record = re.sub( rf"(?", tuple_delimiter, record, ) # Fix: <|#|>| -> <|#|> ( this is a fix for: <|#|| -> <|#|> ) record = re.sub( rf"<\|{escaped_delimiter_core}\|>\|", tuple_delimiter, record, ) # Fix: ||#|| -> <|#|> (double pipes on both sides without angle brackets) record = re.sub( rf"\|\|{escaped_delimiter_core}\|\|", tuple_delimiter, record, ) return record def create_prefixed_exception(original_exception: Exception, prefix: str) -> Exception: """ Safely create a prefixed exception that adapts to all error types. Args: original_exception: The original exception. prefix: The prefix to add. Returns: A new exception with the prefix, maintaining the original exception type if possible. """ try: # Method 1: Try to reconstruct using original arguments. if hasattr(original_exception, "args") and original_exception.args: args = list(original_exception.args) # Find the first string argument and prefix it. This is safer for # exceptions like OSError where the first arg is an integer (errno). found_str = False for i, arg in enumerate(args): if isinstance(arg, str): args[i] = f"{prefix}: {arg}" found_str = True break # If no string argument is found, prefix the first argument's string representation. if not found_str: args[0] = f"{prefix}: {args[0]}" return type(original_exception)(*args) else: # Method 2: If no args, try single parameter construction. return type(original_exception)(f"{prefix}: {str(original_exception)}") except (TypeError, ValueError, AttributeError) as construct_error: # Method 3: If reconstruction fails, wrap it in a RuntimeError. # This is the safest fallback, as attempting to create the same type # with a single string can fail if the constructor requires multiple arguments. return RuntimeError( f"{prefix}: {type(original_exception).__name__}: {str(original_exception)} " f"(Original exception could not be reconstructed: {construct_error})" ) def convert_to_user_format( entities_context: list[dict], relations_context: list[dict], chunks: list[dict], references: list[dict], query_mode: str, entity_id_to_original: dict = None, relation_id_to_original: dict = None, ) -> dict[str, Any]: """Convert internal data format to user-friendly format using original database data""" # Convert entities format using original data when available formatted_entities = [] for entity in entities_context: entity_name = entity.get("entity", "") # Try to get original data first original_entity = None if entity_id_to_original and entity_name in entity_id_to_original: original_entity = entity_id_to_original[entity_name] if original_entity: # Use original database data formatted_entities.append( { "entity_name": original_entity.get("entity_name", entity_name), "entity_type": original_entity.get("entity_type", "UNKNOWN"), "description": original_entity.get("description", ""), "source_id": original_entity.get("source_id", ""), "file_path": original_entity.get("file_path", "unknown_source"), "created_at": original_entity.get("created_at", ""), } ) else: # Fallback to LLM context data (for backward compatibility) formatted_entities.append( { "entity_name": entity_name, "entity_type": entity.get("type", "UNKNOWN"), "description": entity.get("description", ""), "source_id": entity.get("source_id", ""), "file_path": entity.get("file_path", "unknown_source"), "created_at": entity.get("created_at", ""), } ) # Convert relationships format using original data when available formatted_relationships = [] for relation in relations_context: entity1 = relation.get("entity1", "") entity2 = relation.get("entity2", "") relation_key = (entity1, entity2) # Try to get original data first original_relation = None if relation_id_to_original and relation_key in relation_id_to_original: original_relation = relation_id_to_original[relation_key] if original_relation: # Use original database data formatted_relationships.append( { "src_id": original_relation.get("src_id", entity1), "tgt_id": original_relation.get("tgt_id", entity2), "description": original_relation.get("description", ""), "keywords": original_relation.get("keywords", ""), "weight": original_relation.get("weight", 1.0), "source_id": original_relation.get("source_id", ""), "file_path": original_relation.get("file_path", "unknown_source"), "created_at": original_relation.get("created_at", ""), } ) else: # Fallback to LLM context data (for backward compatibility) formatted_relationships.append( { "src_id": entity1, "tgt_id": entity2, "description": relation.get("description", ""), "keywords": relation.get("keywords", ""), "weight": relation.get("weight", 1.0), "source_id": relation.get("source_id", ""), "file_path": relation.get("file_path", "unknown_source"), "created_at": relation.get("created_at", ""), } ) # Convert chunks format (chunks already contain complete data) formatted_chunks = [] for i, chunk in enumerate(chunks): chunk_data = { "reference_id": chunk.get("reference_id", ""), "content": chunk.get("content", ""), "file_path": chunk.get("file_path", "unknown_source"), "chunk_id": chunk.get("chunk_id", ""), } formatted_chunks.append(chunk_data) logger.debug( f"[convert_to_user_format] Formatted {len(formatted_chunks)}/{len(chunks)} chunks" ) # Build basic metadata (metadata details will be added by calling functions) metadata = { "query_mode": query_mode, "keywords": { "high_level": [], "low_level": [], }, # Placeholder, will be set by calling functions } return { "status": "success", "message": "Query processed successfully", "data": { "entities": formatted_entities, "relationships": formatted_relationships, "chunks": formatted_chunks, "references": references, }, "metadata": metadata, } def generate_reference_list_from_chunks( chunks: list[dict], ) -> tuple[list[dict], list[dict]]: """ Generate reference list from chunks, prioritizing by occurrence frequency. This function extracts file_paths from chunks, counts their occurrences, sorts by frequency and first appearance order, creates reference_id mappings, and builds a reference_list structure. Args: chunks: List of chunk dictionaries with file_path information Returns: tuple: (reference_list, updated_chunks_with_reference_ids) - reference_list: List of dicts with reference_id and file_path - updated_chunks_with_reference_ids: Original chunks with reference_id field added """ if not chunks: return [], [] # 1. Extract all valid file_paths and count their occurrences file_path_counts = {} for chunk in chunks: file_path = chunk.get("file_path", "") if file_path and file_path != "unknown_source": file_path_counts[file_path] = file_path_counts.get(file_path, 0) + 1 # 2. Sort file paths by frequency (descending), then by first appearance order # Create a list of (file_path, count, first_index) tuples file_path_with_indices = [] seen_paths = set() for i, chunk in enumerate(chunks): file_path = chunk.get("file_path", "") if file_path and file_path != "unknown_source" and file_path not in seen_paths: file_path_with_indices.append((file_path, file_path_counts[file_path], i)) seen_paths.add(file_path) # Sort by count (descending), then by first appearance index (ascending) sorted_file_paths = sorted(file_path_with_indices, key=lambda x: (-x[1], x[2])) unique_file_paths = [item[0] for item in sorted_file_paths] # 3. Create mapping from file_path to reference_id (prioritized by frequency) file_path_to_ref_id = {} for i, file_path in enumerate(unique_file_paths): file_path_to_ref_id[file_path] = str(i + 1) # 4. Add reference_id field to each chunk updated_chunks = [] for chunk in chunks: chunk_copy = chunk.copy() file_path = chunk_copy.get("file_path", "") if file_path and file_path != "unknown_source": chunk_copy["reference_id"] = file_path_to_ref_id[file_path] else: chunk_copy["reference_id"] = "" updated_chunks.append(chunk_copy) # 5. Build reference_list reference_list = [] for i, file_path in enumerate(unique_file_paths): reference_list.append({"reference_id": str(i + 1), "file_path": file_path}) return reference_list, updated_chunks