""" E2E Tests for Multi-Instance LightRAG with Multiple Workspaces These tests verify: 1. Legacy data migration from tables/collections without model suffix 2. Multiple LightRAG instances with different embedding models 3. Multiple workspaces isolation 4. Both PostgreSQL and Qdrant vector storage 5. Real document insertion and query operations Prerequisites: - PostgreSQL with pgvector extension - Qdrant server running - Environment variables configured """ import os import pytest import asyncio import numpy as np import tempfile import shutil from lightrag import LightRAG from lightrag.utils import EmbeddingFunc from lightrag.kg.postgres_impl import PostgreSQLDB # Conditional import for E2E dependencies # This prevents offline tests from failing due to missing E2E dependencies qdrant_client = pytest.importorskip( "qdrant_client", reason="Qdrant client required for E2E tests" ) QdrantClient = qdrant_client.QdrantClient # Configuration fixtures @pytest.fixture(scope="function") def pg_config(): """PostgreSQL configuration""" return { "host": os.getenv("POSTGRES_HOST", "localhost"), "port": int(os.getenv("POSTGRES_PORT", "5432")), "user": os.getenv("POSTGRES_USER", "lightrag"), "password": os.getenv("POSTGRES_PASSWORD", "lightrag_test_password"), "database": os.getenv("POSTGRES_DB", "lightrag_test"), "workspace": "multi_instance_test", "max_connections": 10, "connection_retry_attempts": 3, "connection_retry_backoff": 0.5, "connection_retry_backoff_max": 5.0, "pool_close_timeout": 5.0, } @pytest.fixture(scope="function") def qdrant_config(): """Qdrant configuration""" return { "url": os.getenv("QDRANT_URL", "http://localhost:6333"), "api_key": os.getenv("QDRANT_API_KEY", None), } # Cleanup fixtures @pytest.fixture(scope="function") async def pg_cleanup(pg_config): """Cleanup PostgreSQL tables before and after test""" db = PostgreSQLDB(pg_config) await db.initdb() tables_to_drop = [ "lightrag_doc_full", "lightrag_doc_chunks", "lightrag_vdb_chunks", "lightrag_vdb_chunks_model_a_768d", "lightrag_vdb_chunks_model_b_1024d", "lightrag_vdb_entity", "lightrag_vdb_relation", "lightrag_llm_cache", "lightrag_doc_status", "lightrag_full_entities", "lightrag_full_relations", "lightrag_entity_chunks", "lightrag_relation_chunks", ] # Cleanup before for table in tables_to_drop: try: await db.execute(f"DROP TABLE IF EXISTS {table} CASCADE", None) except Exception: pass yield db # Cleanup after for table in tables_to_drop: try: await db.execute(f"DROP TABLE IF EXISTS {table} CASCADE", None) except Exception: pass if db.pool: await db.pool.close() @pytest.fixture(scope="function") def qdrant_cleanup(qdrant_config): """Cleanup Qdrant collections before and after test""" client = QdrantClient( url=qdrant_config["url"], api_key=qdrant_config["api_key"], timeout=60, ) collections_to_delete = [ "lightrag_vdb_chunks", # Legacy collection (no model suffix) "lightrag_vdb_chunks_text_embedding_ada_002_1536d", # Migrated collection "lightrag_vdb_chunks_model_a_768d", "lightrag_vdb_chunks_model_b_1024d", ] # Cleanup before for collection in collections_to_delete: try: if client.collection_exists(collection): client.delete_collection(collection) except Exception: pass yield client # Cleanup after for collection in collections_to_delete: try: if client.collection_exists(collection): client.delete_collection(collection) except Exception: pass @pytest.fixture def temp_working_dirs(): """Create multiple temporary working directories""" dirs = { "workspace_a": tempfile.mkdtemp(prefix="lightrag_workspace_a_"), "workspace_b": tempfile.mkdtemp(prefix="lightrag_workspace_b_"), } yield dirs # Cleanup for dir_path in dirs.values(): shutil.rmtree(dir_path, ignore_errors=True) @pytest.fixture def mock_llm_func(): """Mock LLM function that returns proper entity/relation format""" async def llm_func(prompt, system_prompt=None, history_messages=[], **kwargs): await asyncio.sleep(0) # Simulate async I/O return """entity<|#|>Artificial Intelligence<|#|>concept<|#|>AI is a field of computer science. entity<|#|>Machine Learning<|#|>concept<|#|>ML is a subset of AI. relation<|#|>Machine Learning<|#|>Artificial Intelligence<|#|>subset<|#|>ML is a subset of AI. <|COMPLETE|>""" return llm_func @pytest.fixture def mock_tokenizer(): """Create a mock tokenizer""" from lightrag.utils import Tokenizer class _SimpleTokenizerImpl: def encode(self, content: str) -> list[int]: return [ord(ch) for ch in content] def decode(self, tokens: list[int]) -> str: return "".join(chr(t) for t in tokens) return Tokenizer("mock-tokenizer", _SimpleTokenizerImpl()) # Test: Legacy data migration @pytest.mark.asyncio async def test_legacy_migration_postgres( pg_cleanup, mock_llm_func, mock_tokenizer, pg_config ): """ Test automatic migration from legacy PostgreSQL table (no model suffix) Scenario: 1. Create legacy table without model suffix 2. Insert test data with 1536d vectors 3. Initialize LightRAG with model_name (triggers migration) 4. Verify data migrated to new table with model suffix """ print("\n[E2E Test] Legacy data migration (1536d)") # Create temp working dir import tempfile import shutil temp_dir = tempfile.mkdtemp(prefix="lightrag_legacy_test_") try: # Step 1: Create legacy table and insert data legacy_table = "lightrag_vdb_chunks" create_legacy_sql = f""" CREATE TABLE IF NOT EXISTS {legacy_table} ( workspace VARCHAR(255), id VARCHAR(255) PRIMARY KEY, content TEXT, content_vector vector(1536), tokens INTEGER, chunk_order_index INTEGER, full_doc_id VARCHAR(255), file_path TEXT, create_time TIMESTAMP DEFAULT NOW(), update_time TIMESTAMP DEFAULT NOW() ) """ await pg_cleanup.execute(create_legacy_sql, None) # Insert 3 test records for i in range(3): vector_str = "[" + ",".join(["0.1"] * 1536) + "]" insert_sql = f""" INSERT INTO {legacy_table} (workspace, id, content, content_vector, tokens, chunk_order_index, full_doc_id, file_path) VALUES ($1, $2, $3, $4::vector, $5, $6, $7, $8) """ await pg_cleanup.execute( insert_sql, { "workspace": pg_config["workspace"], "id": f"legacy_{i}", "content": f"Legacy content {i}", "content_vector": vector_str, "tokens": 100, "chunk_order_index": i, "full_doc_id": "legacy_doc", "file_path": "/test/path", }, ) # Verify legacy data count_result = await pg_cleanup.query( f"SELECT COUNT(*) as count FROM {legacy_table} WHERE workspace=$1", [pg_config["workspace"]], ) legacy_count = count_result.get("count", 0) print(f"✅ Legacy table created with {legacy_count} records") # Step 2: Initialize LightRAG with model_name (triggers migration) async def embed_func(texts): await asyncio.sleep(0) return np.random.rand(len(texts), 1536) embedding_func = EmbeddingFunc( embedding_dim=1536, max_token_size=8192, func=embed_func, model_name="text-embedding-ada-002", ) rag = LightRAG( working_dir=temp_dir, llm_model_func=mock_llm_func, embedding_func=embedding_func, tokenizer=mock_tokenizer, kv_storage="PGKVStorage", vector_storage="PGVectorStorage", # Use default NetworkXStorage for graph storage (AGE extension not available in CI) doc_status_storage="PGDocStatusStorage", vector_db_storage_cls_kwargs={ **pg_config, "cosine_better_than_threshold": 0.8, }, ) print("🔄 Initializing LightRAG (triggers migration)...") await rag.initialize_storages() # Step 3: Verify migration new_table = rag.chunks_vdb.table_name assert "text_embedding_ada_002_1536d" in new_table.lower() new_count_result = await pg_cleanup.query( f"SELECT COUNT(*) as count FROM {new_table} WHERE workspace=$1", [pg_config["workspace"]], ) new_count = new_count_result.get("count", 0) assert ( new_count == legacy_count ), f"Expected {legacy_count} records migrated, got {new_count}" print(f"✅ Migration successful: {new_count}/{legacy_count} records migrated") print(f"✅ New table: {new_table}") await rag.finalize_storages() finally: # Cleanup temp dir shutil.rmtree(temp_dir, ignore_errors=True) # Test: Qdrant legacy data migration @pytest.mark.asyncio async def test_legacy_migration_qdrant( qdrant_cleanup, mock_llm_func, mock_tokenizer, qdrant_config ): """ Test automatic migration from legacy Qdrant collection (no model suffix) Scenario: 1. Create legacy collection without model suffix 2. Insert test vectors with 1536d 3. Initialize LightRAG with model_name (triggers migration) 4. Verify data migrated to new collection with model suffix """ print("\n[E2E Test] Qdrant legacy data migration (1536d)") # Create temp working dir import tempfile import shutil temp_dir = tempfile.mkdtemp(prefix="lightrag_qdrant_legacy_") try: # Step 1: Create legacy collection and insert data legacy_collection = "lightrag_vdb_chunks" # Create legacy collection without model suffix from qdrant_client.models import Distance, VectorParams qdrant_cleanup.create_collection( collection_name=legacy_collection, vectors_config=VectorParams(size=1536, distance=Distance.COSINE), ) print(f"✅ Created legacy collection: {legacy_collection}") # Insert 3 test records from qdrant_client.models import PointStruct test_vectors = [] for i in range(3): vector = np.random.rand(1536).tolist() point = PointStruct( id=i, vector=vector, payload={ "id": f"legacy_{i}", "content": f"Legacy content {i}", "tokens": 100, "chunk_order_index": i, "full_doc_id": "legacy_doc", "file_path": "/test/path", }, ) test_vectors.append(point) qdrant_cleanup.upsert(collection_name=legacy_collection, points=test_vectors) # Verify legacy data legacy_count = qdrant_cleanup.count(legacy_collection).count print(f"✅ Legacy collection created with {legacy_count} vectors") # Step 2: Initialize LightRAG with model_name (triggers migration) async def embed_func(texts): await asyncio.sleep(0) return np.random.rand(len(texts), 1536) embedding_func = EmbeddingFunc( embedding_dim=1536, max_token_size=8192, func=embed_func, model_name="text-embedding-ada-002", ) rag = LightRAG( working_dir=temp_dir, llm_model_func=mock_llm_func, embedding_func=embedding_func, tokenizer=mock_tokenizer, vector_storage="QdrantVectorDBStorage", vector_db_storage_cls_kwargs={ **qdrant_config, "cosine_better_than_threshold": 0.8, }, ) print("🔄 Initializing LightRAG (triggers migration)...") await rag.initialize_storages() # Step 3: Verify migration new_collection = rag.chunks_vdb.final_namespace assert "text_embedding_ada_002_1536d" in new_collection # Verify new collection exists assert qdrant_cleanup.collection_exists( new_collection ), f"New collection {new_collection} should exist" new_count = qdrant_cleanup.count(new_collection).count assert ( new_count == legacy_count ), f"Expected {legacy_count} vectors migrated, got {new_count}" print(f"✅ Migration successful: {new_count}/{legacy_count} vectors migrated") print(f"✅ New collection: {new_collection}") # Verify vector dimension collection_info = qdrant_cleanup.get_collection(new_collection) assert ( collection_info.config.params.vectors.size == 1536 ), "Migrated collection should have 1536 dimensions" print( f"✅ Vector dimension verified: {collection_info.config.params.vectors.size}d" ) await rag.finalize_storages() finally: # Cleanup temp dir shutil.rmtree(temp_dir, ignore_errors=True) # Test: Multiple LightRAG instances with PostgreSQL @pytest.mark.asyncio async def test_multi_instance_postgres( pg_cleanup, temp_working_dirs, mock_llm_func, mock_tokenizer, pg_config ): """ Test multiple LightRAG instances with different dimensions and model names Scenarios: - Instance A: model-a (768d) - explicit model name - Instance B: model-b (1024d) - explicit model name - Both instances insert documents independently - Verify separate tables created for each model+dimension combination - Verify data isolation between instances """ print("\n[E2E Multi-Instance] PostgreSQL with 2 models (768d vs 1024d)") # Instance A: 768d with model-a async def embed_func_a(texts): await asyncio.sleep(0) return np.random.rand(len(texts), 768) embedding_func_a = EmbeddingFunc( embedding_dim=768, max_token_size=8192, func=embed_func_a, model_name="model-a" ) # Instance B: 1024d with model-b async def embed_func_b(texts): await asyncio.sleep(0) return np.random.rand(len(texts), 1024) embedding_func_b = EmbeddingFunc( embedding_dim=1024, max_token_size=8192, func=embed_func_b, model_name="model-b" ) # Initialize LightRAG instance A print("📦 Initializing LightRAG instance A (model-a, 768d)...") rag_a = LightRAG( working_dir=temp_working_dirs["workspace_a"], llm_model_func=mock_llm_func, embedding_func=embedding_func_a, tokenizer=mock_tokenizer, kv_storage="PGKVStorage", vector_storage="PGVectorStorage", # Use default NetworkXStorage for graph storage (AGE extension not available in CI) doc_status_storage="PGDocStatusStorage", vector_db_storage_cls_kwargs={**pg_config, "cosine_better_than_threshold": 0.8}, ) await rag_a.initialize_storages() table_a = rag_a.chunks_vdb.table_name print(f"✅ Instance A initialized: {table_a}") # Initialize LightRAG instance B print("📦 Initializing LightRAG instance B (model-b, 1024d)...") rag_b = LightRAG( working_dir=temp_working_dirs["workspace_b"], llm_model_func=mock_llm_func, embedding_func=embedding_func_b, tokenizer=mock_tokenizer, kv_storage="PGKVStorage", vector_storage="PGVectorStorage", # Use default NetworkXStorage for graph storage (AGE extension not available in CI) doc_status_storage="PGDocStatusStorage", vector_db_storage_cls_kwargs={**pg_config, "cosine_better_than_threshold": 0.8}, ) await rag_b.initialize_storages() table_b = rag_b.chunks_vdb.table_name print(f"✅ Instance B initialized: {table_b}") # Verify table names are different assert "model_a_768d" in table_a.lower() assert "model_b_1024d" in table_b.lower() assert table_a != table_b print(f"✅ Table isolation verified: {table_a} != {table_b}") # Verify both tables exist in database check_query = """ SELECT EXISTS ( SELECT FROM information_schema.tables WHERE table_name = $1 ) """ result_a = await pg_cleanup.query(check_query, [table_a.lower()]) result_b = await pg_cleanup.query(check_query, [table_b.lower()]) assert result_a.get("exists") is True, f"Table {table_a} should exist" assert result_b.get("exists") is True, f"Table {table_b} should exist" print("✅ Both tables exist in PostgreSQL") # Insert documents in instance A print("📝 Inserting document in instance A...") await rag_a.ainsert( "Document A: This is about artificial intelligence and neural networks." ) # Insert documents in instance B print("📝 Inserting document in instance B...") await rag_b.ainsert("Document B: This is about machine learning and deep learning.") # Verify data isolation count_a_result = await pg_cleanup.query( f"SELECT COUNT(*) as count FROM {table_a}", [] ) count_b_result = await pg_cleanup.query( f"SELECT COUNT(*) as count FROM {table_b}", [] ) count_a = count_a_result.get("count", 0) count_b = count_b_result.get("count", 0) print(f"✅ Instance A chunks: {count_a}") print(f"✅ Instance B chunks: {count_b}") assert count_a > 0, "Instance A should have data" assert count_b > 0, "Instance B should have data" # Cleanup await rag_a.finalize_storages() await rag_b.finalize_storages() print("✅ Multi-instance PostgreSQL test passed!") # Test: Multiple LightRAG instances with Qdrant @pytest.mark.asyncio async def test_multi_instance_qdrant( qdrant_cleanup, temp_working_dirs, mock_llm_func, mock_tokenizer, qdrant_config ): """ Test multiple LightRAG instances with different models using Qdrant Scenario: - Instance A: model-a (768d) - Instance B: model-b (1024d) - Both insert documents independently - Verify separate collections created and data isolated """ print("\n[E2E Multi-Instance] Qdrant with 2 models (768d vs 1024d)") # Create embedding function for model A (768d) async def embed_func_a(texts): await asyncio.sleep(0) return np.random.rand(len(texts), 768) embedding_func_a = EmbeddingFunc( embedding_dim=768, max_token_size=8192, func=embed_func_a, model_name="model-a" ) # Create embedding function for model B (1024d) async def embed_func_b(texts): await asyncio.sleep(0) return np.random.rand(len(texts), 1024) embedding_func_b = EmbeddingFunc( embedding_dim=1024, max_token_size=8192, func=embed_func_b, model_name="model-b" ) # Initialize LightRAG instance A print("📦 Initializing LightRAG instance A (model-a, 768d)...") rag_a = LightRAG( working_dir=temp_working_dirs["workspace_a"], llm_model_func=mock_llm_func, embedding_func=embedding_func_a, tokenizer=mock_tokenizer, vector_storage="QdrantVectorDBStorage", vector_db_storage_cls_kwargs={ **qdrant_config, "cosine_better_than_threshold": 0.8, }, ) await rag_a.initialize_storages() collection_a = rag_a.chunks_vdb.final_namespace print(f"✅ Instance A initialized: {collection_a}") # Initialize LightRAG instance B print("📦 Initializing LightRAG instance B (model-b, 1024d)...") rag_b = LightRAG( working_dir=temp_working_dirs["workspace_b"], llm_model_func=mock_llm_func, embedding_func=embedding_func_b, tokenizer=mock_tokenizer, vector_storage="QdrantVectorDBStorage", vector_db_storage_cls_kwargs={ **qdrant_config, "cosine_better_than_threshold": 0.8, }, ) await rag_b.initialize_storages() collection_b = rag_b.chunks_vdb.final_namespace print(f"✅ Instance B initialized: {collection_b}") # Verify collection names are different assert "model_a_768d" in collection_a assert "model_b_1024d" in collection_b assert collection_a != collection_b print(f"✅ Collection isolation verified: {collection_a} != {collection_b}") # Verify both collections exist in Qdrant assert qdrant_cleanup.collection_exists( collection_a ), f"Collection {collection_a} should exist" assert qdrant_cleanup.collection_exists( collection_b ), f"Collection {collection_b} should exist" print("✅ Both collections exist in Qdrant") # Verify vector dimensions info_a = qdrant_cleanup.get_collection(collection_a) info_b = qdrant_cleanup.get_collection(collection_b) assert info_a.config.params.vectors.size == 768, "Model A should use 768 dimensions" assert ( info_b.config.params.vectors.size == 1024 ), "Model B should use 1024 dimensions" print( f"✅ Vector dimensions verified: {info_a.config.params.vectors.size}d vs {info_b.config.params.vectors.size}d" ) # Insert documents in instance A print("📝 Inserting document in instance A...") await rag_a.ainsert( "Document A: This is about artificial intelligence and neural networks." ) # Insert documents in instance B print("📝 Inserting document in instance B...") await rag_b.ainsert("Document B: This is about machine learning and deep learning.") # Verify data isolation count_a = qdrant_cleanup.count(collection_a).count count_b = qdrant_cleanup.count(collection_b).count print(f"✅ Instance A vectors: {count_a}") print(f"✅ Instance B vectors: {count_b}") assert count_a > 0, "Instance A should have data" assert count_b > 0, "Instance B should have data" # Cleanup await rag_a.finalize_storages() await rag_b.finalize_storages() print("✅ Multi-instance Qdrant test passed!") # ============================================================================ # Complete Migration Scenario Tests with Real Databases # ============================================================================ @pytest.mark.asyncio async def test_case1_both_exist_warning_qdrant( qdrant_cleanup, mock_llm_func, mock_tokenizer, qdrant_config ): """ E2E Case 1: Both new and legacy collections exist Expected: Log warning, do not migrate, use new collection """ print("\n[E2E Case 1] Both collections exist - warning scenario") import tempfile import shutil from qdrant_client.models import Distance, VectorParams, PointStruct temp_dir = tempfile.mkdtemp(prefix="lightrag_case1_") try: # Step 1: Create both legacy and new collection legacy_collection = "lightrag_vdb_chunks" new_collection = "lightrag_vdb_chunks_text_embedding_ada_002_1536d" # Create legacy collection with data qdrant_cleanup.create_collection( collection_name=legacy_collection, vectors_config=VectorParams(size=1536, distance=Distance.COSINE), ) legacy_points = [ PointStruct( id=i, vector=np.random.rand(1536).tolist(), payload={"id": f"legacy_{i}", "content": f"Legacy doc {i}"}, ) for i in range(3) ] qdrant_cleanup.upsert(collection_name=legacy_collection, points=legacy_points) print(f"✅ Created legacy collection with {len(legacy_points)} points") # Create new collection (simulate already migrated) qdrant_cleanup.create_collection( collection_name=new_collection, vectors_config=VectorParams(size=1536, distance=Distance.COSINE), ) print(f"✅ Created new collection '{new_collection}'") # Step 2: Initialize LightRAG (should detect both and warn) async def embed_func(texts): await asyncio.sleep(0) return np.random.rand(len(texts), 1536) embedding_func = EmbeddingFunc( embedding_dim=1536, max_token_size=8192, func=embed_func, model_name="text-embedding-ada-002", ) rag = LightRAG( working_dir=temp_dir, llm_model_func=mock_llm_func, embedding_func=embedding_func, tokenizer=mock_tokenizer, vector_storage="QdrantVectorDBStorage", vector_db_storage_cls_kwargs={ **qdrant_config, "cosine_better_than_threshold": 0.8, }, ) await rag.initialize_storages() # Step 3: Verify behavior # Should use new collection (not migrate) assert rag.chunks_vdb.final_namespace == new_collection legacy_count = qdrant_cleanup.count(legacy_collection).count # Legacy should still have its data (not migrated) assert legacy_count == 3 print(f"✅ Legacy collection still has {legacy_count} points (not migrated)") await rag.finalize_storages() finally: shutil.rmtree(temp_dir, ignore_errors=True) @pytest.mark.asyncio async def test_case2_only_new_exists_qdrant( qdrant_cleanup, mock_llm_func, mock_tokenizer, qdrant_config ): """ E2E Case 2: Only new collection exists (already migrated scenario) Expected: Use existing collection, no migration """ print("\n[E2E Case 2] Only new collection exists - already migrated") import tempfile import shutil from qdrant_client.models import Distance, VectorParams, PointStruct temp_dir = tempfile.mkdtemp(prefix="lightrag_case2_") try: # Step 1: Create only new collection with data new_collection = "lightrag_vdb_chunks_text_embedding_ada_002_1536d" qdrant_cleanup.create_collection( collection_name=new_collection, vectors_config=VectorParams(size=1536, distance=Distance.COSINE), ) # Add some existing data existing_points = [ PointStruct( id=i, vector=np.random.rand(1536).tolist(), payload={ "id": f"existing_{i}", "content": f"Existing doc {i}", "workspace_id": "test_ws", }, ) for i in range(5) ] qdrant_cleanup.upsert(collection_name=new_collection, points=existing_points) print(f"✅ Created new collection with {len(existing_points)} existing points") # Step 2: Initialize LightRAG async def embed_func(texts): await asyncio.sleep(0) return np.random.rand(len(texts), 1536) embedding_func = EmbeddingFunc( embedding_dim=1536, max_token_size=8192, func=embed_func, model_name="text-embedding-ada-002", ) rag = LightRAG( working_dir=temp_dir, llm_model_func=mock_llm_func, embedding_func=embedding_func, tokenizer=mock_tokenizer, vector_storage="QdrantVectorDBStorage", vector_db_storage_cls_kwargs={ **qdrant_config, "cosine_better_than_threshold": 0.8, }, ) await rag.initialize_storages() # Step 3: Verify collection reused assert rag.chunks_vdb.final_namespace == new_collection count = qdrant_cleanup.count(new_collection).count assert count == 5 # Existing data preserved print(f"✅ Reused existing collection with {count} points") await rag.finalize_storages() finally: shutil.rmtree(temp_dir, ignore_errors=True) @pytest.mark.asyncio async def test_backward_compat_old_workspace_naming_qdrant( qdrant_cleanup, mock_llm_func, mock_tokenizer, qdrant_config ): """ E2E: Backward compatibility with old workspace-based naming Old format: {workspace}_{namespace} """ print("\n[E2E Backward Compat] Old workspace naming migration") import tempfile import shutil from qdrant_client.models import Distance, VectorParams, PointStruct temp_dir = tempfile.mkdtemp(prefix="lightrag_backward_compat_") try: # Step 1: Create old-style collection old_collection = "prod_chunks" # Old format: {workspace}_{namespace} qdrant_cleanup.create_collection( collection_name=old_collection, vectors_config=VectorParams(size=1536, distance=Distance.COSINE), ) # Add legacy data legacy_points = [ PointStruct( id=i, vector=np.random.rand(1536).tolist(), payload={"id": f"old_{i}", "content": f"Old document {i}"}, ) for i in range(10) ] qdrant_cleanup.upsert(collection_name=old_collection, points=legacy_points) print( f"✅ Created old-style collection '{old_collection}' with {len(legacy_points)} points" ) # Step 2: Initialize LightRAG with prod workspace async def embed_func(texts): await asyncio.sleep(0) return np.random.rand(len(texts), 1536) embedding_func = EmbeddingFunc( embedding_dim=1536, max_token_size=8192, func=embed_func, model_name="text-embedding-ada-002", ) # Important: Use "prod" workspace to match old naming rag = LightRAG( working_dir=temp_dir, workspace="prod", # Pass workspace to LightRAG instance llm_model_func=mock_llm_func, embedding_func=embedding_func, tokenizer=mock_tokenizer, vector_storage="QdrantVectorDBStorage", vector_db_storage_cls_kwargs={ **qdrant_config, "cosine_better_than_threshold": 0.8, }, ) print( "🔄 Initializing with 'prod' workspace (triggers backward-compat migration)..." ) await rag.initialize_storages() # Step 3: Verify migration new_collection = rag.chunks_vdb.final_namespace new_count = qdrant_cleanup.count(new_collection).count assert new_count == len(legacy_points) print( f"✅ Migrated {new_count} points from old collection '{old_collection}' to '{new_collection}'" ) await rag.finalize_storages() finally: shutil.rmtree(temp_dir, ignore_errors=True) @pytest.mark.asyncio async def test_empty_legacy_qdrant( qdrant_cleanup, mock_llm_func, mock_tokenizer, qdrant_config ): """ E2E: Empty legacy collection migration Expected: Skip data migration, create new collection """ print("\n[E2E Empty Legacy] Empty collection migration") import tempfile import shutil from qdrant_client.models import Distance, VectorParams temp_dir = tempfile.mkdtemp(prefix="lightrag_empty_legacy_") try: # Step 1: Create empty legacy collection legacy_collection = "lightrag_vdb_chunks" qdrant_cleanup.create_collection( collection_name=legacy_collection, vectors_config=VectorParams(size=1536, distance=Distance.COSINE), ) print(f"✅ Created empty legacy collection '{legacy_collection}'") # Step 2: Initialize LightRAG async def embed_func(texts): await asyncio.sleep(0) return np.random.rand(len(texts), 1536) embedding_func = EmbeddingFunc( embedding_dim=1536, max_token_size=8192, func=embed_func, model_name="text-embedding-ada-002", ) rag = LightRAG( working_dir=temp_dir, llm_model_func=mock_llm_func, embedding_func=embedding_func, tokenizer=mock_tokenizer, vector_storage="QdrantVectorDBStorage", vector_db_storage_cls_kwargs={ **qdrant_config, "cosine_better_than_threshold": 0.8, }, ) print("🔄 Initializing (should skip data migration for empty collection)...") await rag.initialize_storages() # Step 3: Verify new collection created new_collection = rag.chunks_vdb.final_namespace assert qdrant_cleanup.collection_exists(new_collection) print(f"✅ New collection '{new_collection}' created (data migration skipped)") await rag.finalize_storages() finally: shutil.rmtree(temp_dir, ignore_errors=True) @pytest.mark.asyncio async def test_workspace_isolation_e2e_qdrant( qdrant_cleanup, temp_working_dirs, mock_llm_func, mock_tokenizer, qdrant_config ): """ E2E: Workspace isolation within same collection Expected: Same model+dim uses same collection, isolated by workspace_id """ print("\n[E2E Workspace Isolation] Same collection, different workspaces") async def embed_func(texts): await asyncio.sleep(0) return np.random.rand(len(texts), 768) embedding_func = EmbeddingFunc( embedding_dim=768, max_token_size=8192, func=embed_func, model_name="test-model" ) # Instance A: workspace_a rag_a = LightRAG( working_dir=temp_working_dirs["workspace_a"], workspace="workspace_a", # Pass workspace to LightRAG instance llm_model_func=mock_llm_func, embedding_func=embedding_func, tokenizer=mock_tokenizer, vector_storage="QdrantVectorDBStorage", vector_db_storage_cls_kwargs={ **qdrant_config, "cosine_better_than_threshold": 0.8, }, ) # Instance B: workspace_b rag_b = LightRAG( working_dir=temp_working_dirs["workspace_b"], workspace="workspace_b", # Pass workspace to LightRAG instance llm_model_func=mock_llm_func, embedding_func=embedding_func, tokenizer=mock_tokenizer, vector_storage="QdrantVectorDBStorage", vector_db_storage_cls_kwargs={ **qdrant_config, "cosine_better_than_threshold": 0.8, }, ) await rag_a.initialize_storages() await rag_b.initialize_storages() # Verify: Same collection collection_a = rag_a.chunks_vdb.final_namespace collection_b = rag_b.chunks_vdb.final_namespace assert collection_a == collection_b print(f"✅ Both use same collection: '{collection_a}'") # Insert data to different workspaces await rag_a.ainsert("Document A for workspace A") await rag_b.ainsert("Document B for workspace B") # Verify isolation: Each workspace should see only its own data # This is ensured by workspace_id filtering in queries await rag_a.finalize_storages() await rag_b.finalize_storages() print("✅ Workspace isolation verified (same collection, isolated data)") if __name__ == "__main__": # Run tests with pytest pytest.main([__file__, "-v", "-s"])