# LightRAG Enterprise Documentation **Version 2.0.0-enterprise** | Graph-Enhanced Retrieval-Augmented Generation ``` ╔═══════════════════════════════════════════════════════════════════════════╗ ║ ║ ║ ██╗ ██╗ ██████╗ ██╗ ██╗████████╗██████╗ █████╗ ██████╗ ║ ║ ██║ ██║██╔════╝ ██║ ██║╚══██╔══╝██╔══██╗██╔══██╗██╔════╝ ║ ║ ██║ ██║██║ ███╗███████║ ██║ ██████╔╝███████║██║ ███╗ ║ ║ ██║ ██║██║ ██║██╔══██║ ██║ ██╔══██╗██╔══██║██║ ██║ ║ ║ ███████╗██║╚██████╔╝██║ ██║ ██║ ██║ ██║██║ ██║╚██████╔╝ ║ ║ ╚══════╝╚═╝ ╚═════╝ ╚═╝ ╚═╝ ╚═╝ ╚═╝ ╚═╝╚═╝ ╚═╝ ╚═════╝ ║ ║ ║ ║ ENTERPRISE EDITION ║ ║ Simple and Fast Graph-Enhanced RAG System ║ ║ ║ ╚═══════════════════════════════════════════════════════════════════════════╝ ``` > **🔱 Fork Project** | This is an enterprise-ready fork of [LightRAG](https://github.com/HKUDS/LightRAG) by [Raphaël MANSUY](https://www.elitizon.com/). > > **Goal**: Create an enterprise-ready version of LightRAG with production-grade features. > > **First Enterprise Feature**: ✅ Multi-tenancy support with RBAC, tenant isolation, and knowledge base management. --- ## Documentation Overview | Document | Description | |----------|-------------| | [Quick Start](0001-quick-start.md) | Get up and running in 5 minutes | | [Architecture Overview](0002-architecture-overview.md) | System design, data flow, and core concepts | | [API Reference](0003-api-reference.md) | Complete REST API documentation | | [Storage Backends](0004-storage-backends.md) | Configure KV, vector, and graph storage | | [LLM Integration](0005-llm-integration.md) | LLM providers and embedding models | | [Deployment Guide](0006-deployment-guide.md) | Docker, Kubernetes, and production setup | | [Configuration Reference](0007-configuration-reference.md) | All environment variables and options | | [Multi-Tenancy](0008-multi-tenancy.md) | Tenant isolation and RBAC | --- ## Quick Links ### Getting Started ```bash # Install pip install lightrag-hku # Start server export OPENAI_API_KEY=sk-xxx python -m lightrag.api.lightrag_server ``` ### Python Usage ```python from lightrag import LightRAG, QueryParam rag = LightRAG(working_dir="./rag_storage") await rag.ainsert("Your document text...") result = await rag.aquery("Your question?", param=QueryParam(mode="hybrid")) ``` ### REST API ```bash # Insert document curl -X POST http://localhost:9621/documents/text \ -H "Content-Type: application/json" \ -d '{"text": "Document content..."}' # Query curl -X POST http://localhost:9621/query \ -H "Content-Type: application/json" \ -d '{"query": "Your question?", "mode": "hybrid"}' ``` ### Docker ```bash docker run -p 9621:9621 -e OPENAI_API_KEY=sk-xxx ghcr.io/hkuds/lightrag:latest ``` --- ## System Overview ``` ┌─────────────────────────────────────────────────────────────────────────────┐ │ LightRAG │ ├─────────────────────────────────────────────────────────────────────────────┤ │ │ │ Documents ──▶ Chunking ──▶ Entity Extraction ──▶ Knowledge Graph │ │ │ │ │ │ ▼ ▼ │ │ Embeddings ──────────────────────▶ Hybrid Retrieval │ │ │ │ │ ▼ │ │ Query ──▶ LLM Generation ──▶ Response │ │ │ ├─────────────────────────────────────────────────────────────────────────────┤ │ │ │ Storage Backends: │ │ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │ │ │ KV Storage │ │ Vector Store │ │ Graph Store │ │ │ │ JSON/Redis/ │ │ NanoVectorDB │ │ NetworkX/ │ │ │ │ PostgreSQL/ │ │ pgvector/ │ │ Neo4j/AGE/ │ │ │ │ MongoDB │ │ Milvus/FAISS │ │ Memgraph │ │ │ └──────────────┘ └──────────────┘ └──────────────┘ │ │ │ │ LLM Providers: │ │ OpenAI │ Anthropic │ Ollama │ Azure │ Bedrock │ HuggingFace │ ... │ │ │ └─────────────────────────────────────────────────────────────────────────────┘ ``` --- ## Query Modes | Mode | Description | Best For | |------|-------------|----------| | `naive` | Basic vector similarity search | Simple lookups | | `local` | Entity-focused retrieval | Specific facts | | `global` | High-level community summaries | Broad questions | | `hybrid` | Combined local + global | Balanced queries | | `mix` | Full KG + vector integration | Complex reasoning | --- ## Deployment Options | Option | Use Case | Guide | |--------|----------|-------| | **Local** | Development | `pip install lightrag-hku` | | **Docker** | Staging/Production | [Docker Guide](0006-deployment-guide.md#2-docker-deployment) | | **Kubernetes** | Production/Scale | [K8s Guide](0006-deployment-guide.md#3-kubernetes-deployment-helm) | ### Storage Topology | Environment | KV | Vector | Graph | |-------------|-----|--------|-------| | Development | JSON | NanoVectorDB | NetworkX | | Production | PostgreSQL | pgvector | Neo4j | | High-Scale | Redis | Milvus | Neo4j | --- ## Configuration Quick Reference ### Essential Environment Variables ```bash # LLM LLM_BINDING=openai LLM_MODEL=gpt-4o-mini OPENAI_API_KEY=sk-xxx # Embedding EMBEDDING_BINDING=openai EMBEDDING_MODEL=text-embedding-ada-002 EMBEDDING_DIM=1536 # Storage LIGHTRAG_KV_STORAGE=JsonKVStorage LIGHTRAG_VECTOR_STORAGE=NanoVectorDBStorage LIGHTRAG_GRAPH_STORAGE=NetworkXStorage # Server PORT=9621 ``` See [Configuration Reference](0007-configuration-reference.md) for all options. --- ## Feature Highlights ### Knowledge Graph Integration ``` ┌────────────────────────────────────────────────────┐ │ KNOWLEDGE GRAPH │ │ │ │ [Person: Einstein] ─────developed──────▶ │ │ │ │ │ │ born_in [Theory: │ │ │ Relativity] │ │ ▼ │ │ │ [Location: Germany] describes_│ │ │ ▼ │ │ [Concept: │ │ Spacetime] │ └────────────────────────────────────────────────────┘ ``` ### Multi-Tenant Isolation ``` Tenant A Tenant B Tenant C │ │ │ ▼ ▼ ▼ ┌────────┐ ┌────────┐ ┌────────┐ │ KB-1 │ │ KB-1 │ │ KB-1 │ │ KB-2 │ │ KB-2 │ └────────┘ │ KB-3 │ └────────┘ └────────┘ ``` --- ## Resources ### Enterprise Fork - **GitHub (Enterprise)**: https://github.com/raphaelmansuy/LightRAG - **Author**: [Raphaël MANSUY](https://www.elitizon.com/) - Elitizon - **Issues**: https://github.com/raphaelmansuy/LightRAG/issues ### Original Project - **GitHub (Original)**: https://github.com/HKUDS/LightRAG - **PyPI**: https://pypi.org/project/lightrag-hku/ --- ## Document Index 1. **[Quick Start Guide](0001-quick-start.md)** - Installation options - Python SDK basics - REST API basics - Common patterns 2. **[Architecture Overview](0002-architecture-overview.md)** - System design diagrams - Core concepts (entities, relations, chunks) - Data flow pipeline - Query execution flow 3. **[API Reference](0003-api-reference.md)** - Document endpoints - Query endpoints - Graph endpoints - Admin endpoints 4. **[Storage Backends](0004-storage-backends.md)** - KV storage options - Vector storage options - Graph storage options - Configuration tables 5. **[LLM Integration](0005-llm-integration.md)** - Provider configurations - Embedding models - Reranking options - Custom implementations 6. **[Deployment Guide](0006-deployment-guide.md)** - Local development - Docker deployment - Kubernetes/Helm - Production best practices 7. **[Configuration Reference](0007-configuration-reference.md)** - Environment variables - CLI arguments - QueryParam options - Complete .env example 8. **[Multi-Tenancy Guide](0008-multi-tenancy.md)** - Tenant isolation - RBAC roles/permissions - TenantRAGManager - API endpoints --- *Original LightRAG built with ❤️ by [HKUDS](https://github.com/HKUDS)* *Enterprise Edition maintained by [Raphaël MANSUY](https://www.elitizon.com/) @ Elitizon*