from ..utils import verbose_debug, VERBOSE_DEBUG import os import logging from collections.abc import AsyncIterator import pipmaster as pm # install specific modules if not pm.is_installed("openai"): pm.install("openai") from openai import ( APIConnectionError, RateLimitError, APITimeoutError, ) from tenacity import ( retry, stop_after_attempt, wait_exponential, retry_if_exception_type, ) from lightrag.utils import ( wrap_embedding_func_with_attrs, safe_unicode_decode, logger, ) from lightrag.types import GPTKeywordExtractionFormat from lightrag.api import __api_version__ import numpy as np import base64 from typing import Any, Union from dotenv import load_dotenv # Try to import Langfuse for LLM observability (optional) # Falls back to standard OpenAI client if not available # Langfuse requires proper configuration to work correctly LANGFUSE_ENABLED = False try: # Check if required Langfuse environment variables are set langfuse_public_key = os.environ.get("LANGFUSE_PUBLIC_KEY") langfuse_secret_key = os.environ.get("LANGFUSE_SECRET_KEY") # Only enable Langfuse if both keys are configured if langfuse_public_key and langfuse_secret_key: from langfuse.openai import AsyncOpenAI # type: ignore[import-untyped] LANGFUSE_ENABLED = True logger.info("Langfuse observability enabled for OpenAI client") else: from openai import AsyncOpenAI logger.debug( "Langfuse environment variables not configured, using standard OpenAI client" ) except ImportError: from openai import AsyncOpenAI logger.debug("Langfuse not available, using standard OpenAI client") # use the .env that is inside the current folder # allows to use different .env file for each lightrag instance # the OS environment variables take precedence over the .env file load_dotenv(dotenv_path=".env", override=False) class InvalidResponseError(Exception): """Custom exception class for triggering retry mechanism""" pass def create_openai_async_client( api_key: str | None = None, base_url: str | None = None, use_azure: bool = False, azure_deployment: str | None = None, api_version: str | None = None, timeout: int | None = None, client_configs: dict[str, Any] | None = None, ) -> AsyncOpenAI: """Create an AsyncOpenAI or AsyncAzureOpenAI client with the given configuration. Args: api_key: OpenAI API key. If None, uses the OPENAI_API_KEY environment variable. base_url: Base URL for the OpenAI API. If None, uses the default OpenAI API URL. use_azure: Whether to create an Azure OpenAI client. Default is False. azure_deployment: Azure OpenAI deployment name (only used when use_azure=True). api_version: Azure OpenAI API version (only used when use_azure=True). timeout: Request timeout in seconds. client_configs: Additional configuration options for the AsyncOpenAI client. These will override any default configurations but will be overridden by explicit parameters (api_key, base_url). Returns: An AsyncOpenAI or AsyncAzureOpenAI client instance. """ if use_azure: from openai import AsyncAzureOpenAI if not api_key: api_key = os.environ.get("AZURE_OPENAI_API_KEY") or os.environ.get( "LLM_BINDING_API_KEY" ) if client_configs is None: client_configs = {} # Create a merged config dict with precedence: explicit params > client_configs merged_configs = { **client_configs, "api_key": api_key, } # Add explicit parameters (override client_configs) if base_url is not None: merged_configs["azure_endpoint"] = base_url if azure_deployment is not None: merged_configs["azure_deployment"] = azure_deployment if api_version is not None: merged_configs["api_version"] = api_version if timeout is not None: merged_configs["timeout"] = timeout return AsyncAzureOpenAI(**merged_configs) else: if not api_key: api_key = os.environ["OPENAI_API_KEY"] default_headers = { "User-Agent": f"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_8) LightRAG/{__api_version__}", "Content-Type": "application/json", } if client_configs is None: client_configs = {} # Create a merged config dict with precedence: explicit params > client_configs > defaults merged_configs = { **client_configs, "default_headers": default_headers, "api_key": api_key, } if base_url is not None: merged_configs["base_url"] = base_url else: merged_configs["base_url"] = os.environ.get( "OPENAI_API_BASE", "https://api.openai.com/v1" ) if timeout is not None: merged_configs["timeout"] = timeout return AsyncOpenAI(**merged_configs) @retry( stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10), retry=( retry_if_exception_type(RateLimitError) | retry_if_exception_type(APIConnectionError) | retry_if_exception_type(APITimeoutError) | retry_if_exception_type(InvalidResponseError) ), ) async def openai_complete_if_cache( model: str, prompt: str, system_prompt: str | None = None, history_messages: list[dict[str, Any]] | None = None, enable_cot: bool = False, base_url: str | None = None, api_key: str | None = None, token_tracker: Any | None = None, stream: bool | None = None, timeout: int | None = None, keyword_extraction: bool = False, use_azure: bool = False, azure_deployment: str | None = None, api_version: str | None = None, **kwargs: Any, ) -> str: """Complete a prompt using OpenAI's API with caching support and Chain of Thought (COT) integration. This function supports automatic integration of reasoning content from models that provide Chain of Thought capabilities. The reasoning content is seamlessly integrated into the response using ... tags. Note on `reasoning_content`: This feature relies on a Deepseek Style `reasoning_content` in the API response, which may be provided by OpenAI-compatible endpoints that support Chain of Thought. COT Integration Rules: 1. COT content is accepted only when regular content is empty and `reasoning_content` has content. 2. COT processing stops when regular content becomes available. 3. If both `content` and `reasoning_content` are present simultaneously, reasoning is ignored. 4. If both fields have content from the start, COT is never activated. 5. For streaming: COT content is inserted into the content stream with tags. 6. For non-streaming: COT content is prepended to regular content with tags. Args: model: The OpenAI model to use. For Azure, this can be the deployment name. prompt: The prompt to complete. system_prompt: Optional system prompt to include. history_messages: Optional list of previous messages in the conversation. enable_cot: Whether to enable Chain of Thought (COT) processing. Default is False. base_url: Optional base URL for the OpenAI API. For Azure, this should be the Azure OpenAI endpoint (e.g., https://your-resource.openai.azure.com/). api_key: Optional API key. For standard OpenAI, uses OPENAI_API_KEY environment variable if None. For Azure, uses AZURE_OPENAI_API_KEY if None. token_tracker: Optional token usage tracker for monitoring API usage. stream: Whether to stream the response. Default is False. timeout: Request timeout in seconds. Default is None. keyword_extraction: Whether to enable keyword extraction mode. When True, triggers special response formatting for keyword extraction. Default is False. use_azure: Whether to use Azure OpenAI service instead of standard OpenAI. When True, creates an AsyncAzureOpenAI client. Default is False. azure_deployment: Azure OpenAI deployment name. Only used when use_azure=True. If not specified, falls back to AZURE_OPENAI_DEPLOYMENT environment variable. api_version: Azure OpenAI API version (e.g., "2024-02-15-preview"). Only used when use_azure=True. If not specified, falls back to AZURE_OPENAI_API_VERSION environment variable. **kwargs: Additional keyword arguments to pass to the OpenAI API. Special kwargs: - openai_client_configs: Dict of configuration options for the AsyncOpenAI client. These will be passed to the client constructor but will be overridden by explicit parameters (api_key, base_url). Supports proxy configuration, custom headers, retry policies, etc. Returns: The completed text (with integrated COT content if available) or an async iterator of text chunks if streaming. COT content is wrapped in ... tags. Raises: InvalidResponseError: If the response from OpenAI is invalid or empty. APIConnectionError: If there is a connection error with the OpenAI API. RateLimitError: If the OpenAI API rate limit is exceeded. APITimeoutError: If the OpenAI API request times out. """ if history_messages is None: history_messages = [] # Set openai logger level to INFO when VERBOSE_DEBUG is off if not VERBOSE_DEBUG and logger.level == logging.DEBUG: logging.getLogger("openai").setLevel(logging.INFO) # Remove special kwargs that shouldn't be passed to OpenAI kwargs.pop("hashing_kv", None) # Extract client configuration options client_configs = kwargs.pop("openai_client_configs", {}) # Handle keyword extraction mode if keyword_extraction: kwargs["response_format"] = GPTKeywordExtractionFormat # Create the OpenAI client (supports both OpenAI and Azure) openai_async_client = create_openai_async_client( api_key=api_key, base_url=base_url, use_azure=use_azure, azure_deployment=azure_deployment, api_version=api_version, timeout=timeout, client_configs=client_configs, ) # Prepare messages messages: list[dict[str, Any]] = [] if system_prompt: messages.append({"role": "system", "content": system_prompt}) messages.extend(history_messages) messages.append({"role": "user", "content": prompt}) logger.debug("===== Entering func of LLM =====") logger.debug(f"Model: {model} Base URL: {base_url}") logger.debug(f"Client Configs: {client_configs}") logger.debug(f"Additional kwargs: {kwargs}") logger.debug(f"Num of history messages: {len(history_messages)}") verbose_debug(f"System prompt: {system_prompt}") verbose_debug(f"Query: {prompt}") logger.debug("===== Sending Query to LLM =====") messages = kwargs.pop("messages", messages) # Add explicit parameters back to kwargs so they're passed to OpenAI API if stream is not None: kwargs["stream"] = stream if timeout is not None: kwargs["timeout"] = timeout # Determine the correct model identifier to use # For Azure OpenAI, we must use the deployment name instead of the model name api_model = azure_deployment if use_azure and azure_deployment else model try: # Don't use async with context manager, use client directly if "response_format" in kwargs: response = await openai_async_client.chat.completions.parse( model=api_model, messages=messages, **kwargs ) else: response = await openai_async_client.chat.completions.create( model=api_model, messages=messages, **kwargs ) except APITimeoutError as e: logger.error(f"OpenAI API Timeout Error: {e}") await openai_async_client.close() # Ensure client is closed raise except APIConnectionError as e: logger.error(f"OpenAI API Connection Error: {e}") await openai_async_client.close() # Ensure client is closed raise except RateLimitError as e: logger.error(f"OpenAI API Rate Limit Error: {e}") await openai_async_client.close() # Ensure client is closed raise except Exception as e: logger.error( f"OpenAI API Call Failed,\nModel: {model},\nParams: {kwargs}, Got: {e}" ) await openai_async_client.close() # Ensure client is closed raise if hasattr(response, "__aiter__"): async def inner(): # Track if we've started iterating iteration_started = False final_chunk_usage = None # COT (Chain of Thought) state tracking cot_active = False cot_started = False initial_content_seen = False try: iteration_started = True async for chunk in response: # Check if this chunk has usage information (final chunk) if hasattr(chunk, "usage") and chunk.usage: final_chunk_usage = chunk.usage logger.debug( f"Received usage info in streaming chunk: {chunk.usage}" ) # Check if choices exists and is not empty if not hasattr(chunk, "choices") or not chunk.choices: # Azure OpenAI sends content filter results in first chunk without choices logger.debug( f"Received chunk without choices (likely Azure content filter): {chunk}" ) continue # Check if delta exists if not hasattr(chunk.choices[0], "delta"): # This might be the final chunk, continue to check for usage continue delta = chunk.choices[0].delta content = getattr(delta, "content", None) reasoning_content = getattr(delta, "reasoning_content", "") # Handle COT logic for streaming (only if enabled) if enable_cot: if content: # Regular content is present if not initial_content_seen: initial_content_seen = True # If both content and reasoning_content are present initially, don't start COT if reasoning_content: cot_active = False cot_started = False # If COT was active, end it if cot_active: yield "" cot_active = False # Process regular content if r"\u" in content: content = safe_unicode_decode(content.encode("utf-8")) yield content elif reasoning_content: # Only reasoning content is present if not initial_content_seen and not cot_started: # Start COT if we haven't seen initial content yet if not cot_active: yield "" cot_active = True cot_started = True # Process reasoning content if COT is active if cot_active: if r"\u" in reasoning_content: reasoning_content = safe_unicode_decode( reasoning_content.encode("utf-8") ) yield reasoning_content else: # COT disabled, only process regular content if content: if r"\u" in content: content = safe_unicode_decode(content.encode("utf-8")) yield content # If neither content nor reasoning_content, continue to next chunk if content is None and reasoning_content is None: continue # Ensure COT is properly closed if still active after stream ends if enable_cot and cot_active: yield "" cot_active = False # After streaming is complete, track token usage if token_tracker and final_chunk_usage: # Use actual usage from the API token_counts = { "prompt_tokens": getattr(final_chunk_usage, "prompt_tokens", 0), "completion_tokens": getattr( final_chunk_usage, "completion_tokens", 0 ), "total_tokens": getattr(final_chunk_usage, "total_tokens", 0), } token_tracker.add_usage(token_counts) logger.debug(f"Streaming token usage (from API): {token_counts}") elif token_tracker: logger.debug("No usage information available in streaming response") except Exception as e: # Ensure COT is properly closed before handling exception if enable_cot and cot_active: try: yield "" cot_active = False except Exception as close_error: logger.warning( f"Failed to close COT tag during exception handling: {close_error}" ) logger.error(f"Error in stream response: {str(e)}") # Try to clean up resources if possible if ( iteration_started and hasattr(response, "aclose") and callable(getattr(response, "aclose", None)) ): try: await response.aclose() logger.debug("Successfully closed stream response after error") except Exception as close_error: logger.warning( f"Failed to close stream response: {close_error}" ) # Ensure client is closed in case of exception await openai_async_client.close() raise finally: # Final safety check for unclosed COT tags if enable_cot and cot_active: try: yield "" cot_active = False except Exception as final_close_error: logger.warning( f"Failed to close COT tag in finally block: {final_close_error}" ) # Ensure resources are released even if no exception occurs # Note: Some wrapped clients (e.g., Langfuse) may not implement aclose() properly if iteration_started and hasattr(response, "aclose"): aclose_method = getattr(response, "aclose", None) if callable(aclose_method): try: await response.aclose() logger.debug("Successfully closed stream response") except (AttributeError, TypeError) as close_error: # Some wrapper objects may report hasattr(aclose) but fail when called # This is expected behavior for certain client wrappers logger.debug( f"Stream response cleanup not supported by client wrapper: {close_error}" ) except Exception as close_error: logger.warning( f"Unexpected error during stream response cleanup: {close_error}" ) # This prevents resource leaks since the caller doesn't handle closing try: await openai_async_client.close() logger.debug( "Successfully closed OpenAI client for streaming response" ) except Exception as client_close_error: logger.warning( f"Failed to close OpenAI client in streaming finally block: {client_close_error}" ) return inner() else: try: if ( not response or not response.choices or not hasattr(response.choices[0], "message") ): logger.error("Invalid response from OpenAI API") await openai_async_client.close() # Ensure client is closed raise InvalidResponseError("Invalid response from OpenAI API") message = response.choices[0].message # Handle parsed responses (structured output via response_format) # When using beta.chat.completions.parse(), the response is in message.parsed if hasattr(message, "parsed") and message.parsed is not None: # Serialize the parsed structured response to JSON final_content = message.parsed.model_dump_json() logger.debug("Using parsed structured response from API") else: # Handle regular content responses content = getattr(message, "content", None) reasoning_content = getattr(message, "reasoning_content", "") # Handle COT logic for non-streaming responses (only if enabled) final_content = "" if enable_cot: # Check if we should include reasoning content should_include_reasoning = False if reasoning_content and reasoning_content.strip(): if not content or content.strip() == "": # Case 1: Only reasoning content, should include COT should_include_reasoning = True final_content = ( content or "" ) # Use empty string if content is None else: # Case 3: Both content and reasoning_content present, ignore reasoning should_include_reasoning = False final_content = content else: # No reasoning content, use regular content final_content = content or "" # Apply COT wrapping if needed if should_include_reasoning: if r"\u" in reasoning_content: reasoning_content = safe_unicode_decode( reasoning_content.encode("utf-8") ) final_content = ( f"{reasoning_content}{final_content}" ) else: # COT disabled, only use regular content final_content = content or "" # Validate final content if not final_content or final_content.strip() == "": logger.error("Received empty content from OpenAI API") await openai_async_client.close() # Ensure client is closed raise InvalidResponseError("Received empty content from OpenAI API") # Apply Unicode decoding to final content if needed if r"\u" in final_content: final_content = safe_unicode_decode(final_content.encode("utf-8")) if token_tracker and hasattr(response, "usage"): token_counts = { "prompt_tokens": getattr(response.usage, "prompt_tokens", 0), "completion_tokens": getattr( response.usage, "completion_tokens", 0 ), "total_tokens": getattr(response.usage, "total_tokens", 0), } token_tracker.add_usage(token_counts) logger.debug(f"Response content len: {len(final_content)}") verbose_debug(f"Response: {response}") return final_content finally: # Ensure client is closed in all cases for non-streaming responses await openai_async_client.close() async def openai_complete( prompt, system_prompt=None, history_messages=None, keyword_extraction=False, **kwargs, ) -> Union[str, AsyncIterator[str]]: if history_messages is None: history_messages = [] model_name = kwargs["hashing_kv"].global_config["llm_model_name"] return await openai_complete_if_cache( model_name, prompt, system_prompt=system_prompt, history_messages=history_messages, keyword_extraction=keyword_extraction, **kwargs, ) async def gpt_4o_complete( prompt, system_prompt=None, history_messages=None, enable_cot: bool = False, keyword_extraction=False, **kwargs, ) -> str: if history_messages is None: history_messages = [] return await openai_complete_if_cache( "gpt-4o", prompt, system_prompt=system_prompt, history_messages=history_messages, enable_cot=enable_cot, keyword_extraction=keyword_extraction, **kwargs, ) async def gpt_4o_mini_complete( prompt, system_prompt=None, history_messages=None, enable_cot: bool = False, keyword_extraction=False, **kwargs, ) -> str: if history_messages is None: history_messages = [] return await openai_complete_if_cache( "gpt-4o-mini", prompt, system_prompt=system_prompt, history_messages=history_messages, enable_cot=enable_cot, keyword_extraction=keyword_extraction, **kwargs, ) async def nvidia_openai_complete( prompt, system_prompt=None, history_messages=None, enable_cot: bool = False, keyword_extraction=False, **kwargs, ) -> str: if history_messages is None: history_messages = [] result = await openai_complete_if_cache( "nvidia/llama-3.1-nemotron-70b-instruct", # context length 128k prompt, system_prompt=system_prompt, history_messages=history_messages, enable_cot=enable_cot, keyword_extraction=keyword_extraction, base_url="https://integrate.api.nvidia.com/v1", **kwargs, ) return result @wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8192) @retry( stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=60), retry=( retry_if_exception_type(RateLimitError) | retry_if_exception_type(APIConnectionError) | retry_if_exception_type(APITimeoutError) ), ) async def openai_embed( texts: list[str], model: str = "text-embedding-3-small", base_url: str | None = None, api_key: str | None = None, embedding_dim: int | None = None, client_configs: dict[str, Any] | None = None, token_tracker: Any | None = None, use_azure: bool = False, azure_deployment: str | None = None, api_version: str | None = None, ) -> np.ndarray: """Generate embeddings for a list of texts using OpenAI's API. This function supports both standard OpenAI and Azure OpenAI services. Args: texts: List of texts to embed. model: The embedding model to use. For standard OpenAI (e.g., "text-embedding-3-small"). For Azure, this can be the deployment name. base_url: Optional base URL for the API. For standard OpenAI, uses default OpenAI endpoint. For Azure, this should be the Azure OpenAI endpoint (e.g., https://your-resource.openai.azure.com/). api_key: Optional API key. For standard OpenAI, uses OPENAI_API_KEY environment variable if None. For Azure, uses AZURE_EMBEDDING_API_KEY environment variable if None. embedding_dim: Optional embedding dimension for dynamic dimension reduction. **IMPORTANT**: This parameter is automatically injected by the EmbeddingFunc wrapper. Do NOT manually pass this parameter when calling the function directly. The dimension is controlled by the @wrap_embedding_func_with_attrs decorator. Manually passing a different value will trigger a warning and be ignored. When provided (by EmbeddingFunc), it will be passed to the OpenAI API for dimension reduction. client_configs: Additional configuration options for the AsyncOpenAI/AsyncAzureOpenAI client. These will override any default configurations but will be overridden by explicit parameters (api_key, base_url). Supports proxy configuration, custom headers, retry policies, etc. token_tracker: Optional token usage tracker for monitoring API usage. use_azure: Whether to use Azure OpenAI service instead of standard OpenAI. When True, creates an AsyncAzureOpenAI client. Default is False. azure_deployment: Azure OpenAI deployment name. Only used when use_azure=True. If not specified, falls back to AZURE_EMBEDDING_DEPLOYMENT environment variable. api_version: Azure OpenAI API version (e.g., "2024-02-15-preview"). Only used when use_azure=True. If not specified, falls back to AZURE_EMBEDDING_API_VERSION environment variable. Returns: A numpy array of embeddings, one per input text. Raises: APIConnectionError: If there is a connection error with the OpenAI API. RateLimitError: If the OpenAI API rate limit is exceeded. APITimeoutError: If the OpenAI API request times out. """ # Create the OpenAI client (supports both OpenAI and Azure) openai_async_client = create_openai_async_client( api_key=api_key, base_url=base_url, use_azure=use_azure, azure_deployment=azure_deployment, api_version=api_version, client_configs=client_configs, ) async with openai_async_client: # Determine the correct model identifier to use # For Azure OpenAI, we must use the deployment name instead of the model name api_model = azure_deployment if use_azure and azure_deployment else model # Prepare API call parameters api_params = { "model": api_model, "input": texts, "encoding_format": "base64", } # Add dimensions parameter only if embedding_dim is provided if embedding_dim is not None: api_params["dimensions"] = embedding_dim # Make API call response = await openai_async_client.embeddings.create(**api_params) if token_tracker and hasattr(response, "usage"): token_counts = { "prompt_tokens": getattr(response.usage, "prompt_tokens", 0), "total_tokens": getattr(response.usage, "total_tokens", 0), } token_tracker.add_usage(token_counts) return np.array( [ np.array(dp.embedding, dtype=np.float32) if isinstance(dp.embedding, list) else np.frombuffer(base64.b64decode(dp.embedding), dtype=np.float32) for dp in response.data ] ) # Azure OpenAI wrapper functions for backward compatibility async def azure_openai_complete_if_cache( model, prompt, system_prompt: str | None = None, history_messages: list[dict[str, Any]] | None = None, enable_cot: bool = False, base_url: str | None = None, api_key: str | None = None, token_tracker: Any | None = None, stream: bool | None = None, timeout: int | None = None, api_version: str | None = None, keyword_extraction: bool = False, **kwargs, ): """Azure OpenAI completion wrapper function. This function provides backward compatibility by wrapping the unified openai_complete_if_cache implementation with Azure-specific parameter handling. All parameters from the underlying openai_complete_if_cache are exposed to ensure full feature parity and API consistency. """ # Handle Azure-specific environment variables and parameters deployment = os.getenv("AZURE_OPENAI_DEPLOYMENT") or model or os.getenv("LLM_MODEL") base_url = ( base_url or os.getenv("AZURE_OPENAI_ENDPOINT") or os.getenv("LLM_BINDING_HOST") ) api_key = ( api_key or os.getenv("AZURE_OPENAI_API_KEY") or os.getenv("LLM_BINDING_API_KEY") ) api_version = ( api_version or os.getenv("AZURE_OPENAI_API_VERSION") or os.getenv("OPENAI_API_VERSION") or "2024-08-01-preview" ) # Call the unified implementation with Azure-specific parameters return await openai_complete_if_cache( model=deployment, prompt=prompt, system_prompt=system_prompt, history_messages=history_messages, enable_cot=enable_cot, base_url=base_url, api_key=api_key, token_tracker=token_tracker, stream=stream, timeout=timeout, use_azure=True, azure_deployment=deployment, api_version=api_version, keyword_extraction=keyword_extraction, **kwargs, ) async def azure_openai_complete( prompt, system_prompt=None, history_messages=None, keyword_extraction=False, **kwargs, ) -> str: """Azure OpenAI complete wrapper function. Provides backward compatibility for azure_openai_complete calls. """ if history_messages is None: history_messages = [] result = await azure_openai_complete_if_cache( os.getenv("LLM_MODEL", "gpt-4o-mini"), prompt, system_prompt=system_prompt, history_messages=history_messages, keyword_extraction=keyword_extraction, **kwargs, ) return result @wrap_embedding_func_with_attrs(embedding_dim=1536) async def azure_openai_embed( texts: list[str], model: str | None = None, base_url: str | None = None, api_key: str | None = None, token_tracker: Any | None = None, client_configs: dict[str, Any] | None = None, api_version: str | None = None, ) -> np.ndarray: """Azure OpenAI embedding wrapper function. This function provides backward compatibility by wrapping the unified openai_embed implementation with Azure-specific parameter handling. All parameters from the underlying openai_embed are exposed to ensure full feature parity and API consistency. IMPORTANT - Decorator Usage: 1. This function is decorated with @wrap_embedding_func_with_attrs to provide the EmbeddingFunc interface for users who need to access embedding_dim and other attributes. 2. This function does NOT use @retry decorator to avoid double-wrapping, since the underlying openai_embed.func already has retry logic. 3. This function calls openai_embed.func (the unwrapped function) instead of openai_embed (the EmbeddingFunc instance) to avoid double decoration issues: ✅ Correct: await openai_embed.func(...) # Calls unwrapped function with retry ❌ Wrong: await openai_embed(...) # Would cause double EmbeddingFunc wrapping Double decoration causes: - Double injection of embedding_dim parameter - Incorrect parameter passing to the underlying implementation - Runtime errors due to parameter conflicts The call chain with correct implementation: azure_openai_embed(texts) → EmbeddingFunc.__call__(texts) # azure's decorator → azure_openai_embed_impl(texts, embedding_dim=1536) → openai_embed.func(texts, ...) → @retry_wrapper(texts, ...) # openai's retry (only one layer) → openai_embed_impl(texts, ...) → actual embedding computation """ # Handle Azure-specific environment variables and parameters deployment = ( os.getenv("AZURE_EMBEDDING_DEPLOYMENT") or model or os.getenv("EMBEDDING_MODEL", "text-embedding-3-small") ) base_url = ( base_url or os.getenv("AZURE_EMBEDDING_ENDPOINT") or os.getenv("EMBEDDING_BINDING_HOST") ) api_key = ( api_key or os.getenv("AZURE_EMBEDDING_API_KEY") or os.getenv("EMBEDDING_BINDING_API_KEY") ) api_version = ( api_version or os.getenv("AZURE_EMBEDDING_API_VERSION") or os.getenv("AZURE_OPENAI_API_VERSION") or os.getenv("OPENAI_API_VERSION") or "2024-08-01-preview" ) # CRITICAL: Call openai_embed.func (unwrapped) to avoid double decoration # openai_embed is an EmbeddingFunc instance, .func accesses the underlying function return await openai_embed.func( texts=texts, model=deployment, base_url=base_url, api_key=api_key, token_tracker=token_tracker, client_configs=client_configs, use_azure=True, azure_deployment=deployment, api_version=api_version, )