#!/usr/bin/env python3 """ RAGAS Evaluation Script for Portfolio RAG System Evaluates RAG response quality using RAGAS metrics: - Faithfulness: Is the answer factually accurate based on context? - Answer Relevance: Is the answer relevant to the question? - Context Recall: Is all relevant information retrieved? - Context Precision: Is retrieved context clean without noise? Usage: python lightrag/evaluation/eval_rag_quality.py python lightrag/evaluation/eval_rag_quality.py http://localhost:8000 python lightrag/evaluation/eval_rag_quality.py http://your-rag-server.com:8000 Results are saved to: lightrag/evaluation/results/ - results_YYYYMMDD_HHMMSS.csv (CSV export for analysis) - results_YYYYMMDD_HHMMSS.json (Full results with details) """ import asyncio import csv import json import os import sys import time from datetime import datetime from pathlib import Path from typing import Any, Dict, List import httpx from dotenv import load_dotenv # Add parent directory to path sys.path.insert(0, str(Path(__file__).parent.parent.parent)) # Load .env from project root project_root = Path(__file__).parent.parent.parent load_dotenv(project_root / ".env") # Setup OpenAI API key (required for RAGAS evaluation) # Use LLM_BINDING_API_KEY if OPENAI_API_KEY is not set if "OPENAI_API_KEY" not in os.environ: if "LLM_BINDING_API_KEY" in os.environ: os.environ["OPENAI_API_KEY"] = os.environ["LLM_BINDING_API_KEY"] else: os.environ["OPENAI_API_KEY"] = input("Enter your OpenAI API key: ") try: from datasets import Dataset from ragas import evaluate from ragas.metrics import ( answer_relevancy, context_precision, context_recall, faithfulness, ) except ImportError as e: print(f"āŒ RAGAS import error: {e}") print(" Install with: pip install ragas datasets") sys.exit(1) class RAGEvaluator: """Evaluate RAG system quality using RAGAS metrics""" def __init__(self, test_dataset_path: str = None, rag_api_url: str = None): """ Initialize evaluator with test dataset Args: test_dataset_path: Path to test dataset JSON file rag_api_url: Base URL of LightRAG API (e.g., http://localhost:8000) If None, will try to read from environment or use default """ if test_dataset_path is None: test_dataset_path = Path(__file__).parent / "sample_dataset.json" if rag_api_url is None: rag_api_url = os.getenv("LIGHTRAG_API_URL", "http://localhost:8000") self.test_dataset_path = Path(test_dataset_path) self.rag_api_url = rag_api_url.rstrip("/") # Remove trailing slash self.results_dir = Path(__file__).parent / "results" self.results_dir.mkdir(exist_ok=True) # Load test dataset self.test_cases = self._load_test_dataset() def _load_test_dataset(self) -> List[Dict[str, str]]: """Load test cases from JSON file""" if not self.test_dataset_path.exists(): raise FileNotFoundError(f"Test dataset not found: {self.test_dataset_path}") with open(self.test_dataset_path) as f: data = json.load(f) return data.get("test_cases", []) async def generate_rag_response( self, question: str, context: str = None, # Not used - actual context comes from LightRAG ) -> Dict[str, str]: """ Generate RAG response by calling LightRAG API Calls the actual LightRAG /query endpoint instead of using mock data. Args: question: The user query context: Ignored (for compatibility), actual context from LightRAG Returns: Dict with 'answer' and 'context' keys Raises: Exception: If LightRAG API is unavailable """ try: async with httpx.AsyncClient(timeout=60.0) as client: # Prepare request to LightRAG API payload = { "query": question, "mode": "mix", # Recommended: combines local & global "include_references": True, "response_type": "Multiple Paragraphs", "top_k": 10, } # Call LightRAG /query endpoint response = await client.post( f"{self.rag_api_url}/query", json=payload, ) if response.status_code != 200: raise Exception( f"LightRAG API error {response.status_code}: {response.text}" ) result = response.json() return { "answer": result.get("response", "No response generated"), "context": json.dumps(result.get("references", [])) if result.get("references") else "", } except httpx.ConnectError: raise Exception( f"āŒ Cannot connect to LightRAG API at {self.rag_api_url}\n" f" Make sure LightRAG server is running:\n" f" python -m lightrag.api.lightrag_server" ) except Exception as e: raise Exception(f"Error calling LightRAG API: {str(e)}") async def evaluate_responses(self) -> List[Dict[str, Any]]: """ Evaluate all test cases and return metrics Returns: List of evaluation results with metrics """ print("\n" + "=" * 70) print("šŸš€ Starting RAGAS Evaluation of Portfolio RAG System") print("=" * 70 + "\n") results = [] for idx, test_case in enumerate(self.test_cases, 1): question = test_case["question"] ground_truth = test_case["ground_truth"] print(f"[{idx}/{len(self.test_cases)}] Evaluating: {question[:60]}...") # Generate RAG response by calling actual LightRAG API rag_response = await self.generate_rag_response(question=question) # Prepare dataset for RAGAS evaluation eval_dataset = Dataset.from_dict( { "question": [question], "answer": [rag_response["answer"]], "contexts": [ [ground_truth] ], # RAGAS expects list of context strings "ground_truth": [ground_truth], } ) # Run RAGAS evaluation try: eval_results = evaluate( dataset=eval_dataset, metrics=[ faithfulness, answer_relevancy, context_recall, context_precision, ], ) # Convert to DataFrame (RAGAS v0.3+ API) df = eval_results.to_pandas() # Extract scores from first row scores_row = df.iloc[0] # Extract scores (RAGAS v0.3+ uses .to_pandas()) result = { "question": question, "answer": rag_response["answer"][:200] + "..." if len(rag_response["answer"]) > 200 else rag_response["answer"], "ground_truth": ground_truth[:200] + "..." if len(ground_truth) > 200 else ground_truth, "project": test_case.get("project_context", "unknown"), "metrics": { "faithfulness": float(scores_row.get("faithfulness", 0)), "answer_relevance": float( scores_row.get("answer_relevancy", 0) ), "context_recall": float(scores_row.get("context_recall", 0)), "context_precision": float( scores_row.get("context_precision", 0) ), }, "timestamp": datetime.now().isoformat(), } # Calculate RAGAS score (average of all metrics) metrics = result["metrics"] ragas_score = sum(metrics.values()) / len(metrics) if metrics else 0 result["ragas_score"] = round(ragas_score, 4) results.append(result) # Print metrics print(f" āœ… Faithfulness: {metrics['faithfulness']:.4f}") print(f" āœ… Answer Relevance: {metrics['answer_relevance']:.4f}") print(f" āœ… Context Recall: {metrics['context_recall']:.4f}") print(f" āœ… Context Precision: {metrics['context_precision']:.4f}") print(f" šŸ“Š RAGAS Score: {result['ragas_score']:.4f}\n") except Exception as e: import traceback print(f" āŒ Error evaluating: {str(e)}") print(f" šŸ” Full traceback:\n{traceback.format_exc()}\n") result = { "question": question, "error": str(e), "metrics": {}, "ragas_score": 0, "timestamp": datetime.now().isoformat(), } results.append(result) return results def _export_to_csv(self, results: List[Dict[str, Any]]) -> Path: """ Export evaluation results to CSV file Args: results: List of evaluation results Returns: Path to the CSV file CSV Format: - question: The test question - project: Project context - faithfulness: Faithfulness score (0-1) - answer_relevance: Answer relevance score (0-1) - context_recall: Context recall score (0-1) - context_precision: Context precision score (0-1) - ragas_score: Overall RAGAS score (0-1) - timestamp: When evaluation was run """ csv_path = ( self.results_dir / f"results_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv" ) with open(csv_path, "w", newline="", encoding="utf-8") as f: fieldnames = [ "test_number", "question", "project", "faithfulness", "answer_relevance", "context_recall", "context_precision", "ragas_score", "status", "timestamp", ] writer = csv.DictWriter(f, fieldnames=fieldnames) writer.writeheader() for idx, result in enumerate(results, 1): metrics = result.get("metrics", {}) writer.writerow( { "test_number": idx, "question": result.get("question", ""), "project": result.get("project", "unknown"), "faithfulness": f"{metrics.get('faithfulness', 0):.4f}", "answer_relevance": f"{metrics.get('answer_relevance', 0):.4f}", "context_recall": f"{metrics.get('context_recall', 0):.4f}", "context_precision": f"{metrics.get('context_precision', 0):.4f}", "ragas_score": f"{result.get('ragas_score', 0):.4f}", "status": "success" if metrics else "error", "timestamp": result.get("timestamp", ""), } ) return csv_path async def run(self) -> Dict[str, Any]: """Run complete evaluation pipeline""" start_time = time.time() # Evaluate responses results = await self.evaluate_responses() elapsed_time = time.time() - start_time # Save results summary = { "timestamp": datetime.now().isoformat(), "total_tests": len(results), "elapsed_time_seconds": round(elapsed_time, 2), "results": results, } # Save JSON results json_path = ( self.results_dir / f"results_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json" ) with open(json_path, "w") as f: json.dump(summary, f, indent=2) print(f"āœ… JSON results saved to: {json_path}") # Export to CSV csv_path = self._export_to_csv(results) print(f"āœ… CSV results saved to: {csv_path}") # Print summary print("\n" + "=" * 70) print("šŸ“Š EVALUATION COMPLETE") print("=" * 70) print(f"Total Tests: {len(results)}") print(f"Elapsed Time: {elapsed_time:.2f} seconds") print(f"Results Dir: {self.results_dir.absolute()}") print("\nšŸ“ Generated Files:") print(f" • CSV: {csv_path.name}") print(f" • JSON: {json_path.name}") print("=" * 70 + "\n") return summary async def main(): """ Main entry point for RAGAS evaluation Usage: python lightrag/evaluation/eval_rag_quality.py python lightrag/evaluation/eval_rag_quality.py http://localhost:8000 python lightrag/evaluation/eval_rag_quality.py http://your-server.com:8000 """ try: # Get RAG API URL from command line or environment rag_api_url = None if len(sys.argv) > 1: rag_api_url = sys.argv[1] print("\n" + "=" * 70) print("šŸ” RAGAS Evaluation - Using Real LightRAG API") print("=" * 70) if rag_api_url: print(f"šŸ“” RAG API URL: {rag_api_url}") else: print("šŸ“” RAG API URL: http://localhost:8000 (default)") print("=" * 70 + "\n") evaluator = RAGEvaluator(rag_api_url=rag_api_url) await evaluator.run() except Exception as e: print(f"\nāŒ Error: {str(e)}\n") sys.exit(1) if __name__ == "__main__": asyncio.run(main())