""" LightRAG FastAPI Server """ import argparse import configparser import logging import logging.config import os import sys from collections.abc import AsyncIterator from contextlib import asynccontextmanager from pathlib import Path from typing import Annotated, Any, cast import pipmaster as pm import uvicorn from ascii_colors import ASCIIColors from dotenv import load_dotenv from fastapi import Depends, FastAPI, HTTPException, Request from fastapi.exceptions import RequestValidationError from fastapi.middleware.cors import CORSMiddleware from fastapi.openapi.docs import ( get_swagger_ui_html, get_swagger_ui_oauth2_redirect_html, ) from fastapi.responses import JSONResponse, RedirectResponse from fastapi.security import OAuth2PasswordRequestForm from fastapi.staticfiles import StaticFiles from lightrag import LightRAG from lightrag import __version__ as core_version from lightrag.api import __api_version__ from lightrag.api.auth import auth_handler from lightrag.api.routers.document_routes import ( DocumentManager, create_document_routes, ) from lightrag.api.routers.graph_routes import create_graph_routes from lightrag.api.routers.ollama_api import OllamaAPI from lightrag.api.routers.query_routes import create_query_routes from lightrag.api.routers.search_routes import create_search_routes from lightrag.api.routers.table_routes import create_table_routes from lightrag.api.routers.upload_routes import create_upload_routes from lightrag.api.utils_api import ( check_env_file, display_splash_screen, get_combined_auth_dependency, ) from lightrag.constants import ( DEFAULT_EMBEDDING_TIMEOUT, DEFAULT_LLM_TIMEOUT, DEFAULT_LOG_BACKUP_COUNT, DEFAULT_LOG_FILENAME, DEFAULT_LOG_MAX_BYTES, ) from lightrag.entity_resolution import EntityResolutionConfig from lightrag.kg.shared_storage import ( # set_default_workspace, cleanup_keyed_lock, finalize_share_data, get_default_workspace, get_namespace_data, ) from lightrag.storage.s3_client import S3Client, S3Config from lightrag.types import GPTKeywordExtractionFormat from lightrag.utils import EmbeddingFunc, get_env_value, logger, set_verbose_debug from .config import ( get_default_host, global_args, update_uvicorn_mode_config, ) # use the .env that is inside the current folder # allows to use different .env file for each lightrag instance # the OS environment variables take precedence over the .env file load_dotenv(dotenv_path='.env', override=False) webui_title = os.getenv('WEBUI_TITLE') webui_description = os.getenv('WEBUI_DESCRIPTION') # Initialize config parser config = configparser.ConfigParser() config.read('config.ini') # Global authentication configuration auth_configured = bool(auth_handler.accounts) class LLMConfigCache: """Smart LLM and Embedding configuration cache class""" def __init__(self, args): self.args = args # Initialize configurations based on binding conditions self.openai_llm_options = None self.gemini_llm_options = None self.gemini_embedding_options = None self.ollama_llm_options = None self.ollama_embedding_options = None # Only initialize and log OpenAI options when using OpenAI-related bindings if args.llm_binding in ['openai', 'azure_openai']: from lightrag.llm.binding_options import OpenAILLMOptions self.openai_llm_options = OpenAILLMOptions.options_dict(args) logger.info(f'OpenAI LLM Options: {self.openai_llm_options}') if args.llm_binding == 'gemini': from lightrag.llm.binding_options import GeminiLLMOptions self.gemini_llm_options = GeminiLLMOptions.options_dict(args) logger.info(f'Gemini LLM Options: {self.gemini_llm_options}') # Only initialize and log Ollama LLM options when using Ollama LLM binding if args.llm_binding == 'ollama': try: from lightrag.llm.binding_options import OllamaLLMOptions self.ollama_llm_options = OllamaLLMOptions.options_dict(args) logger.info(f'Ollama LLM Options: {self.ollama_llm_options}') except ImportError: logger.warning('OllamaLLMOptions not available, using default configuration') self.ollama_llm_options = {} # Only initialize and log Ollama Embedding options when using Ollama Embedding binding if args.embedding_binding == 'ollama': try: from lightrag.llm.binding_options import OllamaEmbeddingOptions self.ollama_embedding_options = OllamaEmbeddingOptions.options_dict(args) logger.info(f'Ollama Embedding Options: {self.ollama_embedding_options}') except ImportError: logger.warning('OllamaEmbeddingOptions not available, using default configuration') self.ollama_embedding_options = {} # Only initialize and log Gemini Embedding options when using Gemini Embedding binding if args.embedding_binding == 'gemini': try: from lightrag.llm.binding_options import GeminiEmbeddingOptions self.gemini_embedding_options = GeminiEmbeddingOptions.options_dict(args) logger.info(f'Gemini Embedding Options: {self.gemini_embedding_options}') except ImportError: logger.warning('GeminiEmbeddingOptions not available, using default configuration') self.gemini_embedding_options = {} def check_frontend_build(): """Check if frontend is built and optionally check if source is up-to-date Returns: tuple: (assets_exist: bool, is_outdated: bool) - assets_exist: True if WebUI build files exist - is_outdated: True if source is newer than build (only in dev environment) """ webui_dir = Path(__file__).parent / 'webui' index_html = webui_dir / 'index.html' # 1. Check if build files exist if not index_html.exists(): ASCIIColors.yellow('\n' + '=' * 80) ASCIIColors.yellow('WARNING: Frontend Not Built') ASCIIColors.yellow('=' * 80) ASCIIColors.yellow('The WebUI frontend has not been built yet.') ASCIIColors.yellow('The API server will start without the WebUI interface.') ASCIIColors.yellow('\nTo enable WebUI, build the frontend using these commands:\n') ASCIIColors.cyan(' cd lightrag_webui') ASCIIColors.cyan(' bun install --frozen-lockfile') ASCIIColors.cyan(' bun run build') ASCIIColors.cyan(' cd ..') ASCIIColors.yellow('\nThen restart the service.\n') ASCIIColors.cyan('Note: Make sure you have Bun installed. Visit https://bun.sh for installation.') ASCIIColors.yellow('=' * 80 + '\n') return (False, False) # Assets don't exist, not outdated # 2. Check if this is a development environment (source directory exists) try: source_dir = Path(__file__).parent.parent.parent / 'lightrag_webui' src_dir = source_dir / 'src' # Determine if this is a development environment: source directory exists and contains src directory if not source_dir.exists() or not src_dir.exists(): # Production environment, skip source code check logger.debug('Production environment detected, skipping source freshness check') return (True, False) # Assets exist, not outdated (prod environment) # Development environment, perform source code timestamp check logger.debug('Development environment detected, checking source freshness') # Source code file extensions (files to check) source_extensions = { '.ts', '.tsx', '.js', '.jsx', '.mjs', '.cjs', # TypeScript/JavaScript '.css', '.scss', '.sass', '.less', # Style files '.json', '.jsonc', # Configuration/data files '.html', '.htm', # Template files '.md', '.mdx', # Markdown } # Key configuration files (in lightrag_webui root directory) key_files = [ source_dir / 'package.json', source_dir / 'bun.lock', source_dir / 'vite.config.ts', source_dir / 'tsconfig.json', source_dir / 'tailraid.config.js', source_dir / 'index.html', ] # Get the latest modification time of source code latest_source_time = 0 # Check source code files in src directory for file_path in src_dir.rglob('*'): if file_path.is_file() and file_path.suffix.lower() in source_extensions: mtime = file_path.stat().st_mtime latest_source_time = max(latest_source_time, mtime) # Check key configuration files for key_file in key_files: if key_file.exists(): mtime = key_file.stat().st_mtime latest_source_time = max(latest_source_time, mtime) # Get build time build_time = index_html.stat().st_mtime # Compare timestamps (5 second tolerance to avoid file system time precision issues) if latest_source_time > build_time + 5: ASCIIColors.yellow('\n' + '=' * 80) ASCIIColors.yellow('WARNING: Frontend Source Code Has Been Updated') ASCIIColors.yellow('=' * 80) ASCIIColors.yellow('The frontend source code is newer than the current build.') ASCIIColors.yellow("This might happen after 'git pull' or manual code changes.\n") ASCIIColors.cyan('Recommended: Rebuild the frontend to use the latest changes:') ASCIIColors.cyan(' cd lightrag_webui') ASCIIColors.cyan(' bun install --frozen-lockfile') ASCIIColors.cyan(' bun run build') ASCIIColors.cyan(' cd ..') ASCIIColors.yellow('\nThe server will continue with the current build.') ASCIIColors.yellow('=' * 80 + '\n') return (True, True) # Assets exist, outdated else: logger.info('Frontend build is up-to-date') return (True, False) # Assets exist, up-to-date except Exception as e: # If check fails, log warning but don't affect startup logger.warning(f'Failed to check frontend source freshness: {e}') return (True, False) # Assume assets exist and up-to-date on error def create_app(args): # Check frontend build first and get status webui_assets_exist, is_frontend_outdated = check_frontend_build() # Create unified API version display with warning symbol if frontend is outdated api_version_display = f'{__api_version__}⚠️' if is_frontend_outdated else __api_version__ # Setup logging logger.setLevel(args.log_level) set_verbose_debug(args.verbose) # Create configuration cache (this will output configuration logs) config_cache = LLMConfigCache(args) # Verify that bindings are correctly setup if args.llm_binding not in [ 'lollms', 'ollama', 'openai', 'azure_openai', 'aws_bedrock', 'gemini', ]: raise Exception('llm binding not supported') if args.embedding_binding not in [ 'lollms', 'ollama', 'openai', 'azure_openai', 'aws_bedrock', 'jina', 'gemini', ]: raise Exception('embedding binding not supported') # Set default hosts if not provided if args.llm_binding_host is None: args.llm_binding_host = get_default_host(args.llm_binding) if args.embedding_binding_host is None: args.embedding_binding_host = get_default_host(args.embedding_binding) # Add SSL validation if args.ssl: if not args.ssl_certfile or not args.ssl_keyfile: raise Exception('SSL certificate and key files must be provided when SSL is enabled') if not os.path.exists(args.ssl_certfile): raise Exception(f'SSL certificate file not found: {args.ssl_certfile}') if not os.path.exists(args.ssl_keyfile): raise Exception(f'SSL key file not found: {args.ssl_keyfile}') # Check if API key is provided either through env var or args api_key = os.getenv('LIGHTRAG_API_KEY') or args.key # Initialize document manager with workspace support for data isolation doc_manager = DocumentManager(args.input_dir, workspace=args.workspace) # Initialize S3 client if configured (for upload routes) s3_client: S3Client | None = None s3_endpoint_url = os.getenv('S3_ENDPOINT_URL', '') if s3_endpoint_url: try: s3_config = S3Config(endpoint_url=s3_endpoint_url) s3_client = S3Client(s3_config) logger.info(f'S3 client configured for endpoint: {s3_endpoint_url}') except ValueError as e: logger.warning(f'S3 client not initialized: {e}') s3_client = None @asynccontextmanager async def lifespan(app: FastAPI): """Lifespan context manager for startup and shutdown events""" # Store background tasks app.state.background_tasks = set() try: # Initialize database connections # Note: initialize_storages() now auto-initializes pipeline_status for rag.workspace await rag.initialize_storages() # Initialize S3 client if configured if s3_client is not None: await s3_client.initialize() logger.info('S3 client initialized successfully') # Data migration regardless of storage implementation await rag.check_and_migrate_data() ASCIIColors.green('\nServer is ready to accept connections! 🚀\n') yield finally: # Finalize S3 client if initialized if s3_client is not None: await s3_client.finalize() logger.info('S3 client finalized') # Clean up database connections await rag.finalize_storages() if 'LIGHTRAG_GUNICORN_MODE' not in os.environ: # Only perform cleanup in Uvicorn single-process mode logger.debug('Unvicorn Mode: finalizing shared storage...') finalize_share_data() else: # In Gunicorn mode with preload_app=True, cleanup is handled by on_exit hooks logger.debug('Gunicorn Mode: postpone shared storage finalization to master process') # Initialize FastAPI base_description = 'Providing API for LightRAG core, Web UI and Ollama Model Emulation' swagger_description = ( base_description + (' (API-Key Enabled)' if api_key else '') + '\n\n[View ReDoc documentation](/redoc)' ) app_kwargs = { 'title': 'LightRAG Server API', 'description': swagger_description, 'version': __api_version__, 'openapi_url': '/openapi.json', # Explicitly set OpenAPI schema URL 'docs_url': None, # Disable default docs, we'll create custom endpoint 'redoc_url': '/redoc', # Explicitly set redoc URL 'lifespan': lifespan, } # Configure Swagger UI parameters # Enable persistAuthorization and tryItOutEnabled for better user experience app_kwargs['swagger_ui_parameters'] = { 'persistAuthorization': True, 'tryItOutEnabled': True, } app = FastAPI(**cast(Any, app_kwargs)) # Add custom validation error handler for /query/data endpoint @app.exception_handler(RequestValidationError) async def validation_exception_handler(request: Request, exc: RequestValidationError): # Check if this is a request to /query/data endpoint if request.url.path.endswith('/query/data'): # Extract error details error_details = [] for error in exc.errors(): field_path = ' -> '.join(str(loc) for loc in error['loc']) error_details.append(f'{field_path}: {error["msg"]}') error_message = '; '.join(error_details) # Return in the expected format for /query/data return JSONResponse( status_code=400, content={ 'status': 'failure', 'message': f'Validation error: {error_message}', 'data': {}, 'metadata': {}, }, ) else: # For other endpoints, return the default FastAPI validation error return JSONResponse(status_code=422, content={'detail': exc.errors()}) def get_cors_origins(): """Get allowed origins from global_args Returns a list of allowed origins, defaults to ["*"] if not set """ origins_str = global_args.cors_origins if origins_str == '*': return ['*'] return [origin.strip() for origin in origins_str.split(',')] # Add CORS middleware app.add_middleware( CORSMiddleware, allow_origins=get_cors_origins(), allow_credentials=True, allow_methods=['*'], allow_headers=['*'], ) # Create combined auth dependency for all endpoints combined_auth = get_combined_auth_dependency(api_key) def get_workspace_from_request(request: Request) -> str | None: """ Extract workspace from HTTP request header or use default. This enables multi-workspace API support by checking the custom 'LIGHTRAG-WORKSPACE' header. If not present, falls back to the server's default workspace configuration. Args: request: FastAPI Request object Returns: Workspace identifier (may be empty string for global namespace) """ # Check custom header first workspace = request.headers.get('LIGHTRAG-WORKSPACE', '').strip() if not workspace: workspace = None return workspace # Create working directory if it doesn't exist Path(args.working_dir).mkdir(parents=True, exist_ok=True) def create_optimized_openai_llm_func(config_cache: LLMConfigCache, args, llm_timeout: int): """Create optimized OpenAI LLM function with pre-processed configuration""" async def optimized_openai_alike_model_complete( prompt, system_prompt=None, history_messages=None, keyword_extraction=False, **kwargs, ) -> str: from lightrag.llm.openai import openai_complete_if_cache keyword_extraction = kwargs.pop('keyword_extraction', None) if keyword_extraction: kwargs['response_format'] = GPTKeywordExtractionFormat if history_messages is None: history_messages = [] # Use pre-processed configuration to avoid repeated parsing kwargs['timeout'] = llm_timeout if config_cache.openai_llm_options: kwargs.update(config_cache.openai_llm_options) return await openai_complete_if_cache( args.llm_model, prompt, system_prompt=system_prompt, history_messages=history_messages, base_url=args.llm_binding_host, api_key=args.llm_binding_api_key, **kwargs, ) return optimized_openai_alike_model_complete def create_optimized_azure_openai_llm_func(config_cache: LLMConfigCache, args, llm_timeout: int): """Create optimized Azure OpenAI LLM function with pre-processed configuration""" async def optimized_azure_openai_model_complete( prompt, system_prompt=None, history_messages=None, keyword_extraction=False, **kwargs, ) -> str: from lightrag.llm.azure_openai import azure_openai_complete_if_cache keyword_extraction = kwargs.pop('keyword_extraction', None) if keyword_extraction: kwargs['response_format'] = GPTKeywordExtractionFormat if history_messages is None: history_messages = [] # Use pre-processed configuration to avoid repeated parsing kwargs['timeout'] = llm_timeout if config_cache.openai_llm_options: kwargs.update(config_cache.openai_llm_options) return await azure_openai_complete_if_cache( args.llm_model, prompt, system_prompt=system_prompt, history_messages=history_messages, base_url=args.llm_binding_host, api_key=os.getenv('AZURE_OPENAI_API_KEY', args.llm_binding_api_key), api_version=os.getenv('AZURE_OPENAI_API_VERSION', '2024-08-01-preview'), **kwargs, ) return optimized_azure_openai_model_complete def create_optimized_gemini_llm_func(config_cache: LLMConfigCache, args, llm_timeout: int): """Create optimized Gemini LLM function with cached configuration""" async def optimized_gemini_model_complete( prompt, system_prompt=None, history_messages=None, keyword_extraction=False, **kwargs, ) -> str | AsyncIterator[str]: from lightrag.llm.gemini import gemini_complete_if_cache if history_messages is None: history_messages = [] # Use pre-processed configuration to avoid repeated parsing kwargs['timeout'] = llm_timeout if config_cache.gemini_llm_options is not None and 'generation_config' not in kwargs: kwargs['generation_config'] = dict(config_cache.gemini_llm_options) return await gemini_complete_if_cache( args.llm_model, prompt, system_prompt=system_prompt, history_messages=history_messages, api_key=args.llm_binding_api_key, base_url=args.llm_binding_host, keyword_extraction=keyword_extraction, **kwargs, ) return optimized_gemini_model_complete def create_llm_model_func(binding: str): """ Create LLM model function based on binding type. Uses optimized functions for OpenAI bindings and lazy import for others. """ try: if binding == 'lollms': from lightrag.llm.lollms import lollms_model_complete return lollms_model_complete elif binding == 'ollama': from lightrag.llm.ollama import ollama_model_complete return ollama_model_complete elif binding == 'aws_bedrock': return bedrock_model_complete # Already defined locally elif binding == 'azure_openai': # Use optimized function with pre-processed configuration return create_optimized_azure_openai_llm_func(config_cache, args, llm_timeout) elif binding == 'gemini': return create_optimized_gemini_llm_func(config_cache, args, llm_timeout) else: # openai and compatible # Use optimized function with pre-processed configuration return create_optimized_openai_llm_func(config_cache, args, llm_timeout) except ImportError as e: raise Exception(f'Failed to import {binding} LLM binding: {e}') from e def create_llm_model_kwargs(binding: str, args, llm_timeout: int) -> dict: """ Create LLM model kwargs based on binding type. Uses lazy import for binding-specific options. """ if binding in ['lollms', 'ollama']: try: from lightrag.llm.binding_options import OllamaLLMOptions return { 'host': args.llm_binding_host, 'timeout': llm_timeout, 'options': OllamaLLMOptions.options_dict(args), 'api_key': args.llm_binding_api_key, } except ImportError as e: raise Exception(f'Failed to import {binding} options: {e}') from e return {} def create_entity_resolution_config(args) -> 'EntityResolutionConfig': """ Create EntityResolutionConfig from command line/env arguments. """ if not args.entity_resolution_enabled: return EntityResolutionConfig(enabled=False, max_candidates=0) return EntityResolutionConfig( enabled=True, fuzzy_threshold=args.entity_resolution_fuzzy_threshold, vector_threshold=args.entity_resolution_vector_threshold, max_candidates=args.entity_resolution_max_candidates, ) def create_optimized_embedding_function( config_cache: LLMConfigCache, binding, model, host, api_key, args ) -> EmbeddingFunc: """ Create optimized embedding function and return an EmbeddingFunc instance with proper max_token_size inheritance from provider defaults. This function: 1. Imports the provider embedding function 2. Extracts max_token_size and embedding_dim from provider if it's an EmbeddingFunc 3. Creates an optimized wrapper that calls the underlying function directly (avoiding double-wrapping) 4. Returns a properly configured EmbeddingFunc instance Configuration Rules: - When EMBEDDING_MODEL is not set: Uses provider's default model and dimension (e.g., jina-embeddings-v4 with 2048 dims, text-embedding-3-small with 1536 dims) - When EMBEDDING_MODEL is set to a custom model: User MUST also set EMBEDDING_DIM to match the custom model's dimension (e.g., for jina-embeddings-v3, set EMBEDDING_DIM=1024) Note: The embedding_dim parameter is automatically injected by EmbeddingFunc wrapper when send_dimensions=True (enabled for Jina and Gemini bindings). This wrapper calls the underlying provider function directly (.func) to avoid double-wrapping, so we must explicitly pass embedding_dim to the provider's underlying function. """ # Step 1: Import provider function and extract default attributes provider_func = None provider_max_token_size = None provider_embedding_dim = None try: if binding == 'openai': from lightrag.llm.openai import openai_embed provider_func = openai_embed elif binding == 'ollama': from lightrag.llm.ollama import ollama_embed provider_func = ollama_embed elif binding == 'gemini': from lightrag.llm.gemini import gemini_embed provider_func = gemini_embed elif binding == 'jina': from lightrag.llm.jina import jina_embed provider_func = jina_embed elif binding == 'azure_openai': from lightrag.llm.azure_openai import azure_openai_embed provider_func = azure_openai_embed elif binding == 'aws_bedrock': from lightrag.llm.bedrock import bedrock_embed provider_func = bedrock_embed elif binding == 'lollms': from lightrag.llm.lollms import lollms_embed provider_func = lollms_embed # Extract attributes if provider is an EmbeddingFunc if provider_func and isinstance(provider_func, EmbeddingFunc): provider_max_token_size = provider_func.max_token_size provider_embedding_dim = provider_func.embedding_dim logger.debug( f'Extracted from {binding} provider: ' f'max_token_size={provider_max_token_size}, ' f'embedding_dim={provider_embedding_dim}' ) except ImportError as e: logger.warning(f'Could not import provider function for {binding}: {e}') # Step 2: Apply priority (user config > provider default) # For max_token_size: explicit env var > provider default > None final_max_token_size = args.embedding_token_limit or provider_max_token_size # For embedding_dim: user config (always has value) takes priority # Only use provider default if user config is explicitly None (which shouldn't happen) final_embedding_dim = args.embedding_dim or provider_embedding_dim or 1536 # Step 3: Create optimized embedding function (calls underlying function directly) # Note: When model is None, each binding will use its own default model async def optimized_embedding_function(texts, embedding_dim=None): try: if binding == 'lollms': from lightrag.llm.lollms import lollms_embed # Get real function, skip EmbeddingFunc wrapper if present actual_func = lollms_embed.func if isinstance(lollms_embed, EmbeddingFunc) else lollms_embed # lollms embed_model is not used (server uses configured vectorizer) # Only pass base_url and api_key return await actual_func(texts, base_url=host, api_key=api_key) elif binding == 'ollama': from lightrag.llm.ollama import ollama_embed # Get real function, skip EmbeddingFunc wrapper if present actual_func = ollama_embed.func if isinstance(ollama_embed, EmbeddingFunc) else ollama_embed # Use pre-processed configuration if available if config_cache.ollama_embedding_options is not None: ollama_options = config_cache.ollama_embedding_options else: from lightrag.llm.binding_options import OllamaEmbeddingOptions ollama_options = OllamaEmbeddingOptions.options_dict(args) # Pass embed_model only if provided, let function use its default (bge-m3:latest) kwargs = { 'texts': texts, 'host': host, 'api_key': api_key, 'options': ollama_options, } if model: kwargs['embed_model'] = model return await actual_func(**kwargs) elif binding == 'azure_openai': from lightrag.llm.azure_openai import azure_openai_embed actual_func = ( azure_openai_embed.func if isinstance(azure_openai_embed, EmbeddingFunc) else azure_openai_embed ) # Pass model only if provided, let function use its default otherwise kwargs = {'texts': texts, 'api_key': api_key} if model: kwargs['model'] = model return await actual_func(**kwargs) elif binding == 'aws_bedrock': from lightrag.llm.bedrock import bedrock_embed actual_func = bedrock_embed.func if isinstance(bedrock_embed, EmbeddingFunc) else bedrock_embed # Pass model only if provided, let function use its default otherwise kwargs = {'texts': texts} if model: kwargs['model'] = model return await actual_func(**kwargs) elif binding == 'jina': from lightrag.llm.jina import jina_embed actual_func = jina_embed.func if isinstance(jina_embed, EmbeddingFunc) else jina_embed # Pass model only if provided, let function use its default (jina-embeddings-v4) kwargs = { 'texts': texts, 'embedding_dim': embedding_dim, 'base_url': host, 'api_key': api_key, } if model: kwargs['model'] = model return await actual_func(**kwargs) elif binding == 'gemini': from lightrag.llm.gemini import gemini_embed actual_func = gemini_embed.func if isinstance(gemini_embed, EmbeddingFunc) else gemini_embed # Use pre-processed configuration if available if config_cache.gemini_embedding_options is not None: gemini_options = config_cache.gemini_embedding_options else: from lightrag.llm.binding_options import GeminiEmbeddingOptions gemini_options = GeminiEmbeddingOptions.options_dict(args) # Pass model only if provided, let function use its default (gemini-embedding-001) kwargs = { 'texts': texts, 'base_url': host, 'api_key': api_key, 'embedding_dim': embedding_dim, 'task_type': gemini_options.get('task_type', 'RETRIEVAL_DOCUMENT'), } if model: kwargs['model'] = model return await actual_func(**kwargs) else: # openai and compatible from lightrag.llm.openai import openai_embed actual_func = openai_embed.func if isinstance(openai_embed, EmbeddingFunc) else openai_embed # Pass model only if provided, let function use its default (text-embedding-3-small) kwargs = { 'texts': texts, 'base_url': host, 'api_key': api_key, 'embedding_dim': embedding_dim, } if model: kwargs['model'] = model return await actual_func(**kwargs) except ImportError as e: raise Exception(f'Failed to import {binding} embedding: {e}') from e # Step 4: Wrap in EmbeddingFunc and return embedding_func_instance = EmbeddingFunc( embedding_dim=final_embedding_dim, func=optimized_embedding_function, max_token_size=final_max_token_size, send_dimensions=False, # Will be set later based on binding requirements ) # Log final embedding configuration logger.info( f'Embedding config: binding={binding} model={model} ' f'embedding_dim={final_embedding_dim} max_token_size={final_max_token_size}' ) return embedding_func_instance llm_timeout = get_env_value('LLM_TIMEOUT', DEFAULT_LLM_TIMEOUT, int) embedding_timeout = get_env_value('EMBEDDING_TIMEOUT', DEFAULT_EMBEDDING_TIMEOUT, int) async def bedrock_model_complete( prompt, system_prompt=None, history_messages=None, keyword_extraction=False, **kwargs, ) -> str | AsyncIterator[str]: # Lazy import from lightrag.llm.bedrock import bedrock_complete_if_cache keyword_extraction = kwargs.pop('keyword_extraction', None) if keyword_extraction: kwargs['response_format'] = GPTKeywordExtractionFormat if history_messages is None: history_messages = [] # Use global temperature for Bedrock kwargs['temperature'] = get_env_value('BEDROCK_LLM_TEMPERATURE', 1.0, float) return await bedrock_complete_if_cache( args.llm_model, prompt, system_prompt=system_prompt, history_messages=history_messages, **kwargs, ) # Create embedding function with optimized configuration and max_token_size inheritance import inspect # Create the EmbeddingFunc instance (now returns complete EmbeddingFunc with max_token_size) embedding_func = create_optimized_embedding_function( config_cache=config_cache, binding=args.embedding_binding, model=args.embedding_model, host=args.embedding_binding_host, api_key=args.embedding_binding_api_key, args=args, ) # Get embedding_send_dim from centralized configuration embedding_send_dim = args.embedding_send_dim # Check if the underlying function signature has embedding_dim parameter sig = inspect.signature(embedding_func.func) has_embedding_dim_param = 'embedding_dim' in sig.parameters # Determine send_dimensions value based on binding type # Jina and Gemini REQUIRE dimension parameter (forced to True) # OpenAI and others: controlled by EMBEDDING_SEND_DIM environment variable if args.embedding_binding in ['jina', 'gemini']: # Jina and Gemini APIs require dimension parameter - always send it send_dimensions = has_embedding_dim_param dimension_control = f'forced by {args.embedding_binding.title()} API' else: # For OpenAI and other bindings, respect EMBEDDING_SEND_DIM setting send_dimensions = embedding_send_dim and has_embedding_dim_param dimension_control = 'by env var' if send_dimensions or not embedding_send_dim else 'by not hasparam' # Set send_dimensions on the EmbeddingFunc instance embedding_func.send_dimensions = send_dimensions logger.info( f'Send embedding dimension: {send_dimensions} {dimension_control} ' f'(dimensions={embedding_func.embedding_dim}, has_param={has_embedding_dim_param}, ' f'binding={args.embedding_binding})' ) # Log max_token_size source if embedding_func.max_token_size: source = 'env variable' if args.embedding_token_limit else f'{args.embedding_binding} provider default' logger.info(f'Embedding max_token_size: {embedding_func.max_token_size} (from {source})') else: logger.info('Embedding max_token_size: not set (90% token warning disabled)') # Configure rerank function based on args.rerank_bindingparameter rerank_model_func = None if args.rerank_binding != 'null': from lightrag.rerank import ali_rerank, cohere_rerank, jina_rerank # Map rerank binding to corresponding function rerank_functions = { 'cohere': cohere_rerank, 'jina': jina_rerank, 'aliyun': ali_rerank, } # Select the appropriate rerank function based on binding selected_rerank_func = rerank_functions.get(args.rerank_binding) if not selected_rerank_func: logger.error(f'Unsupported rerank binding: {args.rerank_binding}') raise ValueError(f'Unsupported rerank binding: {args.rerank_binding}') # Get default values from selected_rerank_func if args values are None if args.rerank_model is None or args.rerank_binding_host is None: sig = inspect.signature(selected_rerank_func) # Set default model if args.rerank_model is None if args.rerank_model is None and 'model' in sig.parameters: default_model = sig.parameters['model'].default if default_model != inspect.Parameter.empty: args.rerank_model = default_model # Set default base_url if args.rerank_binding_host is None if args.rerank_binding_host is None and 'base_url' in sig.parameters: default_base_url = sig.parameters['base_url'].default if default_base_url != inspect.Parameter.empty: args.rerank_binding_host = default_base_url async def server_rerank_func( query: str, documents: list, top_n: int | None = None, extra_body: dict | None = None ): """Server rerank function with configuration from environment variables""" # Prepare kwargs for rerank function kwargs = { 'query': query, 'documents': documents, 'top_n': top_n, 'api_key': args.rerank_binding_api_key, 'model': args.rerank_model, 'base_url': args.rerank_binding_host, } # Add Cohere-specific parameters if using cohere binding if args.rerank_binding == 'cohere': # Enable chunking if configured (useful for models with token limits like ColBERT) kwargs['enable_chunking'] = get_env_value('RERANK_ENABLE_CHUNKING', False, bool) kwargs['max_tokens_per_doc'] = get_env_value('RERANK_MAX_TOKENS_PER_DOC', 4096, int) return await selected_rerank_func(**kwargs, extra_body=extra_body) rerank_model_func = server_rerank_func logger.info( f'Reranking is enabled: {args.rerank_model or "default model"} using {args.rerank_binding} provider' ) else: logger.info('Reranking is disabled') # Create ollama_server_infos from command line arguments from lightrag.api.config import OllamaServerInfos ollama_server_infos = OllamaServerInfos(name=args.simulated_model_name, tag=args.simulated_model_tag) # Initialize RAG with unified configuration try: rag = LightRAG( working_dir=args.working_dir, workspace=args.workspace, llm_model_func=create_llm_model_func(args.llm_binding), llm_model_name=args.llm_model, llm_model_max_async=args.max_async, summary_max_tokens=args.summary_max_tokens, summary_context_size=args.summary_context_size, chunk_token_size=int(args.chunk_size), chunk_overlap_token_size=int(args.chunk_overlap_size), llm_model_kwargs=create_llm_model_kwargs(args.llm_binding, args, llm_timeout), embedding_func=embedding_func, default_llm_timeout=llm_timeout, default_embedding_timeout=embedding_timeout, kv_storage=args.kv_storage, graph_storage=args.graph_storage, vector_storage=args.vector_storage, doc_status_storage=args.doc_status_storage, vector_db_storage_cls_kwargs={'cosine_better_than_threshold': args.cosine_threshold}, enable_llm_cache_for_entity_extract=args.enable_llm_cache_for_extract, enable_llm_cache=args.enable_llm_cache, rerank_model_func=rerank_model_func, max_parallel_insert=args.max_parallel_insert, max_graph_nodes=args.max_graph_nodes, addon_params={ 'language': args.summary_language, 'entity_types': args.entity_types, }, ollama_server_infos=ollama_server_infos, entity_resolution_config=create_entity_resolution_config(args), ) except Exception as e: logger.error(f'Failed to initialize LightRAG: {e}') raise # Add routes app.include_router( create_document_routes( rag, doc_manager, api_key, ) ) app.include_router(create_query_routes(rag, api_key, args.top_k, s3_client)) app.include_router(create_graph_routes(rag, api_key)) # Register table routes if all storages are PostgreSQL all_postgres_storages = ( args.kv_storage == 'PGKVStorage' and args.doc_status_storage == 'PGDocStatusStorage' and args.graph_storage == 'PGGraphStorage' and args.vector_storage == 'PGVectorStorage' ) if all_postgres_storages: app.include_router(create_table_routes(rag, api_key), prefix='/tables') # Add Ollama API routes ollama_api = OllamaAPI(rag, top_k=args.top_k, api_key=api_key) app.include_router(ollama_api.router, prefix='/api') # Register upload routes if S3 is configured if s3_client is not None: app.include_router(create_upload_routes(rag, s3_client, api_key)) logger.info('S3 upload routes registered at /upload') else: logger.info('S3 not configured - upload routes disabled') # Register BM25 search routes if PostgreSQL storage is configured # Full-text search requires PostgreSQLDB for ts_rank queries if args.kv_storage == 'PGKVStorage' and hasattr(rag, 'text_chunks') and hasattr(rag.text_chunks, 'db'): app.include_router(create_search_routes(rag.text_chunks.db, api_key)) logger.info('BM25 search routes registered at /search') else: logger.info('PostgreSQL not configured - BM25 search routes disabled') # Custom Swagger UI endpoint for offline support @app.get('/docs', include_in_schema=False) async def custom_swagger_ui_html(): """Custom Swagger UI HTML with local static files""" return get_swagger_ui_html( openapi_url=app.openapi_url or '/openapi.json', title=app.title + ' - Swagger UI', oauth2_redirect_url='/docs/oauth2-redirect', swagger_js_url='/static/swagger-ui/swagger-ui-bundle.js', swagger_css_url='/static/swagger-ui/swagger-ui.css', swagger_favicon_url='/static/swagger-ui/favicon-32x32.png', swagger_ui_parameters=app.swagger_ui_parameters, ) @app.get('/docs/oauth2-redirect', include_in_schema=False) async def swagger_ui_redirect(): """OAuth2 redirect for Swagger UI""" return get_swagger_ui_oauth2_redirect_html() @app.get('/') async def redirect_to_webui(): """Redirect root path based on WebUI availability""" if webui_assets_exist: return RedirectResponse(url='/webui') else: return RedirectResponse(url='/docs') @app.get('/auth-status') async def get_auth_status(): """Get authentication status and guest token if auth is not configured""" if not auth_handler.accounts: # Authentication not configured, return guest token guest_token = auth_handler.create_token(username='guest', role='guest', metadata={'auth_mode': 'disabled'}) return { 'auth_configured': False, 'access_token': guest_token, 'token_type': 'bearer', 'auth_mode': 'disabled', 'message': 'Authentication is disabled. Using guest access.', 'core_version': core_version, 'api_version': api_version_display, 'webui_title': webui_title, 'webui_description': webui_description, } return { 'auth_configured': True, 'auth_mode': 'enabled', 'core_version': core_version, 'api_version': api_version_display, 'webui_title': webui_title, 'webui_description': webui_description, } @app.post('/login') async def login(form_data: Annotated[OAuth2PasswordRequestForm, Depends()]): if not auth_handler.accounts: # Authentication not configured, return guest token guest_token = auth_handler.create_token(username='guest', role='guest', metadata={'auth_mode': 'disabled'}) return { 'access_token': guest_token, 'token_type': 'bearer', 'auth_mode': 'disabled', 'message': 'Authentication is disabled. Using guest access.', 'core_version': core_version, 'api_version': api_version_display, 'webui_title': webui_title, 'webui_description': webui_description, } username = form_data.username if auth_handler.accounts.get(username) != form_data.password: raise HTTPException(status_code=401, detail='Incorrect credentials') # Regular user login user_token = auth_handler.create_token(username=username, role='user', metadata={'auth_mode': 'enabled'}) return { 'access_token': user_token, 'token_type': 'bearer', 'auth_mode': 'enabled', 'core_version': core_version, 'api_version': api_version_display, 'webui_title': webui_title, 'webui_description': webui_description, } @app.get( '/health', dependencies=[Depends(combined_auth)], summary='Get system health and configuration status', description='Returns comprehensive system status including WebUI availability, configuration, and operational metrics', response_description='System health status with configuration details', responses={ 200: { 'description': 'Successful response with system status', 'content': { 'application/json': { 'example': { 'status': 'healthy', 'webui_available': True, 'working_directory': '/path/to/working/dir', 'input_directory': '/path/to/input/dir', 'configuration': { 'llm_binding': 'openai', 'llm_model': 'gpt-4', 'embedding_binding': 'openai', 'embedding_model': 'text-embedding-ada-002', 'workspace': 'default', }, 'auth_mode': 'enabled', 'pipeline_busy': False, 'core_version': '0.0.1', 'api_version': '0.0.1', } } }, } }, ) async def get_status(request: Request): """Get current system status including WebUI availability""" try: workspace = get_workspace_from_request(request) default_workspace = get_default_workspace() if workspace is None: workspace = default_workspace pipeline_status = await get_namespace_data('pipeline_status', workspace=workspace) auth_mode = 'disabled' if not auth_configured else 'enabled' # Optional graph health probe (lightweight) - Using unified health_check interface graph_health = await rag.chunk_entity_relation_graph.health_check() # Cleanup expired keyed locks and get status keyed_lock_info = cleanup_keyed_lock() return { 'status': 'healthy', 'webui_available': webui_assets_exist, 'working_directory': str(args.working_dir), 'input_directory': str(args.input_dir), 'configuration': { # LLM configuration binding/host address (if applicable)/model (if applicable) 'llm_binding': args.llm_binding, 'llm_binding_host': args.llm_binding_host, 'llm_model': args.llm_model, # embedding model configuration binding/host address (if applicable)/model (if applicable) 'embedding_binding': args.embedding_binding, 'embedding_binding_host': args.embedding_binding_host, 'embedding_model': args.embedding_model, 'summary_max_tokens': args.summary_max_tokens, 'summary_context_size': args.summary_context_size, 'kv_storage': args.kv_storage, 'doc_status_storage': args.doc_status_storage, 'graph_storage': args.graph_storage, 'vector_storage': args.vector_storage, 'enable_llm_cache_for_extract': args.enable_llm_cache_for_extract, 'enable_llm_cache': args.enable_llm_cache, 'workspace': default_workspace, 'max_graph_nodes': args.max_graph_nodes, # Rerank configuration 'enable_rerank': rerank_model_func is not None, 'rerank_binding': args.rerank_binding, 'rerank_model': args.rerank_model if rerank_model_func else None, 'rerank_binding_host': args.rerank_binding_host if rerank_model_func else None, # Environment variable status (requested configuration) 'summary_language': args.summary_language, 'force_llm_summary_on_merge': args.force_llm_summary_on_merge, 'max_parallel_insert': args.max_parallel_insert, 'cosine_threshold': args.cosine_threshold, 'min_rerank_score': args.min_rerank_score, 'related_chunk_number': args.related_chunk_number, 'max_async': args.max_async, 'embedding_func_max_async': args.embedding_func_max_async, 'embedding_batch_num': args.embedding_batch_num, 'auto_connect_orphans': args.auto_connect_orphans, }, 'auth_mode': auth_mode, 'pipeline_busy': pipeline_status.get('busy', False), 'keyed_locks': keyed_lock_info, 'core_version': core_version, 'api_version': api_version_display, 'webui_title': webui_title, 'webui_description': webui_description, 'graph': graph_health, } except Exception as e: logger.error(f'Error getting health status: {e!s}') raise HTTPException(status_code=500, detail=str(e)) from e # Custom StaticFiles class for smart caching class SmartStaticFiles(StaticFiles): # Renamed from NoCacheStaticFiles async def get_response(self, path: str, scope): response = await super().get_response(path, scope) is_html = path.endswith('.html') or response.media_type == 'text/html' if is_html: response.headers['Cache-Control'] = 'no-cache, no-store, must-revalidate' response.headers['Pragma'] = 'no-cache' response.headers['Expires'] = '0' elif '/assets/' in path: # Assets (JS, CSS, images, fonts) generated by Vite with hash in filename response.headers['Cache-Control'] = 'public, max-age=31536000, immutable' # Add other rules here if needed for non-HTML, non-asset files # Ensure correct Content-Type if path.endswith('.js'): response.headers['Content-Type'] = 'application/javascript' elif path.endswith('.css'): response.headers['Content-Type'] = 'text/css' return response # Mount Swagger UI static files for offline support swagger_static_dir = Path(__file__).parent / 'static' / 'swagger-ui' if swagger_static_dir.exists(): app.mount( '/static/swagger-ui', StaticFiles(directory=swagger_static_dir), name='swagger-ui-static', ) # Conditionally mount WebUI only if assets exist if webui_assets_exist: static_dir = Path(__file__).parent / 'webui' static_dir.mkdir(exist_ok=True) app.mount( '/webui', SmartStaticFiles(directory=static_dir, html=True, check_dir=True), # Use SmartStaticFiles name='webui', ) logger.info('WebUI assets mounted at /webui') else: logger.info('WebUI assets not available, /webui route not mounted') # Add redirect for /webui when assets are not available @app.get('/webui') @app.get('/webui/') async def webui_redirect_to_docs(): """Redirect /webui to /docs when WebUI is not available""" return RedirectResponse(url='/docs') return app def get_application(args=None): """Factory function for creating the FastAPI application""" if args is None: args = global_args return create_app(args) def configure_logging(): """Configure logging for uvicorn startup""" # Reset any existing handlers to ensure clean configuration for logger_name in ['uvicorn', 'uvicorn.access', 'uvicorn.error', 'lightrag']: logger = logging.getLogger(logger_name) logger.handlers = [] logger.filters = [] # Get log directory path from environment variable log_dir = os.getenv('LOG_DIR', os.getcwd()) log_file_path = os.path.abspath(os.path.join(log_dir, DEFAULT_LOG_FILENAME)) print(f'\nLightRAG log file: {log_file_path}\n') os.makedirs(os.path.dirname(log_dir), exist_ok=True) # Get log file max size and backup count from environment variables log_max_bytes = get_env_value('LOG_MAX_BYTES', DEFAULT_LOG_MAX_BYTES, int) log_backup_count = get_env_value('LOG_BACKUP_COUNT', DEFAULT_LOG_BACKUP_COUNT, int) logging.config.dictConfig( { 'version': 1, 'disable_existing_loggers': False, 'formatters': { 'default': { 'format': '%(levelname)s: %(message)s', }, 'detailed': { 'format': '%(asctime)s - %(name)s - %(levelname)s - %(message)s', }, }, 'handlers': { 'console': { 'formatter': 'default', 'class': 'logging.StreamHandler', 'stream': 'ext://sys.stderr', }, 'file': { 'formatter': 'detailed', 'class': 'logging.handlers.RotatingFileHandler', 'filename': log_file_path, 'maxBytes': log_max_bytes, 'backupCount': log_backup_count, 'encoding': 'utf-8', }, }, 'loggers': { # Configure all uvicorn related loggers 'uvicorn': { 'handlers': ['console', 'file'], 'level': 'INFO', 'propagate': False, }, 'uvicorn.access': { 'handlers': ['console', 'file'], 'level': 'INFO', 'propagate': False, 'filters': ['path_filter'], }, 'uvicorn.error': { 'handlers': ['console', 'file'], 'level': 'INFO', 'propagate': False, }, 'lightrag': { 'handlers': ['console', 'file'], 'level': 'INFO', 'propagate': False, 'filters': ['path_filter'], }, }, 'filters': { 'path_filter': { '()': 'lightrag.utils.LightragPathFilter', }, }, } ) def check_and_install_dependencies(): """Check and install required dependencies""" required_packages = [ 'uvicorn', 'tiktoken', 'fastapi', # Add other required packages here ] for package in required_packages: if not pm.is_installed(package): print(f'Installing {package}...') pm.install(package) print(f'{package} installed successfully') def main(): # Explicitly initialize configuration for clarity # (The proxy will auto-initialize anyway, but this makes intent clear) from .config import initialize_config initialize_config() # Check if running under Gunicorn if 'GUNICORN_CMD_ARGS' in os.environ: # If started with Gunicorn, return directly as Gunicorn will call get_application print('Running under Gunicorn - worker management handled by Gunicorn') return # Check .env file if not check_env_file(): sys.exit(1) # Check and install dependencies check_and_install_dependencies() from multiprocessing import freeze_support freeze_support() # Configure logging before parsing args configure_logging() update_uvicorn_mode_config() display_splash_screen(cast(argparse.Namespace, global_args)) # Note: Signal handlers are NOT registered here because: # - Uvicorn has built-in signal handling that properly calls lifespan shutdown # - Custom signal handlers can interfere with uvicorn's graceful shutdown # - Cleanup is handled by the lifespan context manager's finally block # Create application instance directly instead of using factory function app = create_app(global_args) # Start Uvicorn in single process mode uvicorn_config = { 'app': app, # Pass application instance directly instead of string path 'host': global_args.host, 'port': global_args.port, 'log_config': None, # Disable default config } if global_args.ssl: uvicorn_config.update( { 'ssl_certfile': global_args.ssl_certfile, 'ssl_keyfile': global_args.ssl_keyfile, } ) print(f'Starting Uvicorn server in single-process mode on {global_args.host}:{global_args.port}') uvicorn.run(**cast(Any, uvicorn_config)) if __name__ == '__main__': main()