from collections.abc import Iterable import os import pipmaster as pm # Pipmaster for dynamic library install # install specific modules if not pm.is_installed("openai"): pm.install("openai") from openai import ( AsyncAzureOpenAI, APIConnectionError, RateLimitError, APITimeoutError, ) from openai.types.chat import ChatCompletionMessageParam from tenacity import ( retry, stop_after_attempt, wait_exponential, retry_if_exception_type, ) from lightrag.utils import ( wrap_embedding_func_with_attrs, safe_unicode_decode, logger, ) from lightrag.types import GPTKeywordExtractionFormat import numpy as np @retry( stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10), retry=retry_if_exception_type( (RateLimitError, APIConnectionError, APIConnectionError) ), ) async def azure_openai_complete_if_cache( model, prompt, system_prompt: str | None = None, history_messages: Iterable[ChatCompletionMessageParam] | None = None, enable_cot: bool = False, base_url: str | None = None, api_key: str | None = None, api_version: str | None = None, keyword_extraction: bool = False, **kwargs, ): if enable_cot: logger.debug( "enable_cot=True is not supported for the Azure OpenAI API and will be ignored." ) deployment = os.getenv("AZURE_OPENAI_DEPLOYMENT") or model or os.getenv("LLM_MODEL") base_url = ( base_url or os.getenv("AZURE_OPENAI_ENDPOINT") or os.getenv("LLM_BINDING_HOST") ) api_key = ( api_key or os.getenv("AZURE_OPENAI_API_KEY") or os.getenv("LLM_BINDING_API_KEY") ) api_version = ( api_version or os.getenv("AZURE_OPENAI_API_VERSION") or os.getenv("OPENAI_API_VERSION") ) kwargs.pop("hashing_kv", None) timeout = kwargs.pop("timeout", None) # Handle keyword extraction mode if keyword_extraction: kwargs["response_format"] = GPTKeywordExtractionFormat openai_async_client = AsyncAzureOpenAI( azure_endpoint=base_url, azure_deployment=deployment, api_key=api_key, api_version=api_version, timeout=timeout, ) messages = [] if system_prompt: messages.append({"role": "system", "content": system_prompt}) if history_messages: messages.extend(history_messages) if prompt is not None: messages.append({"role": "user", "content": prompt}) if "response_format" in kwargs: response = await openai_async_client.chat.completions.parse( model=model, messages=messages, **kwargs ) else: response = await openai_async_client.chat.completions.create( model=model, messages=messages, **kwargs ) if hasattr(response, "__aiter__"): async def inner(): async for chunk in response: if len(chunk.choices) == 0: continue content = chunk.choices[0].delta.content if content is None: continue if r"\u" in content: content = safe_unicode_decode(content.encode("utf-8")) yield content return inner() else: message = response.choices[0].message # Handle parsed responses (structured output via response_format) # When using beta.chat.completions.parse(), the response is in message.parsed if hasattr(message, "parsed") and message.parsed is not None: # Serialize the parsed structured response to JSON content = message.parsed.model_dump_json() logger.debug("Using parsed structured response from API") else: # Handle regular content responses content = message.content if content and r"\u" in content: content = safe_unicode_decode(content.encode("utf-8")) return content async def azure_openai_complete( prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs ) -> str: result = await azure_openai_complete_if_cache( os.getenv("LLM_MODEL", "gpt-4o-mini"), prompt, system_prompt=system_prompt, history_messages=history_messages, keyword_extraction=keyword_extraction, **kwargs, ) return result @wrap_embedding_func_with_attrs(embedding_dim=1536) @retry( stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10), retry=retry_if_exception_type( (RateLimitError, APIConnectionError, APITimeoutError) ), ) async def azure_openai_embed( texts: list[str], model: str | None = None, base_url: str | None = None, api_key: str | None = None, api_version: str | None = None, ) -> np.ndarray: deployment = ( os.getenv("AZURE_EMBEDDING_DEPLOYMENT") or model or os.getenv("EMBEDDING_MODEL", "text-embedding-3-small") ) base_url = ( base_url or os.getenv("AZURE_EMBEDDING_ENDPOINT") or os.getenv("EMBEDDING_BINDING_HOST") ) api_key = ( api_key or os.getenv("AZURE_EMBEDDING_API_KEY") or os.getenv("EMBEDDING_BINDING_API_KEY") ) api_version = ( api_version or os.getenv("AZURE_EMBEDDING_API_VERSION") or os.getenv("OPENAI_API_VERSION") ) openai_async_client = AsyncAzureOpenAI( azure_endpoint=base_url, azure_deployment=deployment, api_key=api_key, api_version=api_version, ) response = await openai_async_client.embeddings.create( model=model or deployment, input=texts, encoding_format="float" ) return np.array([dp.embedding for dp in response.data])