Add a new `/documents/reprocess_failed` API endpoint and corresponding
UI button to retry processing of failed and pending documents. This
addresses a common recovery scenario when document processing fails due
to server crashes, network errors, or LLM service outages.
Backend changes:
- Add ReprocessResponse model with status, message, and track_id fields
- Add POST /documents/reprocess_failed endpoint that triggers background
reprocessing of FAILED, PENDING, and interrupted PROCESSING documents
- Reuses existing apipeline_process_enqueue_documents for consistency
- Includes comprehensive docstring and logging for observability
Frontend changes:
- Add TypeScript types and API function for the new endpoint
- Add retry handler with intelligent polling (fast refresh → normal)
- Add "Retry Failed" button in Documents page toolbar
- Button disabled when pipeline is busy to prevent duplicate operations
- Complete i18n support (English and Chinese translations)
This feature provides a convenient way to recover from processing
failures without requiring a full filesystem rescan.
- Add new aquery_llm/query_llm methods providing structured responses
- Consolidate /query and /query/stream endpoints to use unified aquery_llm
- Optimize cache handling by moving cache checks before LLM calls
• Add include_references param to QueryRequest
• Extend QueryResponse with references field
• Create unified QueryResult data structures
• Refactor kg_query and naive_query functions
• Update streaming to send references first
- Add get_doc_by_file_path to all storages
- Skip processed files in scan operation
- Check duplicates in upload endpoints
- Check duplicates in text insert APIs
- Return status info in duplicate responses
• Limit history to 1000 latest messages
• Add truncation message when needed
• Show count of truncated messages
• Update API documentation
• Prevent memory issues with large logs
- Reset documents with PROCESSING/FAILED status to PENDING when they pass consistency checks
- Update doc_status storage and clear error messages/metadata on reset
• Replace pyuca with centralized utils function
• Add pinyin sort keys for file paths
• Update MongoDB indexes with zh collation
• Migrate existing indexes for compatibility
• Support Chinese chars in Redis/JSON storage
• Keep PostgreSQL sorting order controled by Database Collate order
- Add apipeline_enqueue_error_documents function to LightRAG class for recording file processing errors in doc_status storage
- Enhance pipeline_enqueue_file with detailed error handling for all file processing stages:
* File access errors (permissions, not found)
* UTF-8 encoding errors
* Format-specific processing errors (PDF, DOCX, PPTX, XLSX)
* Content validation errors
* Unsupported file type errors
This implementation ensures all file extraction failures are properly tracked and recorded in the doc_status storage system, providing better visibility into document processing issues and enabling improved error monitoring and debugging capabilities.
- Remove optional 'modes' parameter from aclear_cache() and clear_cache() methods
- Replace deprecated drop_cache_by_modes() with drop() method for complete cache clearing
- Update API endpoint to ignore mode-specific parameters and clear all cache
- Simplify frontend clearCache() function to send empty request body
This change ensures all LLM cache is cleared together.
- Add file_path sorting support to all database backends (JSON, Redis, PostgreSQL, MongoDB)
- Implement smart column header switching between "ID" and "File Name" based on display mode
- Add automatic sort field switching when toggling between ID and file name display
- Create composite indexes for workspace+file_path in PostgreSQL and MongoDB for better query performance
- Update frontend to maintain sort state when switching display modes
- Add internationalization support for "fileName" in English and Chinese locales
This enhancement improves user experience by providing intuitive file-based sorting
while maintaining performance through optimized database indexes.
- Add pagination support to BaseDocStatusStorage interface and all implementations (PostgreSQL, MongoDB, Redis, JSON)
- Implement RESTful API endpoints for paginated document queries and status counts
- Create reusable pagination UI components with internationalization support
- Optimize performance with database-level pagination and efficient in-memory processing
- Maintain backward compatibility while adding configurable page sizes (10-200 items)
- Add metadata field to doc_status storage with Unix timestamps for processing start/end times
- Update frontend API types: error -> error_msg, add track_id and metadata support
- Add getTrackStatus API method for document tracking functionality
- Fix frontend DocumentManager to use error_msg field for proper error display
- Ensure full compatibility between backend metadata changes and frontend UI
- Add ollama_server_infos attribute to LightRAG class with default initialization
- Move default values to constants.py for centralized configuration
- Refactor OllamaServerInfos class with property accessors and CLI support
- Update OllamaAPI to get configuration through rag object instead of direct import
- Add command line arguments for simulated model name and tag
- Fix type imports to avoid circular dependencies