Add citation tracking and display system across backend and frontend components.
Backend changes include citation.py for document attribution, enhanced query routes
with citation metadata, improved prompt templates, and PostgreSQL schema updates.
Frontend includes CitationMarker component, HoverCard UI, QuerySettings refinements,
and ChatMessage enhancements for displaying document sources. Update dependencies
and docker-compose test configuration for improved development workflow.
Graph Connectivity Awareness:
- Add db_degree property to all KG implementations (NetworkX, Postgres, Neo4j, Mongo, Memgraph)
- Show database degree vs visual degree in node panel with amber badge
- Add visual indicator (amber border) for nodes with hidden connections
- Add "Load X hidden connection(s)" button to expand hidden neighbors
- Add configurable "Expand Depth" setting (1-5) in graph settings
- Use global maxNodes setting for node expansion consistency
Orphan Connection UI:
- Add OrphanConnectionDialog component for manual orphan entity connection
- Add OrphanConnectionControl button in graph sidebar
- Expose /graph/orphans/connect API endpoint for frontend use
Backend Improvements:
- Add get_orphan_entities() and connect_orphan_entities() to base storage
- Add orphan connection configuration parameters
- Improve entity extraction with relationship density requirements
Frontend:
- Add graphExpandDepth and graphIncludeOrphans to settings store
- Add min_degree and include_orphans graph filtering parameters
- Update translations (en.json, zh.json)
Implement automatic orphan entity connection system that identifies entities with
no relationships and creates meaningful connections via vector similarity + LLM
validation. This improves knowledge graph connectivity and retrieval quality.
Changes:
- Add orphan connection configuration parameters (thresholds, cross-connect settings)
- Implement aconnect_orphan_entities() method with 4-step validation pipeline
- Add SQL templates for efficient orphan and candidate entity queries
- Create POST /graph/orphans/connect API endpoint with configurable parameters
- Add orphan connection validation prompt for LLM-based relationship verification
- Include relationship density requirement in extraction prompts to prevent orphans
- Update docker-compose.test.yml with optimized extraction parameters
- Add quality validation test suite (run_quality_tests.py) for retrieval evaluation
- Add unit test framework (test_orphan_connection_quality.py) with test cases
- Enable auto-run of orphan connection after document processing
- Extract PostgreSQL storage check into named variable for clarity
- Move APIRouter initialization into create_table_routes function scope
- Add robust type handling for database query results
- Add input validation for table names and pagination parameters
- Add regex-based SQL injection prevention for table name sanitization
- Improve clipboard copy fallback logic and error handling
- Add memoization for JSON serialization to prevent unnecessary recalculations
- Hide meta column from table explorer UI display
- Sort table columns alphabetically for consistent ordering
- Add keyboard accessibility to status filter buttons
- Add preprocessed status filter to document manager
- Update @tanstack/react-query from 5.60.0 to 5.87.1
- Extract dev storage config into constant to reduce duplication
- Update documentation comments for clarity
- Implemented Table Explorer component to allow users to select and view database tables.
- Added API calls for fetching table list, schema, and paginated data.
- Introduced row detail modal for displaying and copying row data.
- Enhanced DataTable component to support row click events.
- Updated UI components for better user experience and accessibility.
- Added mock data for development mode to facilitate testing.
- Updated localization files to include new terms related to tables.
- Modified settings store to include storage configuration for conditional UI rendering.
- Improved styling and layout for various components to align with new design standards.
• Always append cell text to maintain columns
• Preserve empty cells in table structure
• Check for any content before adding rows
• Use tab separation for proper alignment
• Improve table formatting consistency
• Include tables in extracted content
• Maintain original document order
• Add spacing around tables
• Use tabs to separate table cells
• Process all body elements sequentially
- Update import from PyPDF2 to pypdf
- Change dependency to pypdf>=6.1.0
- Update all requirements files
- Remove PyPDF2 from lock file
- Use modern pypdf library
Problem:
In multi-tenant scenarios, different workspaces share a single global
pipeline_status namespace, causing pipelines from different tenants to
block each other, severely impacting concurrent processing performance.
Solution:
- Extended get_namespace_data() to recognize workspace-specific pipeline
namespaces with pattern "{workspace}:pipeline" (following GraphDB pattern)
- Added workspace parameter to initialize_pipeline_status() for per-tenant
isolated pipeline namespaces
- Updated all 7 call sites to use workspace-aware locks:
* lightrag.py: process_document_queue(), aremove_document()
* document_routes.py: background_delete_documents(), clear_documents(),
cancel_pipeline(), get_pipeline_status(), delete_documents()
Impact:
- Different workspaces can process documents concurrently without blocking
- Backward compatible: empty workspace defaults to "pipeline_status"
- Maintains fail-fast: uninitialized pipeline raises clear error
- Expected N× performance improvement for N concurrent tenants
Bug fixes:
- Fixed AttributeError by using self.workspace instead of self.global_config
- Fixed pipeline status endpoint to show workspace-specific status
- Fixed delete endpoint to check workspace-specific busy flag
Code changes: 4 files, 141 insertions(+), 28 deletions(-)
Testing: All syntax checks passed, comprehensive workspace isolation tests completed
BREAKING CHANGE: content field is now List[str] instead of str
- Add ReferenceItem Pydantic model for type safety
- Update /query and /query/stream to return content as list
- Update OpenAPI schema and examples
- Add migration guide to API README
- Fix RAGAS evaluation to handle list format
Addresses PR #2297 feedback. Tested with RAGAS: 97.37% score.
BREAKING CHANGE: The `content` field in query response references is now
an array of strings instead of a concatenated string. This preserves
individual chunk boundaries when a single file has multiple chunks.
Changes:
- Update QueryResponse Pydantic model to accept List[str] for content
- Modify query_text endpoint to return content as list (query_routes.py:425)
- Modify query_text_stream endpoint to support chunk content enrichment
- Update OpenAPI schema and examples to reflect array structure
- Update API README with breaking change notice and migration guide
- Fix RAGAS evaluation to flatten chunk content lists
Added comprehensive documentation for the new include_chunk_content parameter
that enables retrieval of actual chunk text content in API responses.
Documentation Updates:
- Added "Include Chunk Content in References" section to API README
- Explained use cases: RAG evaluation, debugging, citations, transparency
- Provided JSON request/response examples
- Clarified parameter interaction with include_references
OpenAPI/Swagger Examples:
- Added "Response with chunk content" example to /query endpoint
- Shows complete reference structure with content field
- Demonstrates realistic chunk text content
This makes the feature discoverable through:
1. API documentation (README.md)
2. Interactive Swagger UI (http://localhost:9621/docs)
3. Code examples for developers
- **API:** The `graph/entity/edit` endpoint now returns a detailed `operation_summary` for better client-side handling of update, rename, and merge outcomes.
- **Web UI:** Added an "auto-merge on rename" option. The UI now gracefully handles merge success, partial failures (update OK, merge fail), and other errors with specific user feedback.
• Use "preprocessed" to indicate multimodal processing is required
• Update DocProcessingStatus to process status convertion automatically
• Remove multimodal_processed from DocStatus enum value
• Update UI filter logic
• Add delete_llm_cache parameter to API
• Collect cache IDs from text chunks
• Delete cache after graph operations
• Update UI with new checkbox option
• Add i18n translations for cache option
- Add entity_chunks & relation_chunks storage
- Implement KEEP/FIFO limit strategies
- Update env.example with new settings
- Add migration for chunk tracking data
- Support all KV storage
• Add DocStatus.PREPROCESSED enum value
• Update API routes and response models
• Add preprocessed filter in web UI
• Update localization files
• Handle preprocessed status in deletion
- Changed create_entity to use rag.acreate_entity() instead of direct graph manipulation
- Changed create_relation to use rag.acreate_relation() instead of direct graph manipulation
- This ensures vector embeddings are created and entities/relations are searchable
- Adds proper concurrency locks and metadata population
Added three new REST API endpoints for direct knowledge graph manipulation:
- POST /graph/entity/create: Create new entities in the knowledge graph
- POST /graph/relation/create: Create relationships between entities
- POST /graph/entities/merge: Merge duplicate/misspelled entities while preserving relationships
The merge endpoint is particularly useful for consolidating entities discovered after document processing, fixing spelling errors, and cleaning up the knowledge graph. All relationships from source entities are transferred to the target entity, with intelligent handling of duplicate relationships.
Updated API documentation in lightrag/api/README.md with usage examples for all three endpoints.