Enhance workspace isolation test with distinct mock data and persistence

• Use different mock LLM per workspace
• Add persistent test directory
• Create workspace-specific responses
• Skip cleanup for inspection

(cherry picked from commit 99262adaaa)
This commit is contained in:
yangdx 2025-11-18 00:38:31 +08:00 committed by Raphaël MANSUY
parent 4da291468d
commit fd76e0f7ce

View file

@ -26,14 +26,12 @@ import tempfile
import numpy as np
import pytest
from pathlib import Path
from typing import List, Tuple, Dict
from lightrag.kg.shared_storage import (
get_final_namespace,
get_namespace_lock,
get_default_workspace,
set_default_workspace,
initialize_share_data,
finalize_share_data,
initialize_pipeline_status,
get_namespace_data,
set_all_update_flags,
@ -43,16 +41,6 @@ from lightrag.kg.shared_storage import (
)
# =============================================================================
# Test Configuration
# =============================================================================
# Stress test configuration (enable via environment variable)
STRESS_TEST_MODE = os.getenv("LIGHTRAG_STRESS_TEST", "false").lower() == "true"
PARALLEL_WORKERS = int(os.getenv("LIGHTRAG_TEST_WORKERS", "3"))
KEEP_TEST_ARTIFACTS = os.getenv("LIGHTRAG_KEEP_ARTIFACTS", "false").lower() == "true"
# =============================================================================
# Pytest Fixtures
# =============================================================================
@ -63,85 +51,7 @@ def setup_shared_data():
"""Initialize shared data before each test"""
initialize_share_data()
yield
finalize_share_data()
async def _measure_lock_parallelism(
workload: List[Tuple[str, str, str]], hold_time: float = 0.05
) -> Tuple[int, List[Tuple[str, str]], Dict[str, float]]:
"""Run lock acquisition workload and capture peak concurrency and timeline.
Args:
workload: List of (name, workspace, namespace) tuples
hold_time: How long each worker holds the lock (seconds)
Returns:
Tuple of (max_parallel, timeline, metrics) where:
- max_parallel: Peak number of concurrent lock holders
- timeline: List of (name, event) tuples tracking execution order
- metrics: Dict with performance metrics (total_duration, max_concurrency, etc.)
"""
running = 0
max_parallel = 0
timeline: List[Tuple[str, str]] = []
start_time = time.time()
async def worker(name: str, workspace: str, namespace: str) -> None:
nonlocal running, max_parallel
lock = get_namespace_lock(namespace, workspace)
async with lock:
running += 1
max_parallel = max(max_parallel, running)
timeline.append((name, "start"))
await asyncio.sleep(hold_time)
timeline.append((name, "end"))
running -= 1
await asyncio.gather(*(worker(*args) for args in workload))
metrics = {
"total_duration": time.time() - start_time,
"max_concurrency": max_parallel,
"avg_hold_time": hold_time,
"num_workers": len(workload),
}
return max_parallel, timeline, metrics
def _assert_no_timeline_overlap(timeline: List[Tuple[str, str]]) -> None:
"""Ensure that timeline events never overlap for sequential execution.
This function implements a finite state machine that validates:
- No overlapping lock acquisitions (only one task active at a time)
- Proper lock release order (task releases its own lock)
- All locks are properly released
Args:
timeline: List of (name, event) tuples where event is "start" or "end"
Raises:
AssertionError: If timeline shows overlapping execution or improper locking
"""
active_task = None
for name, event in timeline:
if event == "start":
if active_task is not None:
raise AssertionError(
f"Task '{name}' started before '{active_task}' released the lock"
)
active_task = name
else:
if active_task != name:
raise AssertionError(
f"Task '{name}' finished while '{active_task}' was expected to hold the lock"
)
active_task = None
if active_task is not None:
raise AssertionError(f"Task '{active_task}' did not release the lock properly")
# Cleanup after test if needed
# =============================================================================
@ -154,8 +64,6 @@ async def test_pipeline_status_isolation():
"""
Test that pipeline status is isolated between different workspaces.
"""
# Purpose: Ensure pipeline_status shared data remains unique per workspace.
# Scope: initialize_pipeline_status and get_namespace_data interactions.
print("\n" + "=" * 60)
print("TEST 1: Pipeline Status Isolation")
print("=" * 60)
@ -210,9 +118,6 @@ async def test_lock_mechanism():
Tests both parallel execution for different workspaces and serialization
for the same workspace.
"""
# Purpose: Validate that keyed locks isolate workspaces while serializing
# requests within the same workspace. Scope: get_namespace_lock scheduling
# semantics for both cross-workspace and single-workspace cases.
print("\n" + "=" * 60)
print("TEST 2: Lock Mechanism (No Deadlocks)")
print("=" * 60)
@ -220,51 +125,45 @@ async def test_lock_mechanism():
# Test 2.1: Different workspaces should run in parallel
print("\nTest 2.1: Different workspaces locks should be parallel")
# Support stress testing with configurable number of workers
num_workers = PARALLEL_WORKERS if STRESS_TEST_MODE else 3
parallel_workload = [
(f"ws_{chr(97+i)}", f"ws_{chr(97+i)}", "test_namespace")
for i in range(num_workers)
]
async def acquire_lock_timed(workspace, namespace, hold_time):
"""Acquire a lock and hold it for specified time"""
lock = get_namespace_lock(namespace, workspace)
start = time.time()
async with lock:
print(f" [{workspace}] acquired lock at {time.time() - start:.2f}s")
await asyncio.sleep(hold_time)
print(f" [{workspace}] releasing lock at {time.time() - start:.2f}s")
max_parallel, timeline_parallel, metrics = await _measure_lock_parallelism(
parallel_workload
)
assert max_parallel >= 2, (
"Locks for distinct workspaces should overlap; "
f"observed max concurrency: {max_parallel}, timeline={timeline_parallel}"
start = time.time()
await asyncio.gather(
acquire_lock_timed("ws_a", "test_namespace", 0.5),
acquire_lock_timed("ws_b", "test_namespace", 0.5),
acquire_lock_timed("ws_c", "test_namespace", 0.5),
)
elapsed = time.time() - start
# If locks are properly isolated by workspace, this should take ~0.5s (parallel)
# If they block each other, it would take ~1.5s (serial)
assert elapsed < 1.0, f"Locks blocked each other: {elapsed:.2f}s (expected < 1.0s)"
print("✅ PASSED: Lock Mechanism - Parallel (Different Workspaces)")
print(
f" Locks overlapped for different workspaces (max concurrency={max_parallel})"
)
print(
f" Performance: {metrics['total_duration']:.3f}s for {metrics['num_workers']} workers"
)
print(f" Locks ran in parallel: {elapsed:.2f}s")
# Test 2.2: Same workspace should serialize
print("\nTest 2.2: Same workspace locks should serialize")
serial_workload = [
("serial_run_1", "ws_same", "test_namespace"),
("serial_run_2", "ws_same", "test_namespace"),
]
(
max_parallel_serial,
timeline_serial,
metrics_serial,
) = await _measure_lock_parallelism(serial_workload)
assert max_parallel_serial == 1, (
"Same workspace locks should not overlap; "
f"observed {max_parallel_serial} with timeline {timeline_serial}"
start = time.time()
await asyncio.gather(
acquire_lock_timed("ws_same", "test_namespace", 0.3),
acquire_lock_timed("ws_same", "test_namespace", 0.3),
)
_assert_no_timeline_overlap(timeline_serial)
elapsed = time.time() - start
# Same workspace should serialize, taking ~0.6s
assert elapsed >= 0.5, f"Locks didn't serialize: {elapsed:.2f}s (expected >= 0.5s)"
print("✅ PASSED: Lock Mechanism - Serial (Same Workspace)")
print(" Same workspace operations executed sequentially with no overlap")
print(
f" Performance: {metrics_serial['total_duration']:.3f}s for {metrics_serial['num_workers']} tasks"
)
print(f" Locks serialized correctly: {elapsed:.2f}s")
# =============================================================================
@ -277,9 +176,6 @@ async def test_backward_compatibility():
"""
Test that legacy code without workspace parameter still works correctly.
"""
# Purpose: Validate backward-compatible defaults when workspace arguments
# are omitted. Scope: get_final_namespace, set/get_default_workspace and
# initialize_pipeline_status fallback behavior.
print("\n" + "=" * 60)
print("TEST 3: Backward Compatibility")
print("=" * 60)
@ -351,9 +247,6 @@ async def test_multi_workspace_concurrency():
Test that multiple workspaces can operate concurrently without interference.
Simulates concurrent operations on different workspaces.
"""
# Purpose: Simulate concurrent workloads touching pipeline_status across
# workspaces. Scope: initialize_pipeline_status, get_namespace_lock, and
# shared dictionary mutation while ensuring isolation.
print("\n" + "=" * 60)
print("TEST 4: Multi-Workspace Concurrency")
print("=" * 60)
@ -434,9 +327,6 @@ async def test_namespace_lock_reentrance():
Test that NamespaceLock prevents re-entrance in the same coroutine
and allows concurrent use in different coroutines.
"""
# Purpose: Ensure NamespaceLock enforces single entry per coroutine while
# allowing concurrent reuse through ContextVar isolation. Scope: lock
# re-entrance checks and concurrent gather semantics.
print("\n" + "=" * 60)
print("TEST 5: NamespaceLock Re-entrance Protection")
print("=" * 60)
@ -506,33 +396,37 @@ async def test_different_namespace_lock_isolation():
"""
Test that locks for different namespaces (same workspace) are independent.
"""
# Purpose: Confirm that namespace isolation is enforced even when workspace
# is the same. Scope: get_namespace_lock behavior when namespaces differ.
print("\n" + "=" * 60)
print("TEST 6: Different Namespace Lock Isolation")
print("=" * 60)
print("\nTesting locks with same workspace but different namespaces")
workload = [
("ns_a", "same_ws", "namespace_a"),
("ns_b", "same_ws", "namespace_b"),
("ns_c", "same_ws", "namespace_c"),
]
max_parallel, timeline, metrics = await _measure_lock_parallelism(workload)
async def acquire_lock_timed(workspace, namespace, hold_time, name):
"""Acquire a lock and hold it for specified time"""
lock = get_namespace_lock(namespace, workspace)
start = time.time()
async with lock:
print(f" [{name}] acquired lock at {time.time() - start:.2f}s")
await asyncio.sleep(hold_time)
print(f" [{name}] releasing lock at {time.time() - start:.2f}s")
assert max_parallel >= 2, (
"Different namespaces within the same workspace should run concurrently; "
f"observed max concurrency {max_parallel} with timeline {timeline}"
# These should run in parallel (different namespaces)
start = time.time()
await asyncio.gather(
acquire_lock_timed("same_ws", "namespace_a", 0.5, "ns_a"),
acquire_lock_timed("same_ws", "namespace_b", 0.5, "ns_b"),
acquire_lock_timed("same_ws", "namespace_c", 0.5, "ns_c"),
)
elapsed = time.time() - start
# If locks are properly isolated by namespace, this should take ~0.5s (parallel)
assert (
elapsed < 1.0
), f"Different namespace locks blocked each other: {elapsed:.2f}s (expected < 1.0s)"
print("✅ PASSED: Different Namespace Lock Isolation")
print(
f" Different namespace locks ran in parallel (max concurrency={max_parallel})"
)
print(
f" Performance: {metrics['total_duration']:.3f}s for {metrics['num_workers']} namespaces"
)
print(f" Different namespace locks ran in parallel: {elapsed:.2f}s")
# =============================================================================
@ -545,18 +439,10 @@ async def test_error_handling():
"""
Test error handling for invalid workspace configurations.
"""
# Purpose: Validate guardrails for workspace normalization and namespace
# derivation. Scope: set_default_workspace conversions and get_final_namespace
# failure paths when configuration is invalid.
print("\n" + "=" * 60)
print("TEST 7: Error Handling")
print("=" * 60)
# Test 7.0: Missing default workspace should raise ValueError
print("\nTest 7.0: Missing workspace raises ValueError")
with pytest.raises(ValueError):
get_final_namespace("test_namespace", workspace=None)
# Test 7.1: set_default_workspace(None) converts to empty string
print("\nTest 7.1: set_default_workspace(None) converts to empty string")
@ -595,9 +481,6 @@ async def test_update_flags_workspace_isolation():
"""
Test that update flags are properly isolated between workspaces.
"""
# Purpose: Confirm update flag setters/readers respect workspace scoping.
# Scope: set_all_update_flags, clear_all_update_flags, get_all_update_flags_status,
# and get_update_flag interactions across namespaces.
print("\n" + "=" * 60)
print("TEST 8: Update Flags Workspace Isolation")
print("=" * 60)
@ -693,20 +576,6 @@ async def test_update_flags_workspace_isolation():
assert (
len(workspace2_keys) == 0
), f"workspace2 keys should not be present, got {len(workspace2_keys)}"
for key, values in status1.items():
assert all(values), f"All flags in {key} should be True, got {values}"
# Workspace2 query should only surface workspace2 namespaces
status2 = await get_all_update_flags_status(workspace=workspace2)
expected_ws2_keys = {
f"{workspace2}:{test_namespace}",
f"{workspace2}:ns_c",
}
assert (
set(status2.keys()) == expected_ws2_keys
), f"Unexpected namespaces for workspace2: {status2.keys()}"
for key, values in status2.items():
assert all(values), f"All flags in {key} should be True, got {values}"
print("✅ PASSED: Update Flags - get_all_update_flags_status Filtering")
print(
@ -724,9 +593,6 @@ async def test_empty_workspace_standardization():
"""
Test that empty workspace is properly standardized to "" instead of "_".
"""
# Purpose: Verify namespace formatting when workspace is an empty string.
# Scope: get_final_namespace output and initialize_pipeline_status behavior
# between empty and non-empty workspaces.
print("\n" + "=" * 60)
print("TEST 9: Empty Workspace Standardization")
print("=" * 60)
@ -779,9 +645,6 @@ async def test_json_kv_storage_workspace_isolation():
Creates two JsonKVStorage instances with different workspaces, writes different data,
and verifies they don't mix.
"""
# Purpose: Ensure JsonKVStorage respects workspace-specific directories and data.
# Scope: storage initialization, upsert/get_by_id operations, and filesystem layout
# inside the temporary working directory.
print("\n" + "=" * 60)
print("TEST 10: JsonKVStorage Workspace Isolation (Integration)")
print("=" * 60)
@ -927,12 +790,10 @@ async def test_json_kv_storage_workspace_isolation():
print(f" Workspace directories correctly created: {ws1_dir} and {ws2_dir}")
finally:
# Cleanup test directory (unless KEEP_TEST_ARTIFACTS is set)
if os.path.exists(test_dir) and not KEEP_TEST_ARTIFACTS:
# Cleanup test directory
if os.path.exists(test_dir):
shutil.rmtree(test_dir)
print(f"\n Cleaned up test directory: {test_dir}")
elif KEEP_TEST_ARTIFACTS:
print(f"\n Kept test directory for inspection: {test_dir}")
# =============================================================================
@ -947,9 +808,6 @@ async def test_lightrag_end_to_end_workspace_isolation():
insert different data, and verify file separation.
Uses mock LLM and embedding functions to avoid external API calls.
"""
# Purpose: Validate that full LightRAG flows keep artifacts scoped per workspace.
# Scope: LightRAG.initialize_storages + ainsert side effects plus filesystem
# verification for generated storage files.
print("\n" + "=" * 60)
print("TEST 11: LightRAG End-to-End Workspace Isolation")
print("=" * 60)
@ -966,13 +824,9 @@ async def test_lightrag_end_to_end_workspace_isolation():
# Factory function to create different mock LLM functions for each workspace
def create_mock_llm_func(workspace_name):
"""Create a mock LLM function that returns different content based on workspace"""
async def mock_llm_func(
prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
# Add coroutine switching to simulate async I/O and allow concurrent execution
await asyncio.sleep(0)
# Return different responses based on workspace
# Format: entity<|#|>entity_name<|#|>entity_type<|#|>entity_description
# Format: relation<|#|>source_entity<|#|>target_entity<|#|>keywords<|#|>description
@ -986,34 +840,22 @@ relation<|#|>Machine Learning<|#|>Artificial Intelligence<|#|>subset, related fi
entity<|#|>Neural Networks<|#|>concept<|#|>Neural Networks are computing systems inspired by biological neural networks.
relation<|#|>Deep Learning<|#|>Neural Networks<|#|>uses, composed of<|#|>Deep Learning uses multiple layers of Neural Networks to learn representations.
<|COMPLETE|>"""
return mock_llm_func
# Mock embedding function
async def mock_embedding_func(texts: list[str]) -> np.ndarray:
# Add coroutine switching to simulate async I/O and allow concurrent execution
await asyncio.sleep(0)
return np.random.rand(len(texts), 384) # 384-dimensional vectors
# Test 11.1: Create two LightRAG instances with different workspaces
print("\nTest 11.1: Create two LightRAG instances with different workspaces")
from lightrag import LightRAG
from lightrag.utils import EmbeddingFunc, Tokenizer
from lightrag.utils import EmbeddingFunc
# Create different mock LLM functions for each workspace
mock_llm_func_a = create_mock_llm_func("project_a")
mock_llm_func_b = create_mock_llm_func("project_b")
class _SimpleTokenizerImpl:
def encode(self, content: str) -> list[int]:
return [ord(ch) for ch in content]
def decode(self, tokens: list[int]) -> str:
return "".join(chr(t) for t in tokens)
tokenizer = Tokenizer("mock-tokenizer", _SimpleTokenizerImpl())
rag1 = LightRAG(
working_dir=test_dir,
workspace="project_a",
@ -1023,7 +865,6 @@ relation<|#|>Deep Learning<|#|>Neural Networks<|#|>uses, composed of<|#|>Deep Le
max_token_size=8192,
func=mock_embedding_func,
),
tokenizer=tokenizer,
)
rag2 = LightRAG(
@ -1035,7 +876,6 @@ relation<|#|>Deep Learning<|#|>Neural Networks<|#|>uses, composed of<|#|>Deep Le
max_token_size=8192,
func=mock_embedding_func,
),
tokenizer=tokenizer,
)
# Initialize storages
@ -1045,24 +885,19 @@ relation<|#|>Deep Learning<|#|>Neural Networks<|#|>uses, composed of<|#|>Deep Le
print(" RAG1 created: workspace=project_a")
print(" RAG2 created: workspace=project_b")
# Test 11.2: Insert different data to each RAG instance (CONCURRENTLY)
print("\nTest 11.2: Insert different data to each RAG instance (concurrently)")
# Test 11.2: Insert different data to each RAG instance
print("\nTest 11.2: Insert different data to each RAG instance")
text_for_project_a = "This document is about Artificial Intelligence and Machine Learning. AI is transforming the world."
text_for_project_b = "This document is about Deep Learning and Neural Networks. Deep learning uses multiple layers."
# Insert to both projects concurrently to test workspace isolation under concurrent load
print(" Starting concurrent insert operations...")
start_time = time.time()
await asyncio.gather(
rag1.ainsert(text_for_project_a),
rag2.ainsert(text_for_project_b)
)
elapsed_time = time.time() - start_time
print(f" Inserted to project_a: {len(text_for_project_a)} chars (concurrent)")
print(f" Inserted to project_b: {len(text_for_project_b)} chars (concurrent)")
print(f" Total concurrent execution time: {elapsed_time:.3f}s")
# Insert to project_a
await rag1.ainsert(text_for_project_a)
print(f" Inserted to project_a: {len(text_for_project_a)} chars")
# Insert to project_b
await rag2.ainsert(text_for_project_b)
print(f" Inserted to project_b: {len(text_for_project_b)} chars")
# Test 11.3: Verify file structure
print("\nTest 11.3: Verify workspace directory structure")
@ -1163,9 +998,9 @@ relation<|#|>Deep Learning<|#|>Neural Networks<|#|>uses, composed of<|#|>Deep Le
print("\n ✓ Test complete - workspace isolation verified at E2E level")
finally:
# Cleanup test directory (unless KEEP_TEST_ARTIFACTS is set)
if os.path.exists(test_dir) and not KEEP_TEST_ARTIFACTS:
shutil.rmtree(test_dir)
print(f"\n Cleaned up test directory: {test_dir}")
elif KEEP_TEST_ARTIFACTS:
print(f"\n Kept test directory for inspection: {test_dir}")
# Cleanup test directory
# if os.path.exists(test_dir):
# shutil.rmtree(test_dir)
# print(f"\n Cleaned up test directory: {test_dir}")
print("Keep test directory for manual inspection:")
print(f" {test_dir}")