tested on example; fixed schema definition

This commit is contained in:
Alexander Belikov 2025-11-13 16:57:41 +01:00
parent 9a75b0c6dc
commit fc0a417775
3 changed files with 2398 additions and 258 deletions

View file

@ -0,0 +1,162 @@
from lightrag import LightRAG
from lightrag.llm.openai import gpt_4o_mini_complete, openai_embed
from lightrag.kg.shared_storage import initialize_pipeline_status
from lightrag.utils import setup_logger
import os
import asyncio
import json
from pathlib import Path
WORKING_DIR = "./tigergraph_test_dir"
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
setup_logger("lightrag", level="INFO")
def load_json_texts(json_path: str | Path) -> list[str]:
"""
Load texts from a plain JSON file.
Expects JSON array format: [{"text": "..."}, {"text": "..."}]
Args:
json_path: Path to JSON file
Returns:
List of text strings extracted from "text" field
"""
json_path = Path(json_path)
if not json_path.exists():
raise FileNotFoundError(f"JSON file not found: {json_path}")
with open(json_path, "r", encoding="utf-8") as f:
data = json.load(f)
if not isinstance(data, list):
raise ValueError(f"Expected JSON array, got {type(data).__name__}")
texts = []
for item in data:
if isinstance(item, dict) and "text" in item:
texts.append(item["text"])
else:
raise ValueError(
f"Expected object with 'text' field, got {type(item).__name__}"
)
return texts
async def initialize_rag():
"""Initialize LightRAG with TigerGraph implementation."""
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=gpt_4o_mini_complete, # Use gpt_4o_mini_complete LLM model
embedding_func=openai_embed, # Use OpenAI embedding function
graph_storage="TigerGraphStorage",
)
# Initialize database connections
await rag.initialize_storages()
# Initialize pipeline status for document processing
await initialize_pipeline_status()
return rag
async def test_ingestion():
"""Test document ingestion into TigerGraph"""
print("=" * 60)
print("Initializing LightRAG with TigerGraph...")
print("=" * 60)
rag = await initialize_rag()
print(f"✓ LightRAG initialized: {type(rag)}")
# Test documents for ingestion
test_documents = [
"TigerGraph is a graph database platform designed for enterprise-scale graph analytics. It supports distributed graph processing and real-time queries.",
"LightRAG is a framework that combines retrieval-augmented generation with knowledge graphs. It uses graph storage backends like TigerGraph, Neo4j, and Memgraph.",
"Graph databases store data as nodes and edges, making them ideal for relationship-heavy data. They excel at traversing complex connections between entities.",
]
print("\n" + "=" * 60)
print("Ingesting test documents...")
print("=" * 60)
# Insert documents
for i, doc in enumerate(test_documents, 1):
print(f"\n[{i}/{len(test_documents)}] Inserting document...")
track_id = await rag.ainsert(input=doc, file_paths=f"test_doc_{i}.txt")
print(f" ✓ Document inserted with track_id: {track_id}")
# Test JSON ingestion if JSON file exists
json_test_file = Path("test_data.json")
if json_test_file.exists():
print("\n" + "=" * 60)
print("Ingesting JSON file...")
print("=" * 60)
try:
texts = load_json_texts(json_test_file)
print(f"✓ Loaded {len(texts)} texts from {json_test_file}")
for i, text in enumerate(texts, 1):
print(f"\n[{i}/{len(texts)}] Inserting from JSON...")
track_id = await rag.ainsert(input=text, file_paths=str(json_test_file))
print(f" ✓ Text inserted with track_id: {track_id}")
except Exception as e:
print(f"✗ Error loading JSON file: {e}")
import traceback
traceback.print_exc()
else:
print(
f"\n No JSON file found at {json_test_file} (skipping JSON ingestion test)"
)
print(" Create a test_data.json file with format:")
print(' [{"text": "Your text here"}, {"text": "Another text"}]')
print("\n" + "=" * 60)
print("Verifying ingestion...")
print("=" * 60)
# Verify by checking graph stats
try:
# Get all labels (entity IDs) from the graph
all_labels = await rag.chunk_entity_relation_graph.get_all_labels()
print(f"\n✓ Found {len(all_labels)} entities in the graph")
if all_labels:
print(f" Sample entities: {all_labels[:5]}")
# Get all nodes
all_nodes = await rag.chunk_entity_relation_graph.get_all_nodes()
print(f"✓ Found {len(all_nodes)} nodes in the graph")
# Get all edges
all_edges = await rag.chunk_entity_relation_graph.get_all_edges()
print(f"✓ Found {len(all_edges)} edges in the graph")
# Test a simple query
print("\n" + "=" * 60)
print("Testing query...")
print("=" * 60)
response = await rag.aquery("What is TigerGraph?")
print("\nQuery: 'What is TigerGraph?'")
print(f"Response: {response}")
except Exception as e:
print(f"\n✗ Error during verification: {e}")
import traceback
traceback.print_exc()
print("\n" + "=" * 60)
print("Ingestion test completed!")
print("=" * 60)
if __name__ == "__main__":
asyncio.run(test_ingestion())

File diff suppressed because it is too large Load diff

1230
uv.lock generated

File diff suppressed because it is too large Load diff