remove fallback query
This commit is contained in:
parent
81c93f6950
commit
f961f1aa7d
1 changed files with 1 additions and 173 deletions
|
|
@ -900,177 +900,5 @@ class MemgraphStorage(BaseGraphStorage):
|
|||
|
||||
except Exception as e:
|
||||
logger.warning(f"Memgraph error during subgraph query: {str(e)}")
|
||||
if node_label != "*":
|
||||
logger.warning(
|
||||
"Memgraph: falling back to basic Cypher recursive search..."
|
||||
)
|
||||
return await self._robust_fallback(node_label, max_depth, max_nodes)
|
||||
else:
|
||||
logger.warning(
|
||||
"Memgraph: Mage plugin error with wildcard query, returning empty result"
|
||||
)
|
||||
|
||||
return result
|
||||
|
||||
async def _robust_fallback(
|
||||
self, node_label: str, max_depth: int, max_nodes: int
|
||||
) -> KnowledgeGraph:
|
||||
"""
|
||||
Fallback implementation when MAGE plugin is not available or incompatible.
|
||||
This method implements the same functionality as get_knowledge_graph but uses
|
||||
only basic Cypher queries and true breadth-first traversal instead of MAGE procedures.
|
||||
"""
|
||||
from collections import deque
|
||||
|
||||
result = KnowledgeGraph()
|
||||
visited_nodes = set()
|
||||
visited_edges = set()
|
||||
visited_edge_pairs = set()
|
||||
|
||||
# Get the starting node's data
|
||||
workspace_label = self._get_workspace_label()
|
||||
async with self._driver.session(
|
||||
database=self._DATABASE, default_access_mode="READ"
|
||||
) as session:
|
||||
query = f"""
|
||||
MATCH (n:`{workspace_label}` {{entity_id: $entity_id}})
|
||||
RETURN id(n) as node_id, n
|
||||
"""
|
||||
node_result = await session.run(query, entity_id=node_label)
|
||||
try:
|
||||
node_record = await node_result.single()
|
||||
if not node_record:
|
||||
return result
|
||||
|
||||
# Create initial KnowledgeGraphNode
|
||||
start_node = KnowledgeGraphNode(
|
||||
id=f"{node_record['n'].get('entity_id')}",
|
||||
labels=[node_record["n"].get("entity_id")],
|
||||
properties=dict(node_record["n"]._properties),
|
||||
)
|
||||
finally:
|
||||
await node_result.consume() # Ensure results are consumed
|
||||
|
||||
# Initialize queue for BFS with (node, depth) tuples
|
||||
queue = deque([(start_node, 0)])
|
||||
|
||||
# Keep track of all nodes we've discovered (including those we might not add due to limits)
|
||||
discovered_nodes = {} # node_id -> KnowledgeGraphNode
|
||||
discovered_nodes[start_node.id] = start_node
|
||||
|
||||
# True BFS implementation using a queue
|
||||
while queue:
|
||||
# Dequeue the next node to process
|
||||
current_node, current_depth = queue.popleft()
|
||||
|
||||
# Skip if already processed or exceeds max depth
|
||||
if current_node.id in visited_nodes:
|
||||
continue
|
||||
|
||||
if current_depth > max_depth:
|
||||
logger.debug(
|
||||
f"Skipping node at depth {current_depth} (max_depth: {max_depth})"
|
||||
)
|
||||
continue
|
||||
|
||||
# Check if we've reached the node limit
|
||||
if len(visited_nodes) >= max_nodes:
|
||||
result.is_truncated = True
|
||||
logger.info(
|
||||
f"Graph truncated: breadth-first search limited to: {max_nodes} nodes"
|
||||
)
|
||||
break
|
||||
|
||||
# Add current node to result
|
||||
result.nodes.append(current_node)
|
||||
visited_nodes.add(current_node.id)
|
||||
|
||||
# Only continue exploring if we haven't reached max depth
|
||||
if current_depth < max_depth:
|
||||
# Get all edges and target nodes for the current node
|
||||
async with self._driver.session(
|
||||
database=self._DATABASE, default_access_mode="READ"
|
||||
) as session:
|
||||
workspace_label = self._get_workspace_label()
|
||||
query = f"""
|
||||
MATCH (a:`{workspace_label}` {{entity_id: $entity_id}})-[r]-(b:`{workspace_label}`)
|
||||
WHERE b.entity_id IS NOT NULL
|
||||
RETURN r, b, id(r) as edge_id
|
||||
"""
|
||||
results = await session.run(query, entity_id=current_node.id)
|
||||
|
||||
# Get all records and release database connection
|
||||
records = await results.fetch(
|
||||
1000
|
||||
) # Max neighbor nodes we can handle
|
||||
await results.consume() # Ensure results are consumed
|
||||
|
||||
# Process all neighbors
|
||||
for record in records:
|
||||
rel = record["r"]
|
||||
edge_id = str(record["edge_id"])
|
||||
b_node = record["b"]
|
||||
target_id = b_node.get("entity_id")
|
||||
|
||||
if target_id and edge_id not in visited_edges:
|
||||
# Create KnowledgeGraphNode for target if not already discovered
|
||||
if target_id not in discovered_nodes:
|
||||
target_node = KnowledgeGraphNode(
|
||||
id=f"{target_id}",
|
||||
labels=[target_id],
|
||||
properties=dict(b_node._properties),
|
||||
)
|
||||
discovered_nodes[target_id] = target_node
|
||||
|
||||
# Add to queue for further exploration
|
||||
queue.append((target_node, current_depth + 1))
|
||||
|
||||
# Second pass: Add edges only between nodes that are actually in the result
|
||||
final_node_ids = {node.id for node in result.nodes}
|
||||
|
||||
# Now collect all edges between the nodes we actually included
|
||||
async with self._driver.session(
|
||||
database=self._DATABASE, default_access_mode="READ"
|
||||
) as session:
|
||||
# Use a parameterized query to get all edges between our final nodes
|
||||
query = f"""
|
||||
UNWIND $node_ids AS node_id
|
||||
MATCH (a:`{workspace_label}` {{entity_id: node_id}})-[r]-(b:`{workspace_label}`)
|
||||
WHERE b.entity_id IN $node_ids
|
||||
RETURN DISTINCT r, a.entity_id AS source_id, b.entity_id AS target_id, id(r) AS edge_id
|
||||
"""
|
||||
results = await session.run(query, node_ids=list(final_node_ids))
|
||||
|
||||
edges_to_add = []
|
||||
async for record in results:
|
||||
rel = record["r"]
|
||||
edge_id = str(record["edge_id"])
|
||||
source_id = record["source_id"]
|
||||
target_id = record["target_id"]
|
||||
|
||||
if edge_id not in visited_edges:
|
||||
# Create edge pair for deduplication (undirected)
|
||||
sorted_pair = tuple(sorted([source_id, target_id]))
|
||||
|
||||
if sorted_pair not in visited_edge_pairs:
|
||||
edges_to_add.append(
|
||||
KnowledgeGraphEdge(
|
||||
id=f"{edge_id}",
|
||||
type=rel.type,
|
||||
source=f"{source_id}",
|
||||
target=f"{target_id}",
|
||||
properties=dict(rel),
|
||||
)
|
||||
)
|
||||
visited_edges.add(edge_id)
|
||||
visited_edge_pairs.add(sorted_pair)
|
||||
|
||||
await results.consume()
|
||||
|
||||
# Add all valid edges to the result
|
||||
result.edges.extend(edges_to_add)
|
||||
|
||||
logger.info(
|
||||
f"BFS subgraph query successful | Node count: {len(result.nodes)} | Edge count: {len(result.edges)}"
|
||||
)
|
||||
return result
|
||||
return result
|
||||
Loading…
Add table
Reference in a new issue