Simplify Configuration

This commit is contained in:
zrguo 2025-07-08 11:16:34 +08:00
parent 75dd4f3498
commit f5c80d7cde
6 changed files with 210 additions and 201 deletions

View file

@ -2,24 +2,15 @@
This document explains how to configure and use the rerank functionality in LightRAG to improve retrieval quality.
## ⚠️ Important: Parameter Priority
**QueryParam.top_k has higher priority than rerank_top_k configuration:**
- When you set `QueryParam(top_k=5)`, it will override the `rerank_top_k=10` setting in LightRAG configuration
- This means the actual number of documents sent to rerank will be determined by QueryParam.top_k
- For optimal rerank performance, always consider the top_k value in your QueryParam calls
- Example: `rag.aquery(query, param=QueryParam(mode="naive", top_k=20))` will use 20, not rerank_top_k
## Overview
Reranking is an optional feature that improves the quality of retrieved documents by re-ordering them based on their relevance to the query. This is particularly useful when you want higher precision in document retrieval across all query modes (naive, local, global, hybrid, mix).
## Architecture
The rerank integration follows the same design pattern as the LLM integration:
The rerank integration follows a simplified design pattern:
- **Configurable Models**: Support for multiple rerank providers through a generic API
- **Single Function Configuration**: All rerank settings (model, API keys, top_k, etc.) are contained within the rerank function
- **Async Processing**: Non-blocking rerank operations
- **Error Handling**: Graceful fallback to original results
- **Optional Feature**: Can be enabled/disabled via configuration
@ -29,24 +20,11 @@ The rerank integration follows the same design pattern as the LLM integration:
### Environment Variables
Set these variables in your `.env` file or environment:
Set this variable in your `.env` file or environment:
```bash
# Enable/disable reranking
ENABLE_RERANK=True
# Rerank model configuration
RERANK_MODEL=BAAI/bge-reranker-v2-m3
RERANK_MAX_ASYNC=4
RERANK_TOP_K=10
# API configuration
RERANK_API_KEY=your_rerank_api_key_here
RERANK_BASE_URL=https://api.your-provider.com/v1/rerank
# Provider-specific keys (optional alternatives)
JINA_API_KEY=your_jina_api_key_here
COHERE_API_KEY=your_cohere_api_key_here
```
### Programmatic Configuration
@ -55,15 +33,27 @@ COHERE_API_KEY=your_cohere_api_key_here
from lightrag import LightRAG
from lightrag.rerank import custom_rerank, RerankModel
# Method 1: Using environment variables (recommended)
# Method 1: Using a custom rerank function with all settings included
async def my_rerank_func(query: str, documents: list, top_k: int = None, **kwargs):
return await custom_rerank(
query=query,
documents=documents,
model="BAAI/bge-reranker-v2-m3",
base_url="https://api.your-provider.com/v1/rerank",
api_key="your_api_key_here",
top_k=top_k or 10, # Handle top_k within the function
**kwargs
)
rag = LightRAG(
working_dir="./rag_storage",
llm_model_func=your_llm_func,
embedding_func=your_embedding_func,
# Rerank automatically configured from environment variables
enable_rerank=True,
rerank_model_func=my_rerank_func,
)
# Method 2: Explicit configuration
# Method 2: Using RerankModel wrapper
rerank_model = RerankModel(
rerank_func=custom_rerank,
kwargs={
@ -79,7 +69,6 @@ rag = LightRAG(
embedding_func=your_embedding_func,
enable_rerank=True,
rerank_model_func=rerank_model.rerank,
rerank_top_k=10,
)
```
@ -112,7 +101,8 @@ result = await jina_rerank(
query="your query",
documents=documents,
model="BAAI/bge-reranker-v2-m3",
api_key="your_jina_api_key"
api_key="your_jina_api_key",
top_k=10
)
```
@ -125,7 +115,8 @@ result = await cohere_rerank(
query="your query",
documents=documents,
model="rerank-english-v2.0",
api_key="your_cohere_api_key"
api_key="your_cohere_api_key",
top_k=10
)
```
@ -143,11 +134,7 @@ Reranking is automatically applied at these key retrieval stages:
| Parameter | Type | Default | Description |
|-----------|------|---------|-------------|
| `enable_rerank` | bool | False | Enable/disable reranking |
| `rerank_model_name` | str | "BAAI/bge-reranker-v2-m3" | Model identifier |
| `rerank_model_max_async` | int | 4 | Max concurrent rerank calls |
| `rerank_top_k` | int | 10 | Number of top results to return ⚠️ **Overridden by QueryParam.top_k** |
| `rerank_model_func` | callable | None | Custom rerank function |
| `rerank_model_kwargs` | dict | {} | Additional rerank parameters |
| `rerank_model_func` | callable | None | Custom rerank function containing all configurations (model, API keys, top_k, etc.) |
## Example Usage
@ -157,6 +144,18 @@ Reranking is automatically applied at these key retrieval stages:
import asyncio
from lightrag import LightRAG, QueryParam
from lightrag.llm.openai import gpt_4o_mini_complete, openai_embedding
from lightrag.rerank import jina_rerank
async def my_rerank_func(query: str, documents: list, top_k: int = None, **kwargs):
"""Custom rerank function with all settings included"""
return await jina_rerank(
query=query,
documents=documents,
model="BAAI/bge-reranker-v2-m3",
api_key="your_jina_api_key_here",
top_k=top_k or 10, # Default top_k if not provided
**kwargs
)
async def main():
# Initialize with rerank enabled
@ -165,20 +164,21 @@ async def main():
llm_model_func=gpt_4o_mini_complete,
embedding_func=openai_embedding,
enable_rerank=True,
rerank_model_func=my_rerank_func,
)
# Insert documents
await rag.ainsert([
"Document 1 content...",
"Document 2 content...",
])
# Query with rerank (automatically applied)
result = await rag.aquery(
"Your question here",
param=QueryParam(mode="hybrid", top_k=5) # ⚠️ This top_k=5 overrides rerank_top_k
param=QueryParam(mode="hybrid", top_k=5) # This top_k is passed to rerank function
)
print(result)
asyncio.run(main())
@ -195,7 +195,7 @@ async def test_rerank():
{"content": "Text about topic B"},
{"content": "Text about topic C"},
]
reranked = await custom_rerank(
query="Tell me about topic A",
documents=documents,
@ -204,26 +204,26 @@ async def test_rerank():
api_key="your_api_key_here",
top_k=2
)
for doc in reranked:
print(f"Score: {doc.get('rerank_score')}, Content: {doc.get('content')}")
```
## Best Practices
1. **Parameter Priority Awareness**: Remember that QueryParam.top_k always overrides rerank_top_k configuration
1. **Self-Contained Functions**: Include all necessary configurations (API keys, models, top_k handling) within your rerank function
2. **Performance**: Use reranking selectively for better performance vs. quality tradeoff
3. **API Limits**: Monitor API usage and implement rate limiting if needed
3. **API Limits**: Monitor API usage and implement rate limiting within your rerank function
4. **Fallback**: Always handle rerank failures gracefully (returns original results)
5. **Top-k Selection**: Choose appropriate `top_k` values in QueryParam based on your use case
5. **Top-k Handling**: Handle top_k parameter appropriately within your rerank function
6. **Cost Management**: Consider rerank API costs in your budget planning
## Troubleshooting
### Common Issues
1. **API Key Missing**: Ensure `RERANK_API_KEY` or provider-specific keys are set
2. **Network Issues**: Check `RERANK_BASE_URL` and network connectivity
1. **API Key Missing**: Ensure API keys are properly configured within your rerank function
2. **Network Issues**: Check API endpoints and network connectivity
3. **Model Errors**: Verify the rerank model name is supported by your API
4. **Document Format**: Ensure documents have `content` or `text` fields
@ -268,4 +268,4 @@ The generic rerank API expects this response format:
This is compatible with:
- Jina AI Rerank API
- Cohere Rerank API
- Custom APIs following the same format
- Custom APIs following the same format

View file

@ -182,11 +182,3 @@ REDIS_URI=redis://localhost:6379
# Rerank Configuration
ENABLE_RERANK=False
RERANK_MODEL=BAAI/bge-reranker-v2-m3
RERANK_MAX_ASYNC=4
RERANK_TOP_K=10
# Note: QueryParam.top_k in your code will override RERANK_TOP_K setting
# Rerank API Configuration
RERANK_API_KEY=your_rerank_api_key_here
RERANK_BASE_URL=https://api.your-provider.com/v1/rerank

View file

@ -4,19 +4,12 @@ LightRAG Rerank Integration Example
This example demonstrates how to use rerank functionality with LightRAG
to improve retrieval quality across different query modes.
IMPORTANT: Parameter Priority
- QueryParam(top_k=N) has higher priority than rerank_top_k in LightRAG configuration
- If you set QueryParam(top_k=5), it will override rerank_top_k setting
- For optimal rerank performance, use appropriate top_k values in QueryParam
Configuration Required:
1. Set your LLM API key and base URL in llm_model_func()
2. Set your embedding API key and base URL in embedding_func()
2. Set your embedding API key and base URL in embedding_func()
3. Set your rerank API key and base URL in the rerank configuration
4. Or use environment variables (.env file):
- RERANK_API_KEY=your_actual_rerank_api_key
- RERANK_BASE_URL=https://your-actual-rerank-endpoint/v1/rerank
- RERANK_MODEL=your_rerank_model_name
- ENABLE_RERANK=True
"""
import asyncio
@ -35,6 +28,7 @@ setup_logger("test_rerank")
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
async def llm_model_func(
prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
@ -48,6 +42,7 @@ async def llm_model_func(
**kwargs,
)
async def embedding_func(texts: list[str]) -> np.ndarray:
return await openai_embed(
texts,
@ -56,25 +51,29 @@ async def embedding_func(texts: list[str]) -> np.ndarray:
base_url="https://api.your-embedding-provider.com/v1",
)
async def my_rerank_func(query: str, documents: list, top_k: int = None, **kwargs):
"""Custom rerank function with all settings included"""
return await custom_rerank(
query=query,
documents=documents,
model="BAAI/bge-reranker-v2-m3",
base_url="https://api.your-rerank-provider.com/v1/rerank",
api_key="your_rerank_api_key_here",
top_k=top_k or 10, # Default top_k if not provided
**kwargs,
)
async def create_rag_with_rerank():
"""Create LightRAG instance with rerank configuration"""
# Get embedding dimension
test_embedding = await embedding_func(["test"])
embedding_dim = test_embedding.shape[1]
print(f"Detected embedding dimension: {embedding_dim}")
# Create rerank model
rerank_model = RerankModel(
rerank_func=custom_rerank,
kwargs={
"model": "BAAI/bge-reranker-v2-m3",
"base_url": "https://api.your-rerank-provider.com/v1/rerank",
"api_key": "your_rerank_api_key_here",
}
)
# Initialize LightRAG with rerank
# Method 1: Using custom rerank function
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=llm_model_func,
@ -83,69 +82,100 @@ async def create_rag_with_rerank():
max_token_size=8192,
func=embedding_func,
),
# Rerank Configuration
# Simplified Rerank Configuration
enable_rerank=True,
rerank_model_func=rerank_model.rerank,
rerank_top_k=10, # Note: QueryParam.top_k will override this
rerank_model_func=my_rerank_func,
)
return rag
async def create_rag_with_rerank_model():
"""Alternative: Create LightRAG instance using RerankModel wrapper"""
# Get embedding dimension
test_embedding = await embedding_func(["test"])
embedding_dim = test_embedding.shape[1]
print(f"Detected embedding dimension: {embedding_dim}")
# Method 2: Using RerankModel wrapper
rerank_model = RerankModel(
rerank_func=custom_rerank,
kwargs={
"model": "BAAI/bge-reranker-v2-m3",
"base_url": "https://api.your-rerank-provider.com/v1/rerank",
"api_key": "your_rerank_api_key_here",
},
)
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=llm_model_func,
embedding_func=EmbeddingFunc(
embedding_dim=embedding_dim,
max_token_size=8192,
func=embedding_func,
),
enable_rerank=True,
rerank_model_func=rerank_model.rerank,
)
return rag
async def test_rerank_with_different_topk():
"""
Test rerank functionality with different top_k settings to demonstrate parameter priority
Test rerank functionality with different top_k settings
"""
print("🚀 Setting up LightRAG with Rerank functionality...")
rag = await create_rag_with_rerank()
# Insert sample documents
sample_docs = [
"Reranking improves retrieval quality by re-ordering documents based on relevance.",
"LightRAG is a powerful retrieval-augmented generation system with multiple query modes.",
"Vector databases enable efficient similarity search in high-dimensional embedding spaces.",
"Natural language processing has evolved with large language models and transformers.",
"Machine learning algorithms can learn patterns from data without explicit programming."
"Machine learning algorithms can learn patterns from data without explicit programming.",
]
print("📄 Inserting sample documents...")
await rag.ainsert(sample_docs)
query = "How does reranking improve retrieval quality?"
print(f"\n🔍 Testing query: '{query}'")
print("=" * 80)
# Test different top_k values to show parameter priority
top_k_values = [2, 5, 10]
for top_k in top_k_values:
print(f"\n📊 Testing with QueryParam(top_k={top_k}) - overrides rerank_top_k=10:")
print(f"\n📊 Testing with QueryParam(top_k={top_k}):")
# Test naive mode with specific top_k
result = await rag.aquery(
query,
param=QueryParam(mode="naive", top_k=top_k)
)
result = await rag.aquery(query, param=QueryParam(mode="naive", top_k=top_k))
print(f" Result length: {len(result)} characters")
print(f" Preview: {result[:100]}...")
async def test_direct_rerank():
"""Test rerank function directly"""
print("\n🔧 Direct Rerank API Test")
print("=" * 40)
documents = [
{"content": "Reranking significantly improves retrieval quality"},
{"content": "LightRAG supports advanced reranking capabilities"},
{"content": "Vector search finds semantically similar documents"},
{"content": "Natural language processing with modern transformers"},
{"content": "The quick brown fox jumps over the lazy dog"}
{"content": "The quick brown fox jumps over the lazy dog"},
]
query = "rerank improve quality"
print(f"Query: '{query}'")
print(f"Documents: {len(documents)}")
try:
reranked_docs = await custom_rerank(
query=query,
@ -153,41 +183,44 @@ async def test_direct_rerank():
model="BAAI/bge-reranker-v2-m3",
base_url="https://api.your-rerank-provider.com/v1/rerank",
api_key="your_rerank_api_key_here",
top_k=3
top_k=3,
)
print("\n✅ Rerank Results:")
for i, doc in enumerate(reranked_docs):
score = doc.get("rerank_score", "N/A")
content = doc.get("content", "")[:60]
print(f" {i+1}. Score: {score:.4f} | {content}...")
except Exception as e:
print(f"❌ Rerank failed: {e}")
async def main():
"""Main example function"""
print("🎯 LightRAG Rerank Integration Example")
print("=" * 60)
try:
# Test rerank with different top_k values
await test_rerank_with_different_topk()
# Test direct rerank
await test_direct_rerank()
print("\n✅ Example completed successfully!")
print("\n💡 Key Points:")
print("QueryParam.top_k has higher priority than rerank_top_k")
print("All rerank configurations are contained within rerank_model_func")
print(" ✓ Rerank improves document relevance ordering")
print(" ✓ Configure API keys in your .env file for production")
print(" ✓ Configure API keys within your rerank function")
print(" ✓ Monitor API usage and costs when using rerank services")
except Exception as e:
print(f"\n❌ Example failed: {e}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
asyncio.run(main())
asyncio.run(main())

View file

@ -249,25 +249,7 @@ class LightRAG:
"""Enable reranking for improved retrieval quality. Defaults to False."""
rerank_model_func: Callable[..., object] | None = field(default=None)
"""Function for reranking retrieved documents. Optional."""
rerank_model_name: str = field(
default=os.getenv("RERANK_MODEL", "BAAI/bge-reranker-v2-m3")
)
"""Name of the rerank model used for reranking documents."""
rerank_model_max_async: int = field(default=int(os.getenv("RERANK_MAX_ASYNC", 4)))
"""Maximum number of concurrent rerank calls."""
rerank_model_kwargs: dict[str, Any] = field(default_factory=dict)
"""Additional keyword arguments passed to the rerank model function."""
rerank_top_k: int = field(default=int(os.getenv("RERANK_TOP_K", 10)))
"""Number of top documents to return after reranking.
Note: This value will be overridden by QueryParam.top_k in query calls.
Example: QueryParam(top_k=5) will override rerank_top_k=10 setting.
"""
"""Function for reranking retrieved documents. All rerank configurations (model name, API keys, top_k, etc.) should be included in this function. Optional."""
# Storage
# ---
@ -475,14 +457,6 @@ class LightRAG:
# Init Rerank
if self.enable_rerank and self.rerank_model_func:
self.rerank_model_func = priority_limit_async_func_call(
self.rerank_model_max_async
)(
partial(
self.rerank_model_func, # type: ignore
**self.rerank_model_kwargs,
)
)
logger.info("Rerank model initialized for improved retrieval quality")
elif self.enable_rerank and not self.rerank_model_func:
logger.warning(

View file

@ -2864,19 +2864,15 @@ async def apply_rerank_if_enabled(
return retrieved_docs
try:
# Determine top_k for reranking
rerank_top_k = top_k or global_config.get("rerank_top_k", 10)
rerank_top_k = min(rerank_top_k, len(retrieved_docs))
logger.debug(
f"Applying rerank to {len(retrieved_docs)} documents, returning top {rerank_top_k}"
f"Applying rerank to {len(retrieved_docs)} documents, returning top {top_k}"
)
# Apply reranking
# Apply reranking - let rerank_model_func handle top_k internally
reranked_docs = await rerank_func(
query=query,
documents=retrieved_docs,
top_k=rerank_top_k,
top_k=top_k,
)
if reranked_docs and len(reranked_docs) > 0:
@ -2886,7 +2882,7 @@ async def apply_rerank_if_enabled(
return reranked_docs
else:
logger.warning("Rerank returned empty results, using original documents")
return retrieved_docs[:rerank_top_k] if rerank_top_k else retrieved_docs
return retrieved_docs
except Exception as e:
logger.error(f"Error during reranking: {e}, using original documents")

View file

@ -1,12 +1,9 @@
from __future__ import annotations
import os
import json
import aiohttp
import numpy as np
from typing import Callable, Any, List, Dict, Optional
from pydantic import BaseModel, Field
from dataclasses import asdict
from .utils import logger
@ -15,14 +12,17 @@ class RerankModel(BaseModel):
"""
Pydantic model class for defining a custom rerank model.
This class provides a convenient wrapper for rerank functions, allowing you to
encapsulate all rerank configurations (API keys, model settings, etc.) in one place.
Attributes:
rerank_func (Callable[[Any], List[Dict]]): A callable function that reranks documents.
The function should take query and documents as input and return reranked results.
kwargs (Dict[str, Any]): A dictionary that contains the arguments to pass to the callable function.
This could include parameters such as the model name, API key, etc.
This should include all necessary configurations such as model name, API key, base_url, etc.
Example usage:
Rerank model example from jina:
Rerank model example with Jina:
```python
rerank_model = RerankModel(
rerank_func=jina_rerank,
@ -32,6 +32,32 @@ class RerankModel(BaseModel):
"base_url": "https://api.jina.ai/v1/rerank"
}
)
# Use in LightRAG
rag = LightRAG(
enable_rerank=True,
rerank_model_func=rerank_model.rerank,
# ... other configurations
)
```
Or define a custom function directly:
```python
async def my_rerank_func(query: str, documents: list, top_k: int = None, **kwargs):
return await jina_rerank(
query=query,
documents=documents,
model="BAAI/bge-reranker-v2-m3",
api_key="your_api_key_here",
top_k=top_k or 10,
**kwargs
)
rag = LightRAG(
enable_rerank=True,
rerank_model_func=my_rerank_func,
# ... other configurations
)
```
"""
@ -43,25 +69,22 @@ class RerankModel(BaseModel):
query: str,
documents: List[Dict[str, Any]],
top_k: Optional[int] = None,
**extra_kwargs
**extra_kwargs,
) -> List[Dict[str, Any]]:
"""Rerank documents using the configured model function."""
# Merge extra kwargs with model kwargs
kwargs = {**self.kwargs, **extra_kwargs}
return await self.rerank_func(
query=query,
documents=documents,
top_k=top_k,
**kwargs
query=query, documents=documents, top_k=top_k, **kwargs
)
class MultiRerankModel(BaseModel):
"""Multiple rerank models for different modes/scenarios."""
# Primary rerank model (used if mode-specific models are not defined)
rerank_model: Optional[RerankModel] = None
# Mode-specific rerank models
entity_rerank_model: Optional[RerankModel] = None
relation_rerank_model: Optional[RerankModel] = None
@ -73,10 +96,10 @@ class MultiRerankModel(BaseModel):
documents: List[Dict[str, Any]],
mode: str = "default",
top_k: Optional[int] = None,
**kwargs
**kwargs,
) -> List[Dict[str, Any]]:
"""Rerank using the appropriate model based on mode."""
# Select model based on mode
if mode == "entity" and self.entity_rerank_model:
model = self.entity_rerank_model
@ -89,7 +112,7 @@ class MultiRerankModel(BaseModel):
else:
logger.warning(f"No rerank model available for mode: {mode}")
return documents
return await model.rerank(query, documents, top_k, **kwargs)
@ -100,11 +123,11 @@ async def generic_rerank_api(
base_url: str,
api_key: str,
top_k: Optional[int] = None,
**kwargs
**kwargs,
) -> List[Dict[str, Any]]:
"""
Generic rerank function that works with Jina/Cohere compatible APIs.
Args:
query: The search query
documents: List of documents to rerank
@ -113,43 +136,35 @@ async def generic_rerank_api(
api_key: API authentication key
top_k: Number of top results to return
**kwargs: Additional API-specific parameters
Returns:
List of reranked documents with relevance scores
"""
if not api_key:
logger.warning("No API key provided for rerank service")
return documents
if not documents:
return documents
# Prepare documents for reranking - handle both text and dict formats
prepared_docs = []
for doc in documents:
if isinstance(doc, dict):
# Use 'content' field if available, otherwise use 'text' or convert to string
text = doc.get('content') or doc.get('text') or str(doc)
text = doc.get("content") or doc.get("text") or str(doc)
else:
text = str(doc)
prepared_docs.append(text)
# Prepare request
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}"
}
data = {
"model": model,
"query": query,
"documents": prepared_docs,
**kwargs
}
headers = {"Content-Type": "application/json", "Authorization": f"Bearer {api_key}"}
data = {"model": model, "query": query, "documents": prepared_docs, **kwargs}
if top_k is not None:
data["top_k"] = min(top_k, len(prepared_docs))
try:
async with aiohttp.ClientSession() as session:
async with session.post(base_url, headers=headers, json=data) as response:
@ -157,9 +172,9 @@ async def generic_rerank_api(
error_text = await response.text()
logger.error(f"Rerank API error {response.status}: {error_text}")
return documents
result = await response.json()
# Extract reranked results
if "results" in result:
# Standard format: results contain index and relevance_score
@ -170,13 +185,15 @@ async def generic_rerank_api(
if 0 <= doc_idx < len(documents):
reranked_doc = documents[doc_idx].copy()
if "relevance_score" in item:
reranked_doc["rerank_score"] = item["relevance_score"]
reranked_doc["rerank_score"] = item[
"relevance_score"
]
reranked_docs.append(reranked_doc)
return reranked_docs
else:
logger.warning("Unexpected rerank API response format")
return documents
except Exception as e:
logger.error(f"Error during reranking: {e}")
return documents
@ -189,11 +206,11 @@ async def jina_rerank(
top_k: Optional[int] = None,
base_url: str = "https://api.jina.ai/v1/rerank",
api_key: Optional[str] = None,
**kwargs
**kwargs,
) -> List[Dict[str, Any]]:
"""
Rerank documents using Jina AI API.
Args:
query: The search query
documents: List of documents to rerank
@ -202,13 +219,13 @@ async def jina_rerank(
base_url: Jina API endpoint
api_key: Jina API key
**kwargs: Additional parameters
Returns:
List of reranked documents with relevance scores
"""
if api_key is None:
api_key = os.getenv("JINA_API_KEY") or os.getenv("RERANK_API_KEY")
return await generic_rerank_api(
query=query,
documents=documents,
@ -216,7 +233,7 @@ async def jina_rerank(
base_url=base_url,
api_key=api_key,
top_k=top_k,
**kwargs
**kwargs,
)
@ -227,11 +244,11 @@ async def cohere_rerank(
top_k: Optional[int] = None,
base_url: str = "https://api.cohere.ai/v1/rerank",
api_key: Optional[str] = None,
**kwargs
**kwargs,
) -> List[Dict[str, Any]]:
"""
Rerank documents using Cohere API.
Args:
query: The search query
documents: List of documents to rerank
@ -240,13 +257,13 @@ async def cohere_rerank(
base_url: Cohere API endpoint
api_key: Cohere API key
**kwargs: Additional parameters
Returns:
List of reranked documents with relevance scores
"""
if api_key is None:
api_key = os.getenv("COHERE_API_KEY") or os.getenv("RERANK_API_KEY")
return await generic_rerank_api(
query=query,
documents=documents,
@ -254,7 +271,7 @@ async def cohere_rerank(
base_url=base_url,
api_key=api_key,
top_k=top_k,
**kwargs
**kwargs,
)
@ -266,7 +283,7 @@ async def custom_rerank(
base_url: str,
api_key: str,
top_k: Optional[int] = None,
**kwargs
**kwargs,
) -> List[Dict[str, Any]]:
"""
Rerank documents using a custom API endpoint.
@ -279,7 +296,7 @@ async def custom_rerank(
base_url=base_url,
api_key=api_key,
top_k=top_k,
**kwargs
**kwargs,
)
@ -293,15 +310,12 @@ if __name__ == "__main__":
{"content": "Tokyo is the capital of Japan."},
{"content": "London is the capital of England."},
]
query = "What is the capital of France?"
result = await jina_rerank(
query=query,
documents=docs,
top_k=2,
api_key="your-api-key-here"
query=query, documents=docs, top_k=2, api_key="your-api-key-here"
)
print(result)
asyncio.run(main())
asyncio.run(main())