Merge pull request #2328 from HKUDS/apply-dim-to-embedding-call

Feat: Add Optional Embedding Dimension Parameter Control with Jina API Compliance
This commit is contained in:
Daniel.y 2025-11-08 02:10:08 +08:00 committed by GitHub
commit f4492d48dc
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
8 changed files with 142 additions and 53 deletions

View file

@ -242,6 +242,14 @@ OLLAMA_LLM_NUM_CTX=32768
### EMBEDDING_BINDING_HOST: host only for Ollama, endpoint for other Embedding service
#######################################################################################
# EMBEDDING_TIMEOUT=30
### Control whether to send embedding_dim parameter to embedding API
### IMPORTANT: Jina ALWAYS sends dimension parameter (API requirement) - this setting is ignored for Jina
### For OpenAI: Set to 'true' to enable dynamic dimension adjustment
### For OpenAI: Set to 'false' (default) to disable sending dimension parameter
### Note: Automatically ignored for backends that don't support dimension parameter (e.g., Ollama)
# EMBEDDING_SEND_DIM=false
EMBEDDING_BINDING=ollama
EMBEDDING_MODEL=bge-m3:latest
EMBEDDING_DIM=1024

View file

@ -343,6 +343,7 @@ def parse_args() -> argparse.Namespace:
args.llm_model = get_env_value("LLM_MODEL", "mistral-nemo:latest")
args.embedding_model = get_env_value("EMBEDDING_MODEL", "bge-m3:latest")
args.embedding_dim = get_env_value("EMBEDDING_DIM", 1024, int)
args.embedding_send_dim = get_env_value("EMBEDDING_SEND_DIM", False, bool)
# Inject chunk configuration
args.chunk_size = get_env_value("CHUNK_SIZE", 1200, int)

View file

@ -15,7 +15,6 @@ import logging.config
import sys
import uvicorn
import pipmaster as pm
import inspect
from fastapi.staticfiles import StaticFiles
from fastapi.responses import RedirectResponse
from pathlib import Path
@ -599,14 +598,14 @@ def create_app(args):
return {}
def create_optimized_embedding_function(
config_cache: LLMConfigCache, binding, model, host, api_key, dimensions, args
config_cache: LLMConfigCache, binding, model, host, api_key, args
):
"""
Create optimized embedding function with pre-processed configuration for applicable bindings.
Uses lazy imports for all bindings and avoids repeated configuration parsing.
"""
async def optimized_embedding_function(texts):
async def optimized_embedding_function(texts, embedding_dim=None):
try:
if binding == "lollms":
from lightrag.llm.lollms import lollms_embed
@ -645,13 +644,20 @@ def create_app(args):
from lightrag.llm.jina import jina_embed
return await jina_embed(
texts, dimensions=dimensions, base_url=host, api_key=api_key
texts,
embedding_dim=embedding_dim,
base_url=host,
api_key=api_key,
)
else: # openai and compatible
from lightrag.llm.openai import openai_embed
return await openai_embed(
texts, model=model, base_url=host, api_key=api_key
texts,
model=model,
base_url=host,
api_key=api_key,
embedding_dim=embedding_dim,
)
except ImportError as e:
raise Exception(f"Failed to import {binding} embedding: {e}")
@ -691,17 +697,52 @@ def create_app(args):
)
# Create embedding function with optimized configuration
import inspect
# Create the optimized embedding function
optimized_embedding_func = create_optimized_embedding_function(
config_cache=config_cache,
binding=args.embedding_binding,
model=args.embedding_model,
host=args.embedding_binding_host,
api_key=args.embedding_binding_api_key,
args=args, # Pass args object for fallback option generation
)
# Get embedding_send_dim from centralized configuration
embedding_send_dim = args.embedding_send_dim
# Check if the function signature has embedding_dim parameter
# Note: Since optimized_embedding_func is an async function, inspect its signature
sig = inspect.signature(optimized_embedding_func)
has_embedding_dim_param = "embedding_dim" in sig.parameters
# Determine send_dimensions value based on binding type
# Jina REQUIRES dimension parameter (forced to True)
# OpenAI and others: controlled by EMBEDDING_SEND_DIM environment variable
if args.embedding_binding == "jina":
# Jina API requires dimension parameter - always send it
send_dimensions = has_embedding_dim_param
dimension_control = "forced by Jina API"
else:
# For OpenAI and other bindings, respect EMBEDDING_SEND_DIM setting
send_dimensions = embedding_send_dim and has_embedding_dim_param
if send_dimensions or not embedding_send_dim:
dimension_control = "by env var"
else:
dimension_control = "by not hasparam"
logger.info(
f"Send embedding dimension: {send_dimensions} {dimension_control} "
f"(dimensions={args.embedding_dim}, has_param={has_embedding_dim_param}, "
f"binding={args.embedding_binding})"
)
# Create EmbeddingFunc with send_dimensions attribute
embedding_func = EmbeddingFunc(
embedding_dim=args.embedding_dim,
func=create_optimized_embedding_function(
config_cache=config_cache,
binding=args.embedding_binding,
model=args.embedding_model,
host=args.embedding_binding_host,
api_key=args.embedding_binding_api_key,
dimensions=args.embedding_dim,
args=args, # Pass args object for fallback option generation
),
func=optimized_embedding_func,
send_dimensions=send_dimensions,
)
# Configure rerank function based on args.rerank_bindingparameter

View file

@ -472,6 +472,9 @@ class OllamaLLMOptions(_OllamaOptionsMixin, BindingOptions):
_binding_name: ClassVar[str] = "ollama_llm"
# =============================================================================
# Binding Options for Gemini
# =============================================================================
@dataclass
class GeminiLLMOptions(BindingOptions):
"""Options for Google Gemini models."""

View file

@ -69,7 +69,7 @@ async def fetch_data(url, headers, data):
)
async def jina_embed(
texts: list[str],
dimensions: int = 2048,
embedding_dim: int = 2048,
late_chunking: bool = False,
base_url: str = None,
api_key: str = None,
@ -78,7 +78,12 @@ async def jina_embed(
Args:
texts: List of texts to embed.
dimensions: The embedding dimensions (default: 2048 for jina-embeddings-v4).
embedding_dim: The embedding dimensions (default: 2048 for jina-embeddings-v4).
**IMPORTANT**: This parameter is automatically injected by the EmbeddingFunc wrapper.
Do NOT manually pass this parameter when calling the function directly.
The dimension is controlled by the @wrap_embedding_func_with_attrs decorator.
Manually passing a different value will trigger a warning and be ignored.
When provided (by EmbeddingFunc), it will be passed to the Jina API for dimension reduction.
late_chunking: Whether to use late chunking.
base_url: Optional base URL for the Jina API.
api_key: Optional Jina API key. If None, uses the JINA_API_KEY environment variable.
@ -104,7 +109,7 @@ async def jina_embed(
data = {
"model": "jina-embeddings-v4",
"task": "text-matching",
"dimensions": dimensions,
"dimensions": embedding_dim,
"embedding_type": "base64",
"input": texts,
}
@ -114,7 +119,7 @@ async def jina_embed(
data["late_chunking"] = late_chunking
logger.debug(
f"Jina embedding request: {len(texts)} texts, dimensions: {dimensions}"
f"Jina embedding request: {len(texts)} texts, dimensions: {embedding_dim}"
)
try:

View file

@ -613,6 +613,7 @@ async def openai_embed(
model: str = "text-embedding-3-small",
base_url: str | None = None,
api_key: str | None = None,
embedding_dim: int | None = None,
client_configs: dict[str, Any] | None = None,
token_tracker: Any | None = None,
) -> np.ndarray:
@ -623,6 +624,12 @@ async def openai_embed(
model: The OpenAI embedding model to use.
base_url: Optional base URL for the OpenAI API.
api_key: Optional OpenAI API key. If None, uses the OPENAI_API_KEY environment variable.
embedding_dim: Optional embedding dimension for dynamic dimension reduction.
**IMPORTANT**: This parameter is automatically injected by the EmbeddingFunc wrapper.
Do NOT manually pass this parameter when calling the function directly.
The dimension is controlled by the @wrap_embedding_func_with_attrs decorator.
Manually passing a different value will trigger a warning and be ignored.
When provided (by EmbeddingFunc), it will be passed to the OpenAI API for dimension reduction.
client_configs: Additional configuration options for the AsyncOpenAI client.
These will override any default configurations but will be overridden by
explicit parameters (api_key, base_url).
@ -642,9 +649,19 @@ async def openai_embed(
)
async with openai_async_client:
response = await openai_async_client.embeddings.create(
model=model, input=texts, encoding_format="base64"
)
# Prepare API call parameters
api_params = {
"model": model,
"input": texts,
"encoding_format": "base64",
}
# Add dimensions parameter only if embedding_dim is provided
if embedding_dim is not None:
api_params["dimensions"] = embedding_dim
# Make API call
response = await openai_async_client.embeddings.create(**api_params)
if token_tracker and hasattr(response, "usage"):
token_counts = {

View file

@ -3425,10 +3425,10 @@ async def _perform_kg_search(
)
query_embedding = None
if query and (kg_chunk_pick_method == "VECTOR" or chunks_vdb):
embedding_func_config = text_chunks_db.embedding_func
if embedding_func_config and embedding_func_config.func:
actual_embedding_func = text_chunks_db.embedding_func
if actual_embedding_func:
try:
query_embedding = await embedding_func_config.func([query])
query_embedding = await actual_embedding_func([query])
query_embedding = query_embedding[
0
] # Extract first embedding from batch result
@ -4336,25 +4336,21 @@ async def _find_related_text_unit_from_entities(
num_of_chunks = int(max_related_chunks * len(entities_with_chunks) / 2)
# Get embedding function from global config
embedding_func_config = text_chunks_db.embedding_func
if not embedding_func_config:
actual_embedding_func = text_chunks_db.embedding_func
if not actual_embedding_func:
logger.warning("No embedding function found, falling back to WEIGHT method")
kg_chunk_pick_method = "WEIGHT"
else:
try:
actual_embedding_func = embedding_func_config.func
selected_chunk_ids = None
if actual_embedding_func:
selected_chunk_ids = await pick_by_vector_similarity(
query=query,
text_chunks_storage=text_chunks_db,
chunks_vdb=chunks_vdb,
num_of_chunks=num_of_chunks,
entity_info=entities_with_chunks,
embedding_func=actual_embedding_func,
query_embedding=query_embedding,
)
selected_chunk_ids = await pick_by_vector_similarity(
query=query,
text_chunks_storage=text_chunks_db,
chunks_vdb=chunks_vdb,
num_of_chunks=num_of_chunks,
entity_info=entities_with_chunks,
embedding_func=actual_embedding_func,
query_embedding=query_embedding,
)
if selected_chunk_ids == []:
kg_chunk_pick_method = "WEIGHT"
@ -4629,24 +4625,21 @@ async def _find_related_text_unit_from_relations(
num_of_chunks = int(max_related_chunks * len(relations_with_chunks) / 2)
# Get embedding function from global config
embedding_func_config = text_chunks_db.embedding_func
if not embedding_func_config:
actual_embedding_func = text_chunks_db.embedding_func
if not actual_embedding_func:
logger.warning("No embedding function found, falling back to WEIGHT method")
kg_chunk_pick_method = "WEIGHT"
else:
try:
actual_embedding_func = embedding_func_config.func
if actual_embedding_func:
selected_chunk_ids = await pick_by_vector_similarity(
query=query,
text_chunks_storage=text_chunks_db,
chunks_vdb=chunks_vdb,
num_of_chunks=num_of_chunks,
entity_info=relations_with_chunks,
embedding_func=actual_embedding_func,
query_embedding=query_embedding,
)
selected_chunk_ids = await pick_by_vector_similarity(
query=query,
text_chunks_storage=text_chunks_db,
chunks_vdb=chunks_vdb,
num_of_chunks=num_of_chunks,
entity_info=relations_with_chunks,
embedding_func=actual_embedding_func,
query_embedding=query_embedding,
)
if selected_chunk_ids == []:
kg_chunk_pick_method = "WEIGHT"

View file

@ -353,8 +353,29 @@ class EmbeddingFunc:
embedding_dim: int
func: callable
max_token_size: int | None = None # deprecated keep it for compatible only
send_dimensions: bool = (
False # Control whether to send embedding_dim to the function
)
async def __call__(self, *args, **kwargs) -> np.ndarray:
# Only inject embedding_dim when send_dimensions is True
if self.send_dimensions:
# Check if user provided embedding_dim parameter
if "embedding_dim" in kwargs:
user_provided_dim = kwargs["embedding_dim"]
# If user's value differs from class attribute, output warning
if (
user_provided_dim is not None
and user_provided_dim != self.embedding_dim
):
logger.warning(
f"Ignoring user-provided embedding_dim={user_provided_dim}, "
f"using declared embedding_dim={self.embedding_dim} from decorator"
)
# Inject embedding_dim from decorator
kwargs["embedding_dim"] = self.embedding_dim
return await self.func(*args, **kwargs)