cherry-pick 112349ed
This commit is contained in:
parent
a122637388
commit
f2d759f832
2 changed files with 98 additions and 395 deletions
|
|
@ -1,6 +1,4 @@
|
|||
from collections.abc import AsyncIterator
|
||||
import os
|
||||
import re
|
||||
|
||||
import pipmaster as pm
|
||||
|
||||
|
|
@ -24,31 +22,8 @@ from lightrag.exceptions import (
|
|||
from lightrag.api import __api_version__
|
||||
|
||||
import numpy as np
|
||||
from typing import Optional, Union
|
||||
from lightrag.utils import (
|
||||
wrap_embedding_func_with_attrs,
|
||||
logger,
|
||||
)
|
||||
|
||||
|
||||
_OLLAMA_CLOUD_HOST = "https://ollama.com"
|
||||
_CLOUD_MODEL_SUFFIX_PATTERN = re.compile(r"(?:-cloud|:cloud)$")
|
||||
|
||||
|
||||
def _coerce_host_for_cloud_model(host: Optional[str], model: object) -> Optional[str]:
|
||||
if host:
|
||||
return host
|
||||
try:
|
||||
model_name_str = str(model) if model is not None else ""
|
||||
except (TypeError, ValueError, AttributeError) as e:
|
||||
logger.warning(f"Failed to convert model to string: {e}, using empty string")
|
||||
model_name_str = ""
|
||||
if _CLOUD_MODEL_SUFFIX_PATTERN.search(model_name_str):
|
||||
logger.debug(
|
||||
f"Detected cloud model '{model_name_str}', using Ollama Cloud host"
|
||||
)
|
||||
return _OLLAMA_CLOUD_HOST
|
||||
return host
|
||||
from typing import Union
|
||||
from lightrag.utils import logger
|
||||
|
||||
|
||||
@retry(
|
||||
|
|
@ -78,9 +53,6 @@ async def _ollama_model_if_cache(
|
|||
timeout = None
|
||||
kwargs.pop("hashing_kv", None)
|
||||
api_key = kwargs.pop("api_key", None)
|
||||
# fallback to environment variable when not provided explicitly
|
||||
if not api_key:
|
||||
api_key = os.getenv("OLLAMA_API_KEY")
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
"User-Agent": f"LightRAG/{__api_version__}",
|
||||
|
|
@ -88,8 +60,6 @@ async def _ollama_model_if_cache(
|
|||
if api_key:
|
||||
headers["Authorization"] = f"Bearer {api_key}"
|
||||
|
||||
host = _coerce_host_for_cloud_model(host, model)
|
||||
|
||||
ollama_client = ollama.AsyncClient(host=host, timeout=timeout, headers=headers)
|
||||
|
||||
try:
|
||||
|
|
@ -172,13 +142,8 @@ async def ollama_model_complete(
|
|||
)
|
||||
|
||||
|
||||
@wrap_embedding_func_with_attrs(embedding_dim=1024, max_token_size=8192)
|
||||
async def ollama_embed(
|
||||
texts: list[str], embed_model: str = "bge-m3:latest", **kwargs
|
||||
) -> np.ndarray:
|
||||
async def ollama_embed(texts: list[str], embed_model, **kwargs) -> np.ndarray:
|
||||
api_key = kwargs.pop("api_key", None)
|
||||
if not api_key:
|
||||
api_key = os.getenv("OLLAMA_API_KEY")
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
"User-Agent": f"LightRAG/{__api_version__}",
|
||||
|
|
@ -189,8 +154,6 @@ async def ollama_embed(
|
|||
host = kwargs.pop("host", None)
|
||||
timeout = kwargs.pop("timeout", None)
|
||||
|
||||
host = _coerce_host_for_cloud_model(host, embed_model)
|
||||
|
||||
ollama_client = ollama.AsyncClient(host=host, timeout=timeout, headers=headers)
|
||||
try:
|
||||
options = kwargs.pop("options", {})
|
||||
|
|
|
|||
|
|
@ -5,12 +5,12 @@ import logging
|
|||
from collections.abc import AsyncIterator
|
||||
|
||||
import pipmaster as pm
|
||||
|
||||
# install specific modules
|
||||
if not pm.is_installed("openai"):
|
||||
pm.install("openai")
|
||||
|
||||
from openai import (
|
||||
AsyncOpenAI,
|
||||
APIConnectionError,
|
||||
RateLimitError,
|
||||
APITimeoutError,
|
||||
|
|
@ -26,7 +26,6 @@ from lightrag.utils import (
|
|||
safe_unicode_decode,
|
||||
logger,
|
||||
)
|
||||
|
||||
from lightrag.types import GPTKeywordExtractionFormat
|
||||
from lightrag.api import __api_version__
|
||||
|
||||
|
|
@ -36,32 +35,6 @@ from typing import Any, Union
|
|||
|
||||
from dotenv import load_dotenv
|
||||
|
||||
# Try to import Langfuse for LLM observability (optional)
|
||||
# Falls back to standard OpenAI client if not available
|
||||
# Langfuse requires proper configuration to work correctly
|
||||
LANGFUSE_ENABLED = False
|
||||
try:
|
||||
# Check if required Langfuse environment variables are set
|
||||
langfuse_public_key = os.environ.get("LANGFUSE_PUBLIC_KEY")
|
||||
langfuse_secret_key = os.environ.get("LANGFUSE_SECRET_KEY")
|
||||
|
||||
# Only enable Langfuse if both keys are configured
|
||||
if langfuse_public_key and langfuse_secret_key:
|
||||
from langfuse.openai import AsyncOpenAI # type: ignore[import-untyped]
|
||||
|
||||
LANGFUSE_ENABLED = True
|
||||
logger.info("Langfuse observability enabled for OpenAI client")
|
||||
else:
|
||||
from openai import AsyncOpenAI
|
||||
|
||||
logger.debug(
|
||||
"Langfuse environment variables not configured, using standard OpenAI client"
|
||||
)
|
||||
except ImportError:
|
||||
from openai import AsyncOpenAI
|
||||
|
||||
logger.debug("Langfuse not available, using standard OpenAI client")
|
||||
|
||||
# use the .env that is inside the current folder
|
||||
# allows to use different .env file for each lightrag instance
|
||||
# the OS environment variables take precedence over the .env file
|
||||
|
|
@ -77,73 +50,46 @@ class InvalidResponseError(Exception):
|
|||
def create_openai_async_client(
|
||||
api_key: str | None = None,
|
||||
base_url: str | None = None,
|
||||
use_azure: bool = False,
|
||||
azure_deployment: str | None = None,
|
||||
api_version: str | None = None,
|
||||
timeout: int | None = None,
|
||||
client_configs: dict[str, Any] | None = None,
|
||||
) -> AsyncOpenAI:
|
||||
"""Create an AsyncOpenAI or AsyncAzureOpenAI client with the given configuration.
|
||||
"""Create an AsyncOpenAI client with the given configuration.
|
||||
|
||||
Args:
|
||||
api_key: OpenAI API key. If None, uses the OPENAI_API_KEY environment variable.
|
||||
base_url: Base URL for the OpenAI API. If None, uses the default OpenAI API URL.
|
||||
use_azure: Whether to create an Azure OpenAI client. Default is False.
|
||||
azure_deployment: Azure OpenAI deployment name (only used when use_azure=True).
|
||||
api_version: Azure OpenAI API version (only used when use_azure=True).
|
||||
timeout: Request timeout in seconds.
|
||||
client_configs: Additional configuration options for the AsyncOpenAI client.
|
||||
These will override any default configurations but will be overridden by
|
||||
explicit parameters (api_key, base_url).
|
||||
|
||||
Returns:
|
||||
An AsyncOpenAI or AsyncAzureOpenAI client instance.
|
||||
An AsyncOpenAI client instance.
|
||||
"""
|
||||
if use_azure:
|
||||
from openai import AsyncAzureOpenAI
|
||||
if not api_key:
|
||||
api_key = os.environ["OPENAI_API_KEY"]
|
||||
|
||||
if not api_key:
|
||||
api_key = os.environ.get("AZURE_OPENAI_API_KEY") or os.environ.get(
|
||||
"LLM_BINDING_API_KEY"
|
||||
)
|
||||
default_headers = {
|
||||
"User-Agent": f"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_8) LightRAG/{__api_version__}",
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
|
||||
return AsyncAzureOpenAI(
|
||||
azure_endpoint=base_url,
|
||||
azure_deployment=azure_deployment,
|
||||
api_key=api_key,
|
||||
api_version=api_version,
|
||||
timeout=timeout,
|
||||
)
|
||||
if client_configs is None:
|
||||
client_configs = {}
|
||||
|
||||
# Create a merged config dict with precedence: explicit params > client_configs > defaults
|
||||
merged_configs = {
|
||||
**client_configs,
|
||||
"default_headers": default_headers,
|
||||
"api_key": api_key,
|
||||
}
|
||||
|
||||
if base_url is not None:
|
||||
merged_configs["base_url"] = base_url
|
||||
else:
|
||||
if not api_key:
|
||||
api_key = os.environ["OPENAI_API_KEY"]
|
||||
merged_configs["base_url"] = os.environ.get(
|
||||
"OPENAI_API_BASE", "https://api.openai.com/v1"
|
||||
)
|
||||
|
||||
default_headers = {
|
||||
"User-Agent": f"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_8) LightRAG/{__api_version__}",
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
|
||||
if client_configs is None:
|
||||
client_configs = {}
|
||||
|
||||
# Create a merged config dict with precedence: explicit params > client_configs > defaults
|
||||
merged_configs = {
|
||||
**client_configs,
|
||||
"default_headers": default_headers,
|
||||
"api_key": api_key,
|
||||
}
|
||||
|
||||
if base_url is not None:
|
||||
merged_configs["base_url"] = base_url
|
||||
else:
|
||||
merged_configs["base_url"] = os.environ.get(
|
||||
"OPENAI_API_BASE", "https://api.openai.com/v1"
|
||||
)
|
||||
|
||||
if timeout is not None:
|
||||
merged_configs["timeout"] = timeout
|
||||
|
||||
return AsyncOpenAI(**merged_configs)
|
||||
return AsyncOpenAI(**merged_configs)
|
||||
|
||||
|
||||
@retry(
|
||||
|
|
@ -165,12 +111,6 @@ async def openai_complete_if_cache(
|
|||
base_url: str | None = None,
|
||||
api_key: str | None = None,
|
||||
token_tracker: Any | None = None,
|
||||
stream: bool | None = None,
|
||||
timeout: int | None = None,
|
||||
keyword_extraction: bool = False,
|
||||
use_azure: bool = False,
|
||||
azure_deployment: str | None = None,
|
||||
api_version: str | None = None,
|
||||
**kwargs: Any,
|
||||
) -> str:
|
||||
"""Complete a prompt using OpenAI's API with caching support and Chain of Thought (COT) integration.
|
||||
|
|
@ -200,15 +140,13 @@ async def openai_complete_if_cache(
|
|||
api_key: Optional OpenAI API key. If None, uses the OPENAI_API_KEY environment variable.
|
||||
token_tracker: Optional token usage tracker for monitoring API usage.
|
||||
enable_cot: Whether to enable Chain of Thought (COT) processing. Default is False.
|
||||
stream: Whether to stream the response. Default is False.
|
||||
timeout: Request timeout in seconds. Default is None.
|
||||
keyword_extraction: Whether to enable keyword extraction mode. When True, triggers
|
||||
special response formatting for keyword extraction. Default is False.
|
||||
**kwargs: Additional keyword arguments to pass to the OpenAI API.
|
||||
Special kwargs:
|
||||
- openai_client_configs: Dict of configuration options for the AsyncOpenAI client.
|
||||
These will be passed to the client constructor but will be overridden by
|
||||
explicit parameters (api_key, base_url).
|
||||
- hashing_kv: Will be removed from kwargs before passing to OpenAI.
|
||||
- keyword_extraction: Will be removed from kwargs before passing to OpenAI.
|
||||
|
||||
Returns:
|
||||
The completed text (with integrated COT content if available) or an async iterator
|
||||
|
|
@ -229,22 +167,15 @@ async def openai_complete_if_cache(
|
|||
|
||||
# Remove special kwargs that shouldn't be passed to OpenAI
|
||||
kwargs.pop("hashing_kv", None)
|
||||
kwargs.pop("keyword_extraction", None)
|
||||
|
||||
# Extract client configuration options
|
||||
client_configs = kwargs.pop("openai_client_configs", {})
|
||||
|
||||
# Handle keyword extraction mode
|
||||
if keyword_extraction:
|
||||
kwargs["response_format"] = GPTKeywordExtractionFormat
|
||||
|
||||
# Create the OpenAI client (supports both OpenAI and Azure)
|
||||
# Create the OpenAI client
|
||||
openai_async_client = create_openai_async_client(
|
||||
api_key=api_key,
|
||||
base_url=base_url,
|
||||
use_azure=use_azure,
|
||||
azure_deployment=azure_deployment,
|
||||
api_version=api_version,
|
||||
timeout=timeout,
|
||||
client_configs=client_configs,
|
||||
)
|
||||
|
||||
|
|
@ -266,25 +197,15 @@ async def openai_complete_if_cache(
|
|||
|
||||
messages = kwargs.pop("messages", messages)
|
||||
|
||||
# Add explicit parameters back to kwargs so they're passed to OpenAI API
|
||||
if stream is not None:
|
||||
kwargs["stream"] = stream
|
||||
if timeout is not None:
|
||||
kwargs["timeout"] = timeout
|
||||
|
||||
# Determine the correct model identifier to use
|
||||
# For Azure OpenAI, we must use the deployment name instead of the model name
|
||||
api_model = azure_deployment if use_azure and azure_deployment else model
|
||||
|
||||
try:
|
||||
# Don't use async with context manager, use client directly
|
||||
if "response_format" in kwargs:
|
||||
response = await openai_async_client.chat.completions.parse(
|
||||
model=api_model, messages=messages, **kwargs
|
||||
response = await openai_async_client.beta.chat.completions.parse(
|
||||
model=model, messages=messages, **kwargs
|
||||
)
|
||||
else:
|
||||
response = await openai_async_client.chat.completions.create(
|
||||
model=api_model, messages=messages, **kwargs
|
||||
model=model, messages=messages, **kwargs
|
||||
)
|
||||
except APIConnectionError as e:
|
||||
logger.error(f"OpenAI API Connection Error: {e}")
|
||||
|
|
@ -329,10 +250,7 @@ async def openai_complete_if_cache(
|
|||
|
||||
# Check if choices exists and is not empty
|
||||
if not hasattr(chunk, "choices") or not chunk.choices:
|
||||
# Azure OpenAI sends content filter results in first chunk without choices
|
||||
logger.debug(
|
||||
f"Received chunk without choices (likely Azure content filter): {chunk}"
|
||||
)
|
||||
logger.warning(f"Received chunk without choices: {chunk}")
|
||||
continue
|
||||
|
||||
# Check if delta exists
|
||||
|
|
@ -451,23 +369,18 @@ async def openai_complete_if_cache(
|
|||
)
|
||||
|
||||
# Ensure resources are released even if no exception occurs
|
||||
# Note: Some wrapped clients (e.g., Langfuse) may not implement aclose() properly
|
||||
if iteration_started and hasattr(response, "aclose"):
|
||||
aclose_method = getattr(response, "aclose", None)
|
||||
if callable(aclose_method):
|
||||
try:
|
||||
await response.aclose()
|
||||
logger.debug("Successfully closed stream response")
|
||||
except (AttributeError, TypeError) as close_error:
|
||||
# Some wrapper objects may report hasattr(aclose) but fail when called
|
||||
# This is expected behavior for certain client wrappers
|
||||
logger.debug(
|
||||
f"Stream response cleanup not supported by client wrapper: {close_error}"
|
||||
)
|
||||
except Exception as close_error:
|
||||
logger.warning(
|
||||
f"Unexpected error during stream response cleanup: {close_error}"
|
||||
)
|
||||
if (
|
||||
iteration_started
|
||||
and hasattr(response, "aclose")
|
||||
and callable(getattr(response, "aclose", None))
|
||||
):
|
||||
try:
|
||||
await response.aclose()
|
||||
logger.debug("Successfully closed stream response")
|
||||
except Exception as close_error:
|
||||
logger.warning(
|
||||
f"Failed to close stream response in finally block: {close_error}"
|
||||
)
|
||||
|
||||
# This prevents resource leaks since the caller doesn't handle closing
|
||||
try:
|
||||
|
|
@ -494,57 +407,46 @@ async def openai_complete_if_cache(
|
|||
raise InvalidResponseError("Invalid response from OpenAI API")
|
||||
|
||||
message = response.choices[0].message
|
||||
content = getattr(message, "content", None)
|
||||
reasoning_content = getattr(message, "reasoning_content", "")
|
||||
|
||||
# Handle parsed responses (structured output via response_format)
|
||||
# When using beta.chat.completions.parse(), the response is in message.parsed
|
||||
if hasattr(message, "parsed") and message.parsed is not None:
|
||||
# Serialize the parsed structured response to JSON
|
||||
final_content = message.parsed.model_dump_json()
|
||||
logger.debug("Using parsed structured response from API")
|
||||
else:
|
||||
# Handle regular content responses
|
||||
content = getattr(message, "content", None)
|
||||
reasoning_content = getattr(message, "reasoning_content", "")
|
||||
# Handle COT logic for non-streaming responses (only if enabled)
|
||||
final_content = ""
|
||||
|
||||
# Handle COT logic for non-streaming responses (only if enabled)
|
||||
final_content = ""
|
||||
|
||||
if enable_cot:
|
||||
# Check if we should include reasoning content
|
||||
should_include_reasoning = False
|
||||
if reasoning_content and reasoning_content.strip():
|
||||
if not content or content.strip() == "":
|
||||
# Case 1: Only reasoning content, should include COT
|
||||
should_include_reasoning = True
|
||||
final_content = (
|
||||
content or ""
|
||||
) # Use empty string if content is None
|
||||
else:
|
||||
# Case 3: Both content and reasoning_content present, ignore reasoning
|
||||
should_include_reasoning = False
|
||||
final_content = content
|
||||
else:
|
||||
# No reasoning content, use regular content
|
||||
final_content = content or ""
|
||||
|
||||
# Apply COT wrapping if needed
|
||||
if should_include_reasoning:
|
||||
if r"\u" in reasoning_content:
|
||||
reasoning_content = safe_unicode_decode(
|
||||
reasoning_content.encode("utf-8")
|
||||
)
|
||||
if enable_cot:
|
||||
# Check if we should include reasoning content
|
||||
should_include_reasoning = False
|
||||
if reasoning_content and reasoning_content.strip():
|
||||
if not content or content.strip() == "":
|
||||
# Case 1: Only reasoning content, should include COT
|
||||
should_include_reasoning = True
|
||||
final_content = (
|
||||
f"<think>{reasoning_content}</think>{final_content}"
|
||||
)
|
||||
content or ""
|
||||
) # Use empty string if content is None
|
||||
else:
|
||||
# Case 3: Both content and reasoning_content present, ignore reasoning
|
||||
should_include_reasoning = False
|
||||
final_content = content
|
||||
else:
|
||||
# COT disabled, only use regular content
|
||||
# No reasoning content, use regular content
|
||||
final_content = content or ""
|
||||
|
||||
# Validate final content
|
||||
if not final_content or final_content.strip() == "":
|
||||
logger.error("Received empty content from OpenAI API")
|
||||
await openai_async_client.close() # Ensure client is closed
|
||||
raise InvalidResponseError("Received empty content from OpenAI API")
|
||||
# Apply COT wrapping if needed
|
||||
if should_include_reasoning:
|
||||
if r"\u" in reasoning_content:
|
||||
reasoning_content = safe_unicode_decode(
|
||||
reasoning_content.encode("utf-8")
|
||||
)
|
||||
final_content = f"<think>{reasoning_content}</think>{final_content}"
|
||||
else:
|
||||
# COT disabled, only use regular content
|
||||
final_content = content or ""
|
||||
|
||||
# Validate final content
|
||||
if not final_content or final_content.strip() == "":
|
||||
logger.error("Received empty content from OpenAI API")
|
||||
await openai_async_client.close() # Ensure client is closed
|
||||
raise InvalidResponseError("Received empty content from OpenAI API")
|
||||
|
||||
# Apply Unicode decoding to final content if needed
|
||||
if r"\u" in final_content:
|
||||
|
|
@ -578,13 +480,15 @@ async def openai_complete(
|
|||
) -> Union[str, AsyncIterator[str]]:
|
||||
if history_messages is None:
|
||||
history_messages = []
|
||||
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
||||
if keyword_extraction:
|
||||
kwargs["response_format"] = "json"
|
||||
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
|
||||
return await openai_complete_if_cache(
|
||||
model_name,
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
keyword_extraction=keyword_extraction,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
|
@ -599,13 +503,15 @@ async def gpt_4o_complete(
|
|||
) -> str:
|
||||
if history_messages is None:
|
||||
history_messages = []
|
||||
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
||||
if keyword_extraction:
|
||||
kwargs["response_format"] = GPTKeywordExtractionFormat
|
||||
return await openai_complete_if_cache(
|
||||
"gpt-4o",
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
enable_cot=enable_cot,
|
||||
keyword_extraction=keyword_extraction,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
|
@ -620,13 +526,15 @@ async def gpt_4o_mini_complete(
|
|||
) -> str:
|
||||
if history_messages is None:
|
||||
history_messages = []
|
||||
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
||||
if keyword_extraction:
|
||||
kwargs["response_format"] = GPTKeywordExtractionFormat
|
||||
return await openai_complete_if_cache(
|
||||
"gpt-4o-mini",
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
enable_cot=enable_cot,
|
||||
keyword_extraction=keyword_extraction,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
|
@ -641,20 +549,20 @@ async def nvidia_openai_complete(
|
|||
) -> str:
|
||||
if history_messages is None:
|
||||
history_messages = []
|
||||
kwargs.pop("keyword_extraction", None)
|
||||
result = await openai_complete_if_cache(
|
||||
"nvidia/llama-3.1-nemotron-70b-instruct", # context length 128k
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
enable_cot=enable_cot,
|
||||
keyword_extraction=keyword_extraction,
|
||||
base_url="https://integrate.api.nvidia.com/v1",
|
||||
**kwargs,
|
||||
)
|
||||
return result
|
||||
|
||||
|
||||
@wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8192)
|
||||
@wrap_embedding_func_with_attrs(embedding_dim=1536)
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=60),
|
||||
|
|
@ -669,12 +577,7 @@ async def openai_embed(
|
|||
model: str = "text-embedding-3-small",
|
||||
base_url: str | None = None,
|
||||
api_key: str | None = None,
|
||||
embedding_dim: int | None = None,
|
||||
client_configs: dict[str, Any] | None = None,
|
||||
token_tracker: Any | None = None,
|
||||
use_azure: bool = False,
|
||||
azure_deployment: str | None = None,
|
||||
api_version: str | None = None,
|
||||
) -> np.ndarray:
|
||||
"""Generate embeddings for a list of texts using OpenAI's API.
|
||||
|
||||
|
|
@ -683,16 +586,9 @@ async def openai_embed(
|
|||
model: The OpenAI embedding model to use.
|
||||
base_url: Optional base URL for the OpenAI API.
|
||||
api_key: Optional OpenAI API key. If None, uses the OPENAI_API_KEY environment variable.
|
||||
embedding_dim: Optional embedding dimension for dynamic dimension reduction.
|
||||
**IMPORTANT**: This parameter is automatically injected by the EmbeddingFunc wrapper.
|
||||
Do NOT manually pass this parameter when calling the function directly.
|
||||
The dimension is controlled by the @wrap_embedding_func_with_attrs decorator.
|
||||
Manually passing a different value will trigger a warning and be ignored.
|
||||
When provided (by EmbeddingFunc), it will be passed to the OpenAI API for dimension reduction.
|
||||
client_configs: Additional configuration options for the AsyncOpenAI client.
|
||||
These will override any default configurations but will be overridden by
|
||||
explicit parameters (api_key, base_url).
|
||||
token_tracker: Optional token usage tracker for monitoring API usage.
|
||||
|
||||
Returns:
|
||||
A numpy array of embeddings, one per input text.
|
||||
|
|
@ -702,42 +598,15 @@ async def openai_embed(
|
|||
RateLimitError: If the OpenAI API rate limit is exceeded.
|
||||
APITimeoutError: If the OpenAI API request times out.
|
||||
"""
|
||||
# Create the OpenAI client (supports both OpenAI and Azure)
|
||||
# Create the OpenAI client
|
||||
openai_async_client = create_openai_async_client(
|
||||
api_key=api_key,
|
||||
base_url=base_url,
|
||||
use_azure=use_azure,
|
||||
azure_deployment=azure_deployment,
|
||||
api_version=api_version,
|
||||
client_configs=client_configs,
|
||||
api_key=api_key, base_url=base_url, client_configs=client_configs
|
||||
)
|
||||
|
||||
async with openai_async_client:
|
||||
# Determine the correct model identifier to use
|
||||
# For Azure OpenAI, we must use the deployment name instead of the model name
|
||||
api_model = azure_deployment if use_azure and azure_deployment else model
|
||||
|
||||
# Prepare API call parameters
|
||||
api_params = {
|
||||
"model": api_model,
|
||||
"input": texts,
|
||||
"encoding_format": "base64",
|
||||
}
|
||||
|
||||
# Add dimensions parameter only if embedding_dim is provided
|
||||
if embedding_dim is not None:
|
||||
api_params["dimensions"] = embedding_dim
|
||||
|
||||
# Make API call
|
||||
response = await openai_async_client.embeddings.create(**api_params)
|
||||
|
||||
if token_tracker and hasattr(response, "usage"):
|
||||
token_counts = {
|
||||
"prompt_tokens": getattr(response.usage, "prompt_tokens", 0),
|
||||
"total_tokens": getattr(response.usage, "total_tokens", 0),
|
||||
}
|
||||
token_tracker.add_usage(token_counts)
|
||||
|
||||
response = await openai_async_client.embeddings.create(
|
||||
model=model, input=texts, encoding_format="base64"
|
||||
)
|
||||
return np.array(
|
||||
[
|
||||
np.array(dp.embedding, dtype=np.float32)
|
||||
|
|
@ -746,132 +615,3 @@ async def openai_embed(
|
|||
for dp in response.data
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
# Azure OpenAI wrapper functions for backward compatibility
|
||||
async def azure_openai_complete_if_cache(
|
||||
model,
|
||||
prompt,
|
||||
system_prompt: str | None = None,
|
||||
history_messages: list[dict[str, Any]] | None = None,
|
||||
enable_cot: bool = False,
|
||||
base_url: str | None = None,
|
||||
api_key: str | None = None,
|
||||
api_version: str | None = None,
|
||||
keyword_extraction: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
"""Azure OpenAI completion wrapper function.
|
||||
|
||||
This function provides backward compatibility by wrapping the unified
|
||||
openai_complete_if_cache implementation with Azure-specific parameter handling.
|
||||
"""
|
||||
# Handle Azure-specific environment variables and parameters
|
||||
deployment = os.getenv("AZURE_OPENAI_DEPLOYMENT") or model or os.getenv("LLM_MODEL")
|
||||
base_url = (
|
||||
base_url or os.getenv("AZURE_OPENAI_ENDPOINT") or os.getenv("LLM_BINDING_HOST")
|
||||
)
|
||||
api_key = (
|
||||
api_key or os.getenv("AZURE_OPENAI_API_KEY") or os.getenv("LLM_BINDING_API_KEY")
|
||||
)
|
||||
api_version = (
|
||||
api_version
|
||||
or os.getenv("AZURE_OPENAI_API_VERSION")
|
||||
or os.getenv("OPENAI_API_VERSION")
|
||||
or "2024-08-01-preview"
|
||||
)
|
||||
|
||||
# Pop timeout from kwargs if present (will be handled by openai_complete_if_cache)
|
||||
timeout = kwargs.pop("timeout", None)
|
||||
|
||||
# Call the unified implementation with Azure-specific parameters
|
||||
return await openai_complete_if_cache(
|
||||
model=deployment,
|
||||
prompt=prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
enable_cot=enable_cot,
|
||||
base_url=base_url,
|
||||
api_key=api_key,
|
||||
timeout=timeout,
|
||||
use_azure=True,
|
||||
azure_deployment=deployment,
|
||||
api_version=api_version,
|
||||
keyword_extraction=keyword_extraction,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
async def azure_openai_complete(
|
||||
prompt, system_prompt=None, history_messages=None, keyword_extraction=False, **kwargs
|
||||
) -> str:
|
||||
"""Azure OpenAI complete wrapper function.
|
||||
|
||||
Provides backward compatibility for azure_openai_complete calls.
|
||||
"""
|
||||
if history_messages is None:
|
||||
history_messages = []
|
||||
result = await azure_openai_complete_if_cache(
|
||||
os.getenv("LLM_MODEL", "gpt-4o-mini"),
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
keyword_extraction=keyword_extraction,
|
||||
**kwargs,
|
||||
)
|
||||
return result
|
||||
|
||||
|
||||
@wrap_embedding_func_with_attrs(embedding_dim=1536)
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||||
retry=retry_if_exception_type(
|
||||
(RateLimitError, APIConnectionError, APITimeoutError)
|
||||
),
|
||||
)
|
||||
async def azure_openai_embed(
|
||||
texts: list[str],
|
||||
model: str | None = None,
|
||||
base_url: str | None = None,
|
||||
api_key: str | None = None,
|
||||
api_version: str | None = None,
|
||||
) -> np.ndarray:
|
||||
"""Azure OpenAI embedding wrapper function.
|
||||
|
||||
This function provides backward compatibility by wrapping the unified
|
||||
openai_embed implementation with Azure-specific parameter handling.
|
||||
"""
|
||||
# Handle Azure-specific environment variables and parameters
|
||||
deployment = (
|
||||
os.getenv("AZURE_EMBEDDING_DEPLOYMENT")
|
||||
or model
|
||||
or os.getenv("EMBEDDING_MODEL", "text-embedding-3-small")
|
||||
)
|
||||
base_url = (
|
||||
base_url
|
||||
or os.getenv("AZURE_EMBEDDING_ENDPOINT")
|
||||
or os.getenv("EMBEDDING_BINDING_HOST")
|
||||
)
|
||||
api_key = (
|
||||
api_key
|
||||
or os.getenv("AZURE_EMBEDDING_API_KEY")
|
||||
or os.getenv("EMBEDDING_BINDING_API_KEY")
|
||||
)
|
||||
api_version = (
|
||||
api_version
|
||||
or os.getenv("AZURE_EMBEDDING_API_VERSION")
|
||||
or os.getenv("OPENAI_API_VERSION")
|
||||
or "2024-08-01-preview"
|
||||
)
|
||||
|
||||
# Call the unified implementation with Azure-specific parameters
|
||||
return await openai_embed(
|
||||
texts=texts,
|
||||
model=deployment,
|
||||
base_url=base_url,
|
||||
api_key=api_key,
|
||||
use_azure=True,
|
||||
azure_deployment=deployment,
|
||||
api_version=api_version,
|
||||
)
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue