Auto-initialize pipeline status in LightRAG.initialize_storages()

• Remove manual initialize_pipeline_status calls
• Auto-init in initialize_storages method
• Update error messages for clarity
• Warn on workspace conflicts

(cherry picked from commit e22ac52ebc)
This commit is contained in:
yangdx 2025-11-17 07:14:02 +08:00 committed by Raphaël MANSUY
parent 961c87a6e5
commit ed46d375fb
3 changed files with 1335 additions and 392 deletions

View file

@ -5,14 +5,16 @@ LightRAG FastAPI Server
from fastapi import FastAPI, Depends, HTTPException, Request
from fastapi.exceptions import RequestValidationError
from fastapi.responses import JSONResponse
from fastapi.openapi.docs import (
get_swagger_ui_html,
get_swagger_ui_oauth2_redirect_html,
)
import os
import logging
import logging.config
import signal
import sys
import uvicorn
import pipmaster as pm
import inspect
from fastapi.staticfiles import StaticFiles
from fastapi.responses import RedirectResponse
from pathlib import Path
@ -50,17 +52,12 @@ from lightrag.api.routers.document_routes import (
from lightrag.api.routers.query_routes import create_query_routes
from lightrag.api.routers.graph_routes import create_graph_routes
from lightrag.api.routers.ollama_api import OllamaAPI
from lightrag.api.routers.tenant_routes import create_tenant_routes
from lightrag.api.routers.admin_routes import create_admin_routes
from lightrag.services.tenant_service import TenantService
from lightrag.tenant_rag_manager import TenantRAGManager
from lightrag.api.middleware.tenant import TenantMiddleware
from lightrag.namespace import NameSpace
from lightrag.utils import logger, set_verbose_debug
from lightrag.kg.shared_storage import (
get_namespace_data,
initialize_pipeline_status,
get_default_workspace,
# set_default_workspace,
cleanup_keyed_lock,
finalize_share_data,
)
@ -84,24 +81,6 @@ config.read("config.ini")
auth_configured = bool(auth_handler.accounts)
def setup_signal_handlers():
"""Setup signal handlers for graceful shutdown"""
def signal_handler(sig, frame):
print(f"\n\nReceived signal {sig}, shutting down gracefully...")
print(f"Process ID: {os.getpid()}")
# Release shared resources
finalize_share_data()
# Exit with success status
sys.exit(0)
# Register signal handlers
signal.signal(signal.SIGINT, signal_handler) # Ctrl+C
signal.signal(signal.SIGTERM, signal_handler) # kill command
class LLMConfigCache:
"""Smart LLM and Embedding configuration cache class"""
@ -110,6 +89,8 @@ class LLMConfigCache:
# Initialize configurations based on binding conditions
self.openai_llm_options = None
self.gemini_llm_options = None
self.gemini_embedding_options = None
self.ollama_llm_options = None
self.ollama_embedding_options = None
@ -120,6 +101,12 @@ class LLMConfigCache:
self.openai_llm_options = OpenAILLMOptions.options_dict(args)
logger.info(f"OpenAI LLM Options: {self.openai_llm_options}")
if args.llm_binding == "gemini":
from lightrag.llm.binding_options import GeminiLLMOptions
self.gemini_llm_options = GeminiLLMOptions.options_dict(args)
logger.info(f"Gemini LLM Options: {self.gemini_llm_options}")
# Only initialize and log Ollama LLM options when using Ollama LLM binding
if args.llm_binding == "ollama":
try:
@ -150,8 +137,159 @@ class LLMConfigCache:
)
self.ollama_embedding_options = {}
# Only initialize and log Gemini Embedding options when using Gemini Embedding binding
if args.embedding_binding == "gemini":
try:
from lightrag.llm.binding_options import GeminiEmbeddingOptions
self.gemini_embedding_options = GeminiEmbeddingOptions.options_dict(
args
)
logger.info(
f"Gemini Embedding Options: {self.gemini_embedding_options}"
)
except ImportError:
logger.warning(
"GeminiEmbeddingOptions not available, using default configuration"
)
self.gemini_embedding_options = {}
def check_frontend_build():
"""Check if frontend is built and optionally check if source is up-to-date
Returns:
bool: True if frontend is outdated, False if up-to-date or production environment
"""
webui_dir = Path(__file__).parent / "webui"
index_html = webui_dir / "index.html"
# 1. Check if build files exist (required)
if not index_html.exists():
ASCIIColors.red("\n" + "=" * 80)
ASCIIColors.red("ERROR: Frontend Not Built")
ASCIIColors.red("=" * 80)
ASCIIColors.yellow("The WebUI frontend has not been built yet.")
ASCIIColors.yellow(
"Please build the frontend code first using the following commands:\n"
)
ASCIIColors.cyan(" cd lightrag_webui")
ASCIIColors.cyan(" bun install --frozen-lockfile")
ASCIIColors.cyan(" bun run build")
ASCIIColors.cyan(" cd ..")
ASCIIColors.yellow("\nThen restart the service.\n")
ASCIIColors.cyan(
"Note: Make sure you have Bun installed. Visit https://bun.sh for installation."
)
ASCIIColors.red("=" * 80 + "\n")
sys.exit(1) # Exit immediately
# 2. Check if this is a development environment (source directory exists)
try:
source_dir = Path(__file__).parent.parent.parent / "lightrag_webui"
src_dir = source_dir / "src"
# Determine if this is a development environment: source directory exists and contains src directory
if not source_dir.exists() or not src_dir.exists():
# Production environment, skip source code check
logger.debug(
"Production environment detected, skipping source freshness check"
)
return False
# Development environment, perform source code timestamp check
logger.debug("Development environment detected, checking source freshness")
# Source code file extensions (files to check)
source_extensions = {
".ts",
".tsx",
".js",
".jsx",
".mjs",
".cjs", # TypeScript/JavaScript
".css",
".scss",
".sass",
".less", # Style files
".json",
".jsonc", # Configuration/data files
".html",
".htm", # Template files
".md",
".mdx", # Markdown
}
# Key configuration files (in lightrag_webui root directory)
key_files = [
source_dir / "package.json",
source_dir / "bun.lock",
source_dir / "vite.config.ts",
source_dir / "tsconfig.json",
source_dir / "tailraid.config.js",
source_dir / "index.html",
]
# Get the latest modification time of source code
latest_source_time = 0
# Check source code files in src directory
for file_path in src_dir.rglob("*"):
if file_path.is_file():
# Only check source code files, ignore temporary files and logs
if file_path.suffix.lower() in source_extensions:
mtime = file_path.stat().st_mtime
latest_source_time = max(latest_source_time, mtime)
# Check key configuration files
for key_file in key_files:
if key_file.exists():
mtime = key_file.stat().st_mtime
latest_source_time = max(latest_source_time, mtime)
# Get build time
build_time = index_html.stat().st_mtime
# Compare timestamps (5 second tolerance to avoid file system time precision issues)
if latest_source_time > build_time + 5:
ASCIIColors.yellow("\n" + "=" * 80)
ASCIIColors.yellow("WARNING: Frontend Source Code Has Been Updated")
ASCIIColors.yellow("=" * 80)
ASCIIColors.yellow(
"The frontend source code is newer than the current build."
)
ASCIIColors.yellow(
"This might happen after 'git pull' or manual code changes.\n"
)
ASCIIColors.cyan(
"Recommended: Rebuild the frontend to use the latest changes:"
)
ASCIIColors.cyan(" cd lightrag_webui")
ASCIIColors.cyan(" bun install --frozen-lockfile")
ASCIIColors.cyan(" bun run build")
ASCIIColors.cyan(" cd ..")
ASCIIColors.yellow("\nThe server will continue with the current build.")
ASCIIColors.yellow("=" * 80 + "\n")
return True # Frontend is outdated
else:
logger.info("Frontend build is up-to-date")
return False # Frontend is up-to-date
except Exception as e:
# If check fails, log warning but don't affect startup
logger.warning(f"Failed to check frontend source freshness: {e}")
return False # Assume up-to-date on error
def create_app(args):
# Check frontend build first and get outdated status
is_frontend_outdated = check_frontend_build()
# Create unified API version display with warning symbol if frontend is outdated
api_version_display = (
f"{__api_version__}⚠️" if is_frontend_outdated else __api_version__
)
# Setup logging
logger.setLevel(args.log_level)
set_verbose_debug(args.verbose)
@ -166,6 +304,7 @@ def create_app(args):
"openai",
"azure_openai",
"aws_bedrock",
"gemini",
]:
raise Exception("llm binding not supported")
@ -176,13 +315,9 @@ def create_app(args):
"azure_openai",
"aws_bedrock",
"jina",
"gemini",
]:
raise Exception("embedding binding not supported")
# Log the configured embeddings binding for debugging
logger.info(f"Configured embedding binding: {args.embedding_binding}")
logger.info(f"Configured embedding model: {args.embedding_model}")
logger.info(f"Configured embedding host: {args.embedding_binding_host}")
# Set default hosts if not provided
if args.llm_binding_host is None:
@ -216,12 +351,8 @@ def create_app(args):
try:
# Initialize database connections
# Note: initialize_storages() now auto-initializes pipeline_status for rag.workspace
await rag.initialize_storages()
await initialize_pipeline_status()
# Initialize tenant storage
if hasattr(tenant_storage, "initialize"):
await tenant_storage.initialize()
# Data migration regardless of storage implementation
await rag.check_and_migrate_data()
@ -234,25 +365,31 @@ def create_app(args):
# Clean up database connections
await rag.finalize_storages()
# Clean up tenant manager
if hasattr(rag_manager, "cleanup_all"):
await rag_manager.cleanup_all()
# Clean up shared data
finalize_share_data()
if "LIGHTRAG_GUNICORN_MODE" not in os.environ:
# Only perform cleanup in Uvicorn single-process mode
logger.debug("Unvicorn Mode: finalizing shared storage...")
finalize_share_data()
else:
# In Gunicorn mode with preload_app=True, cleanup is handled by on_exit hooks
logger.debug(
"Gunicorn Mode: postpone shared storage finalization to master process"
)
# Initialize FastAPI
base_description = (
"Providing API for LightRAG core, Web UI and Ollama Model Emulation"
)
swagger_description = (
base_description
+ (" (API-Key Enabled)" if api_key else "")
+ "\n\n[View ReDoc documentation](/redoc)"
)
app_kwargs = {
"title": "LightRAG Server API",
"description": (
"Providing API for LightRAG core, Web UI and Ollama Model Emulation"
+ "(With authentication)"
if api_key
else ""
),
"description": swagger_description,
"version": __api_version__,
"openapi_url": "/openapi.json", # Explicitly set OpenAPI schema URL
"docs_url": "/docs", # Explicitly set docs URL
"docs_url": None, # Disable default docs, we'll create custom endpoint
"redoc_url": "/redoc", # Explicitly set redoc URL
"lifespan": lifespan,
}
@ -316,6 +453,28 @@ def create_app(args):
# Create combined auth dependency for all endpoints
combined_auth = get_combined_auth_dependency(api_key)
def get_workspace_from_request(request: Request) -> str | None:
"""
Extract workspace from HTTP request header or use default.
This enables multi-workspace API support by checking the custom
'LIGHTRAG-WORKSPACE' header. If not present, falls back to the
server's default workspace configuration.
Args:
request: FastAPI Request object
Returns:
Workspace identifier (may be empty string for global namespace)
"""
# Check custom header first
workspace = request.headers.get("LIGHTRAG-WORKSPACE", "").strip()
if not workspace:
workspace = None
return workspace
# Create working directory if it doesn't exist
Path(args.working_dir).mkdir(parents=True, exist_ok=True)
@ -394,6 +553,44 @@ def create_app(args):
return optimized_azure_openai_model_complete
def create_optimized_gemini_llm_func(
config_cache: LLMConfigCache, args, llm_timeout: int
):
"""Create optimized Gemini LLM function with cached configuration"""
async def optimized_gemini_model_complete(
prompt,
system_prompt=None,
history_messages=None,
keyword_extraction=False,
**kwargs,
) -> str:
from lightrag.llm.gemini import gemini_complete_if_cache
if history_messages is None:
history_messages = []
# Use pre-processed configuration to avoid repeated parsing
kwargs["timeout"] = llm_timeout
if (
config_cache.gemini_llm_options is not None
and "generation_config" not in kwargs
):
kwargs["generation_config"] = dict(config_cache.gemini_llm_options)
return await gemini_complete_if_cache(
args.llm_model,
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
api_key=args.llm_binding_api_key,
base_url=args.llm_binding_host,
keyword_extraction=keyword_extraction,
**kwargs,
)
return optimized_gemini_model_complete
def create_llm_model_func(binding: str):
"""
Create LLM model function based on binding type.
@ -415,6 +612,8 @@ def create_app(args):
return create_optimized_azure_openai_llm_func(
config_cache, args, llm_timeout
)
elif binding == "gemini":
return create_optimized_gemini_llm_func(config_cache, args, llm_timeout)
else: # openai and compatible
# Use optimized function with pre-processed configuration
return create_optimized_openai_llm_func(config_cache, args, llm_timeout)
@ -441,34 +640,109 @@ def create_app(args):
return {}
def create_optimized_embedding_function(
config_cache: LLMConfigCache, binding, model, host, api_key, dimensions, args
):
config_cache: LLMConfigCache, binding, model, host, api_key, args
) -> EmbeddingFunc:
"""
Create optimized embedding function with pre-processed configuration for applicable bindings.
Uses lazy imports for all bindings and avoids repeated configuration parsing.
Create optimized embedding function and return an EmbeddingFunc instance
with proper max_token_size inheritance from provider defaults.
This function:
1. Imports the provider embedding function
2. Extracts max_token_size and embedding_dim from provider if it's an EmbeddingFunc
3. Creates an optimized wrapper that calls the underlying function directly (avoiding double-wrapping)
4. Returns a properly configured EmbeddingFunc instance
"""
async def optimized_embedding_function(texts):
# Step 1: Import provider function and extract default attributes
provider_func = None
provider_max_token_size = None
provider_embedding_dim = None
try:
if binding == "openai":
from lightrag.llm.openai import openai_embed
provider_func = openai_embed
elif binding == "ollama":
from lightrag.llm.ollama import ollama_embed
provider_func = ollama_embed
elif binding == "gemini":
from lightrag.llm.gemini import gemini_embed
provider_func = gemini_embed
elif binding == "jina":
from lightrag.llm.jina import jina_embed
provider_func = jina_embed
elif binding == "azure_openai":
from lightrag.llm.azure_openai import azure_openai_embed
provider_func = azure_openai_embed
elif binding == "aws_bedrock":
from lightrag.llm.bedrock import bedrock_embed
provider_func = bedrock_embed
elif binding == "lollms":
from lightrag.llm.lollms import lollms_embed
provider_func = lollms_embed
# Extract attributes if provider is an EmbeddingFunc
if provider_func and isinstance(provider_func, EmbeddingFunc):
provider_max_token_size = provider_func.max_token_size
provider_embedding_dim = provider_func.embedding_dim
logger.debug(
f"Extracted from {binding} provider: "
f"max_token_size={provider_max_token_size}, "
f"embedding_dim={provider_embedding_dim}"
)
except ImportError as e:
logger.warning(f"Could not import provider function for {binding}: {e}")
# Step 2: Apply priority (user config > provider default)
# For max_token_size: explicit env var > provider default > None
final_max_token_size = args.embedding_token_limit or provider_max_token_size
# For embedding_dim: user config (always has value) takes priority
# Only use provider default if user config is explicitly None (which shouldn't happen)
final_embedding_dim = (
args.embedding_dim if args.embedding_dim else provider_embedding_dim
)
# Step 3: Create optimized embedding function (calls underlying function directly)
async def optimized_embedding_function(texts, embedding_dim=None):
try:
if binding == "lollms":
from lightrag.llm.lollms import lollms_embed
return await lollms_embed(
# Get real function, skip EmbeddingFunc wrapper if present
actual_func = (
lollms_embed.func
if isinstance(lollms_embed, EmbeddingFunc)
else lollms_embed
)
return await actual_func(
texts, embed_model=model, host=host, api_key=api_key
)
elif binding == "ollama":
from lightrag.llm.ollama import ollama_embed
# Use pre-processed configuration if available, otherwise fallback to dynamic parsing
# Get real function, skip EmbeddingFunc wrapper if present
actual_func = (
ollama_embed.func
if isinstance(ollama_embed, EmbeddingFunc)
else ollama_embed
)
# Use pre-processed configuration if available
if config_cache.ollama_embedding_options is not None:
ollama_options = config_cache.ollama_embedding_options
else:
# Fallback for cases where config cache wasn't initialized properly
from lightrag.llm.binding_options import OllamaEmbeddingOptions
ollama_options = OllamaEmbeddingOptions.options_dict(args)
return await ollama_embed(
return await actual_func(
texts,
embed_model=model,
host=host,
@ -478,27 +752,93 @@ def create_app(args):
elif binding == "azure_openai":
from lightrag.llm.azure_openai import azure_openai_embed
return await azure_openai_embed(texts, model=model, api_key=api_key)
actual_func = (
azure_openai_embed.func
if isinstance(azure_openai_embed, EmbeddingFunc)
else azure_openai_embed
)
return await actual_func(texts, model=model, api_key=api_key)
elif binding == "aws_bedrock":
from lightrag.llm.bedrock import bedrock_embed
return await bedrock_embed(texts, model=model)
actual_func = (
bedrock_embed.func
if isinstance(bedrock_embed, EmbeddingFunc)
else bedrock_embed
)
return await actual_func(texts, model=model)
elif binding == "jina":
from lightrag.llm.jina import jina_embed
return await jina_embed(
texts, dimensions=dimensions, base_url=host, api_key=api_key
actual_func = (
jina_embed.func
if isinstance(jina_embed, EmbeddingFunc)
else jina_embed
)
return await actual_func(
texts,
embedding_dim=embedding_dim,
base_url=host,
api_key=api_key,
)
elif binding == "gemini":
from lightrag.llm.gemini import gemini_embed
actual_func = (
gemini_embed.func
if isinstance(gemini_embed, EmbeddingFunc)
else gemini_embed
)
# Use pre-processed configuration if available
if config_cache.gemini_embedding_options is not None:
gemini_options = config_cache.gemini_embedding_options
else:
from lightrag.llm.binding_options import GeminiEmbeddingOptions
gemini_options = GeminiEmbeddingOptions.options_dict(args)
return await actual_func(
texts,
model=model,
base_url=host,
api_key=api_key,
embedding_dim=embedding_dim,
task_type=gemini_options.get("task_type", "RETRIEVAL_DOCUMENT"),
)
else: # openai and compatible
from lightrag.llm.openai import openai_embed
return await openai_embed(
texts, model=model, base_url=host, api_key=api_key
actual_func = (
openai_embed.func
if isinstance(openai_embed, EmbeddingFunc)
else openai_embed
)
return await actual_func(
texts,
model=model,
base_url=host,
api_key=api_key,
embedding_dim=embedding_dim,
)
except ImportError as e:
raise Exception(f"Failed to import {binding} embedding: {e}")
return optimized_embedding_function
# Step 4: Wrap in EmbeddingFunc and return
embedding_func_instance = EmbeddingFunc(
embedding_dim=final_embedding_dim,
func=optimized_embedding_function,
max_token_size=final_max_token_size,
send_dimensions=False, # Will be set later based on binding requirements
)
# Log final embedding configuration
logger.info(
f"Embedding config: binding={binding} model={model} "
f"embedding_dim={final_embedding_dim} max_token_size={final_max_token_size}"
)
return embedding_func_instance
llm_timeout = get_env_value("LLM_TIMEOUT", DEFAULT_LLM_TIMEOUT, int)
embedding_timeout = get_env_value(
@ -532,20 +872,63 @@ def create_app(args):
**kwargs,
)
# Create embedding function with optimized configuration
embedding_func = EmbeddingFunc(
embedding_dim=args.embedding_dim,
func=create_optimized_embedding_function(
config_cache=config_cache,
binding=args.embedding_binding,
model=args.embedding_model,
host=args.embedding_binding_host,
api_key=args.embedding_binding_api_key,
dimensions=args.embedding_dim,
args=args, # Pass args object for fallback option generation
),
# Create embedding function with optimized configuration and max_token_size inheritance
import inspect
# Create the EmbeddingFunc instance (now returns complete EmbeddingFunc with max_token_size)
embedding_func = create_optimized_embedding_function(
config_cache=config_cache,
binding=args.embedding_binding,
model=args.embedding_model,
host=args.embedding_binding_host,
api_key=args.embedding_binding_api_key,
args=args,
)
# Get embedding_send_dim from centralized configuration
embedding_send_dim = args.embedding_send_dim
# Check if the underlying function signature has embedding_dim parameter
sig = inspect.signature(embedding_func.func)
has_embedding_dim_param = "embedding_dim" in sig.parameters
# Determine send_dimensions value based on binding type
# Jina and Gemini REQUIRE dimension parameter (forced to True)
# OpenAI and others: controlled by EMBEDDING_SEND_DIM environment variable
if args.embedding_binding in ["jina", "gemini"]:
# Jina and Gemini APIs require dimension parameter - always send it
send_dimensions = has_embedding_dim_param
dimension_control = f"forced by {args.embedding_binding.title()} API"
else:
# For OpenAI and other bindings, respect EMBEDDING_SEND_DIM setting
send_dimensions = embedding_send_dim and has_embedding_dim_param
if send_dimensions or not embedding_send_dim:
dimension_control = "by env var"
else:
dimension_control = "by not hasparam"
# Set send_dimensions on the EmbeddingFunc instance
embedding_func.send_dimensions = send_dimensions
logger.info(
f"Send embedding dimension: {send_dimensions} {dimension_control} "
f"(dimensions={embedding_func.embedding_dim}, has_param={has_embedding_dim_param}, "
f"binding={args.embedding_binding})"
)
# Log max_token_size source
if embedding_func.max_token_size:
source = (
"env variable"
if args.embedding_token_limit
else f"{args.embedding_binding} provider default"
)
logger.info(
f"Embedding max_token_size: {embedding_func.max_token_size} (from {source})"
)
else:
logger.info("Embedding max_token_size: not set (90% token warning disabled)")
# Configure rerank function based on args.rerank_bindingparameter
rerank_model_func = None
if args.rerank_binding != "null":
@ -648,48 +1031,40 @@ def create_app(args):
logger.error(f"Failed to initialize LightRAG: {e}")
raise
# Initialize TenantService for multi-tenant support
tenant_storage = rag.key_string_value_json_storage_cls(
namespace=NameSpace.KV_STORE_TENANTS,
workspace=rag.workspace,
embedding_func=rag.embedding_func,
)
tenant_service = TenantService(kv_storage=tenant_storage)
# Initialize TenantRAGManager for managing per-tenant RAG instances with caching
# This enables efficient multi-tenant deployments by caching RAG instances
# Pass the main RAG instance as a template for tenant-specific instances
rag_manager = TenantRAGManager(
base_working_dir=args.working_dir,
tenant_service=tenant_service,
template_rag=rag,
max_cached_instances=int(os.getenv("MAX_CACHED_RAG_INSTANCES", "100"))
)
# Store rag_manager in app state for dependency injection
app.state.rag_manager = rag_manager
app.include_router(create_tenant_routes(tenant_service))
app.include_router(create_admin_routes(tenant_service))
# Add membership management routes
from lightrag.api.routers import membership_routes
app.include_router(membership_routes.router)
# Add routes
app.include_router(
create_document_routes(
rag,
doc_manager,
api_key,
rag_manager,
)
)
app.include_router(create_query_routes(rag, api_key, args.top_k, rag_manager))
app.include_router(create_graph_routes(rag, api_key, rag_manager))
app.include_router(create_query_routes(rag, api_key, args.top_k))
app.include_router(create_graph_routes(rag, api_key))
# Add Ollama API routes with tenant-scoped RAG support
ollama_api = OllamaAPI(rag, top_k=args.top_k, api_key=api_key, rag_manager=rag_manager)
# Add Ollama API routes
ollama_api = OllamaAPI(rag, top_k=args.top_k, api_key=api_key)
app.include_router(ollama_api.router, prefix="/api")
# Custom Swagger UI endpoint for offline support
@app.get("/docs", include_in_schema=False)
async def custom_swagger_ui_html():
"""Custom Swagger UI HTML with local static files"""
return get_swagger_ui_html(
openapi_url=app.openapi_url,
title=app.title + " - Swagger UI",
oauth2_redirect_url="/docs/oauth2-redirect",
swagger_js_url="/static/swagger-ui/swagger-ui-bundle.js",
swagger_css_url="/static/swagger-ui/swagger-ui.css",
swagger_favicon_url="/static/swagger-ui/favicon-32x32.png",
swagger_ui_parameters=app.swagger_ui_parameters,
)
@app.get("/docs/oauth2-redirect", include_in_schema=False)
async def swagger_ui_redirect():
"""OAuth2 redirect for Swagger UI"""
return get_swagger_ui_oauth2_redirect_html()
@app.get("/")
async def redirect_to_webui():
"""Redirect root path to /webui"""
@ -711,7 +1086,7 @@ def create_app(args):
"auth_mode": "disabled",
"message": "Authentication is disabled. Using guest access.",
"core_version": core_version,
"api_version": __api_version__,
"api_version": api_version_display,
"webui_title": webui_title,
"webui_description": webui_description,
}
@ -720,7 +1095,7 @@ def create_app(args):
"auth_configured": True,
"auth_mode": "enabled",
"core_version": core_version,
"api_version": __api_version__,
"api_version": api_version_display,
"webui_title": webui_title,
"webui_description": webui_description,
}
@ -738,7 +1113,7 @@ def create_app(args):
"auth_mode": "disabled",
"message": "Authentication is disabled. Using guest access.",
"core_version": core_version,
"api_version": __api_version__,
"api_version": api_version_display,
"webui_title": webui_title,
"webui_description": webui_description,
}
@ -747,26 +1122,30 @@ def create_app(args):
raise HTTPException(status_code=401, detail="Incorrect credentials")
# Regular user login
role = "admin" if username == "admin" else "user"
print(f"DEBUG: Login user={username}, role={role}")
user_token = auth_handler.create_token(
username=username, role=role, metadata={"auth_mode": "enabled"}
username=username, role="user", metadata={"auth_mode": "enabled"}
)
return {
"access_token": user_token,
"token_type": "bearer",
"auth_mode": "enabled",
"core_version": core_version,
"api_version": __api_version__,
"api_version": api_version_display,
"webui_title": webui_title,
"webui_description": webui_description,
}
@app.get("/health", dependencies=[Depends(combined_auth)])
async def get_status():
async def get_status(request: Request):
"""Get current system status"""
try:
pipeline_status = await get_namespace_data("pipeline_status")
workspace = get_workspace_from_request(request)
default_workspace = get_default_workspace()
if workspace is None:
workspace = default_workspace
pipeline_status = await get_namespace_data(
"pipeline_status", workspace=workspace
)
if not auth_configured:
auth_mode = "disabled"
@ -797,7 +1176,7 @@ def create_app(args):
"vector_storage": args.vector_storage,
"enable_llm_cache_for_extract": args.enable_llm_cache_for_extract,
"enable_llm_cache": args.enable_llm_cache,
"workspace": args.workspace,
"workspace": default_workspace,
"max_graph_nodes": args.max_graph_nodes,
# Rerank configuration
"enable_rerank": rerank_model_func is not None,
@ -821,7 +1200,7 @@ def create_app(args):
"pipeline_busy": pipeline_status.get("busy", False),
"keyed_locks": keyed_lock_info,
"core_version": core_version,
"api_version": __api_version__,
"api_version": api_version_display,
"webui_title": webui_title,
"webui_description": webui_description,
}
@ -834,7 +1213,9 @@ def create_app(args):
async def get_response(self, path: str, scope):
response = await super().get_response(path, scope)
if path.endswith(".html"):
is_html = path.endswith(".html") or response.media_type == "text/html"
if is_html:
response.headers["Cache-Control"] = (
"no-cache, no-store, must-revalidate"
)
@ -856,6 +1237,15 @@ def create_app(args):
return response
# Mount Swagger UI static files for offline support
swagger_static_dir = Path(__file__).parent / "static" / "swagger-ui"
if swagger_static_dir.exists():
app.mount(
"/static/swagger-ui",
StaticFiles(directory=swagger_static_dir),
name="swagger-ui-static",
)
# Webui mount webui/index.html
static_dir = Path(__file__).parent / "webui"
static_dir.mkdir(exist_ok=True)
@ -867,9 +1257,6 @@ def create_app(args):
name="webui",
)
# Add Tenant middleware
app.add_middleware(TenantMiddleware)
return app
@ -978,6 +1365,12 @@ def check_and_install_dependencies():
def main():
# Explicitly initialize configuration for clarity
# (The proxy will auto-initialize anyway, but this makes intent clear)
from .config import initialize_config
initialize_config()
# Check if running under Gunicorn
if "GUNICORN_CMD_ARGS" in os.environ:
# If started with Gunicorn, return directly as Gunicorn will call get_application
@ -1000,8 +1393,10 @@ def main():
update_uvicorn_mode_config()
display_splash_screen(global_args)
# Setup signal handlers for graceful shutdown
setup_signal_handlers()
# Note: Signal handlers are NOT registered here because:
# - Uvicorn has built-in signal handling that properly calls lifespan shutdown
# - Custom signal handlers can interfere with uvicorn's graceful shutdown
# - Cleanup is handled by the lifespan context manager's finally block
# Create application instance directly instead of using factory function
app = create_app(global_args)

View file

@ -68,10 +68,7 @@ class StorageNotInitializedError(RuntimeError):
f"{storage_type} not initialized. Please ensure proper initialization:\n"
f"\n"
f" rag = LightRAG(...)\n"
f" await rag.initialize_storages() # Required\n"
f" \n"
f" from lightrag.kg.shared_storage import initialize_pipeline_status\n"
f" await initialize_pipeline_status() # Required for pipeline operations\n"
f" await rag.initialize_storages() # Required - auto-initializes pipeline_status\n"
f"\n"
f"See: https://github.com/HKUDS/LightRAG#important-initialization-requirements"
)
@ -82,17 +79,20 @@ class PipelineNotInitializedError(KeyError):
def __init__(self, namespace: str = ""):
msg = (
f"Pipeline namespace '{namespace}' not found. "
f"This usually means pipeline status was not initialized.\n"
f"Pipeline namespace '{namespace}' not found.\n"
f"\n"
f"Please call 'await initialize_pipeline_status()' after initializing storages:\n"
f"Pipeline status should be auto-initialized by initialize_storages().\n"
f"If you see this error, please ensure:\n"
f"\n"
f" 1. You called await rag.initialize_storages()\n"
f" 2. For multi-workspace setups, each LightRAG instance was properly initialized\n"
f"\n"
f"Standard initialization:\n"
f" rag = LightRAG(workspace='your_workspace')\n"
f" await rag.initialize_storages() # Auto-initializes pipeline_status\n"
f"\n"
f"If you need manual control (advanced):\n"
f" from lightrag.kg.shared_storage import initialize_pipeline_status\n"
f" await initialize_pipeline_status()\n"
f"\n"
f"Full initialization sequence:\n"
f" rag = LightRAG(...)\n"
f" await rag.initialize_storages()\n"
f" await initialize_pipeline_status()"
f" await initialize_pipeline_status(workspace='your_workspace')"
)
super().__init__(msg)

File diff suppressed because it is too large Load diff