Restructure semaphore control to manage entire evaluation pipeline
• Move rag_semaphore to wrap full function • Increase RAG concurrency to 2x eval limit • Prevent memory buildup from slow evals • Keep eval_semaphore for RAGAS control
This commit is contained in:
parent
83715a3ac1
commit
e5abe9dd3d
1 changed files with 101 additions and 97 deletions
|
|
@ -358,7 +358,7 @@ class RAGEvaluator:
|
|||
Args:
|
||||
idx: Test case index (1-based)
|
||||
test_case: Test case dictionary with question and ground_truth
|
||||
rag_semaphore: Semaphore to control RAG generation concurrency (Stage 1)
|
||||
rag_semaphore: Semaphore to control overall concurrency (covers entire function)
|
||||
eval_semaphore: Semaphore to control RAGAS evaluation concurrency (Stage 2)
|
||||
client: Shared httpx AsyncClient for connection pooling
|
||||
progress_counter: Shared dictionary for progress tracking
|
||||
|
|
@ -366,11 +366,13 @@ class RAGEvaluator:
|
|||
Returns:
|
||||
Evaluation result dictionary
|
||||
"""
|
||||
question = test_case["question"]
|
||||
ground_truth = test_case["ground_truth"]
|
||||
|
||||
# Stage 1: Generate RAG response (controlled by rag_semaphore)
|
||||
# rag_semaphore controls the entire evaluation process to prevent
|
||||
# all RAG responses from being generated at once when eval is slow
|
||||
async with rag_semaphore:
|
||||
question = test_case["question"]
|
||||
ground_truth = test_case["ground_truth"]
|
||||
|
||||
# Stage 1: Generate RAG response
|
||||
try:
|
||||
rag_response = await self.generate_rag_response(
|
||||
question=question, client=client
|
||||
|
|
@ -387,102 +389,104 @@ class RAGEvaluator:
|
|||
"timestamp": datetime.now().isoformat(),
|
||||
}
|
||||
|
||||
# *** CRITICAL FIX: Use actual retrieved contexts, NOT ground_truth ***
|
||||
retrieved_contexts = rag_response["contexts"]
|
||||
# *** CRITICAL FIX: Use actual retrieved contexts, NOT ground_truth ***
|
||||
retrieved_contexts = rag_response["contexts"]
|
||||
|
||||
# DEBUG: Print what was actually retrieved (only in debug mode)
|
||||
logger.debug("📝 Test %s: Retrieved %s contexts", idx, len(retrieved_contexts))
|
||||
|
||||
# Prepare dataset for RAGAS evaluation with CORRECT contexts
|
||||
eval_dataset = Dataset.from_dict(
|
||||
{
|
||||
"question": [question],
|
||||
"answer": [rag_response["answer"]],
|
||||
"contexts": [retrieved_contexts],
|
||||
"ground_truth": [ground_truth],
|
||||
}
|
||||
)
|
||||
|
||||
# Stage 2: Run RAGAS evaluation (controlled by eval_semaphore)
|
||||
# IMPORTANT: Create fresh metric instances for each evaluation to avoid
|
||||
# concurrent state conflicts when multiple tasks run in parallel
|
||||
async with eval_semaphore:
|
||||
pbar = None
|
||||
try:
|
||||
# Create standard tqdm progress bar for RAGAS evaluation
|
||||
pbar = tqdm(total=4, desc=f"Eval-{idx}", leave=True)
|
||||
|
||||
eval_results = evaluate(
|
||||
dataset=eval_dataset,
|
||||
metrics=[
|
||||
Faithfulness(),
|
||||
AnswerRelevancy(),
|
||||
ContextRecall(),
|
||||
ContextPrecision(),
|
||||
],
|
||||
llm=self.eval_llm,
|
||||
embeddings=self.eval_embeddings,
|
||||
_pbar=pbar,
|
||||
)
|
||||
|
||||
# Convert to DataFrame (RAGAS v0.3+ API)
|
||||
df = eval_results.to_pandas()
|
||||
|
||||
# Extract scores from first row
|
||||
scores_row = df.iloc[0]
|
||||
|
||||
# Extract scores (RAGAS v0.3+ uses .to_pandas())
|
||||
result = {
|
||||
"test_number": idx,
|
||||
"question": question,
|
||||
"answer": rag_response["answer"][:200] + "..."
|
||||
if len(rag_response["answer"]) > 200
|
||||
else rag_response["answer"],
|
||||
"ground_truth": ground_truth[:200] + "..."
|
||||
if len(ground_truth) > 200
|
||||
else ground_truth,
|
||||
"project": test_case.get("project", "unknown"),
|
||||
"metrics": {
|
||||
"faithfulness": float(scores_row.get("faithfulness", 0)),
|
||||
"answer_relevance": float(
|
||||
scores_row.get("answer_relevancy", 0)
|
||||
),
|
||||
"context_recall": float(scores_row.get("context_recall", 0)),
|
||||
"context_precision": float(
|
||||
scores_row.get("context_precision", 0)
|
||||
),
|
||||
},
|
||||
"timestamp": datetime.now().isoformat(),
|
||||
# Prepare dataset for RAGAS evaluation with CORRECT contexts
|
||||
eval_dataset = Dataset.from_dict(
|
||||
{
|
||||
"question": [question],
|
||||
"answer": [rag_response["answer"]],
|
||||
"contexts": [retrieved_contexts],
|
||||
"ground_truth": [ground_truth],
|
||||
}
|
||||
)
|
||||
|
||||
# Calculate RAGAS score (average of all metrics, excluding NaN values)
|
||||
metrics = result["metrics"]
|
||||
valid_metrics = [v for v in metrics.values() if not _is_nan(v)]
|
||||
ragas_score = (
|
||||
sum(valid_metrics) / len(valid_metrics) if valid_metrics else 0
|
||||
)
|
||||
result["ragas_score"] = round(ragas_score, 4)
|
||||
# Stage 2: Run RAGAS evaluation (controlled by eval_semaphore)
|
||||
# IMPORTANT: Create fresh metric instances for each evaluation to avoid
|
||||
# concurrent state conflicts when multiple tasks run in parallel
|
||||
async with eval_semaphore:
|
||||
pbar = None
|
||||
try:
|
||||
# Create standard tqdm progress bar for RAGAS evaluation
|
||||
pbar = tqdm(total=4, desc=f"Eval-{idx}", leave=True)
|
||||
|
||||
# Update progress counter
|
||||
progress_counter["completed"] += 1
|
||||
eval_results = evaluate(
|
||||
dataset=eval_dataset,
|
||||
metrics=[
|
||||
Faithfulness(),
|
||||
AnswerRelevancy(),
|
||||
ContextRecall(),
|
||||
ContextPrecision(),
|
||||
],
|
||||
llm=self.eval_llm,
|
||||
embeddings=self.eval_embeddings,
|
||||
_pbar=pbar,
|
||||
)
|
||||
|
||||
return result
|
||||
|
||||
except Exception as e:
|
||||
logger.error("Error evaluating test %s: %s", idx, str(e))
|
||||
progress_counter["completed"] += 1
|
||||
return {
|
||||
"test_number": idx,
|
||||
"question": question,
|
||||
"error": str(e),
|
||||
"metrics": {},
|
||||
"ragas_score": 0,
|
||||
"timestamp": datetime.now().isoformat(),
|
||||
}
|
||||
finally:
|
||||
# Force close progress bar to ensure completion
|
||||
if pbar is not None:
|
||||
pbar.close()
|
||||
pbar = None
|
||||
|
||||
# Convert to DataFrame (RAGAS v0.3+ API)
|
||||
df = eval_results.to_pandas()
|
||||
|
||||
# Extract scores from first row
|
||||
scores_row = df.iloc[0]
|
||||
|
||||
# Extract scores (RAGAS v0.3+ uses .to_pandas())
|
||||
result = {
|
||||
"test_number": idx,
|
||||
"question": question,
|
||||
"answer": rag_response["answer"][:200] + "..."
|
||||
if len(rag_response["answer"]) > 200
|
||||
else rag_response["answer"],
|
||||
"ground_truth": ground_truth[:200] + "..."
|
||||
if len(ground_truth) > 200
|
||||
else ground_truth,
|
||||
"project": test_case.get("project", "unknown"),
|
||||
"metrics": {
|
||||
"faithfulness": float(scores_row.get("faithfulness", 0)),
|
||||
"answer_relevance": float(
|
||||
scores_row.get("answer_relevancy", 0)
|
||||
),
|
||||
"context_recall": float(
|
||||
scores_row.get("context_recall", 0)
|
||||
),
|
||||
"context_precision": float(
|
||||
scores_row.get("context_precision", 0)
|
||||
),
|
||||
},
|
||||
"timestamp": datetime.now().isoformat(),
|
||||
}
|
||||
|
||||
# Calculate RAGAS score (average of all metrics, excluding NaN values)
|
||||
metrics = result["metrics"]
|
||||
valid_metrics = [v for v in metrics.values() if not _is_nan(v)]
|
||||
ragas_score = (
|
||||
sum(valid_metrics) / len(valid_metrics) if valid_metrics else 0
|
||||
)
|
||||
result["ragas_score"] = round(ragas_score, 4)
|
||||
|
||||
# Update progress counter
|
||||
progress_counter["completed"] += 1
|
||||
|
||||
return result
|
||||
|
||||
except Exception as e:
|
||||
logger.error("Error evaluating test %s: %s", idx, str(e))
|
||||
progress_counter["completed"] += 1
|
||||
return {
|
||||
"test_number": idx,
|
||||
"question": question,
|
||||
"error": str(e),
|
||||
"metrics": {},
|
||||
"ragas_score": 0,
|
||||
"timestamp": datetime.now().isoformat(),
|
||||
}
|
||||
finally:
|
||||
# Force close progress bar to ensure completion
|
||||
if pbar is not None:
|
||||
pbar.close()
|
||||
|
||||
async def evaluate_responses(self) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
|
|
@ -501,8 +505,8 @@ class RAGEvaluator:
|
|||
logger.info("%s", "=" * 70)
|
||||
|
||||
# Create two-stage pipeline semaphores
|
||||
# Stage 1: RAG generation - allow +1 concurrency to keep evaluation fed
|
||||
rag_semaphore = asyncio.Semaphore(max_async + 1)
|
||||
# Stage 1: RAG generation - allow x2 concurrency to keep evaluation fed
|
||||
rag_semaphore = asyncio.Semaphore(max_async * 2)
|
||||
# Stage 2: RAGAS evaluation - primary bottleneck
|
||||
eval_semaphore = asyncio.Semaphore(max_async)
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue