diff --git a/README-zh.md b/README-zh.md
index e9599099..d6aef2c8 100644
--- a/README-zh.md
+++ b/README-zh.md
@@ -294,6 +294,16 @@ class QueryParam:
top_k: int = int(os.getenv("TOP_K", "60"))
"""Number of top items to retrieve. Represents entities in 'local' mode and relationships in 'global' mode."""
+ chunk_top_k: int = int(os.getenv("CHUNK_TOP_K", "5"))
+ """Number of text chunks to retrieve initially from vector search.
+ If None, defaults to top_k value.
+ """
+
+ chunk_rerank_top_k: int = int(os.getenv("CHUNK_RERANK_TOP_K", "5"))
+ """Number of text chunks to keep after reranking.
+ If None, keeps all chunks returned from initial retrieval.
+ """
+
max_token_for_text_unit: int = int(os.getenv("MAX_TOKEN_TEXT_CHUNK", "4000"))
"""Maximum number of tokens allowed for each retrieved text chunk."""
@@ -849,6 +859,18 @@ rag = LightRAG(
+### LightRAG实例间的数据隔离
+
+通过 workspace 参数可以不同实现不同LightRAG实例之间的存储数据隔离。LightRAG在初始化后workspace就已经确定,之后修改workspace是无效的。下面是不同类型的存储实现工作空间的方式:
+
+- **对于本地基于文件的数据库,数据隔离通过工作空间子目录实现:** JsonKVStorage, JsonDocStatusStorage, NetworkXStorage, NanoVectorDBStorage, FaissVectorDBStorage。
+- **对于将数据存储在集合(collection)中的数据库,通过在集合名称前添加工作空间前缀来实现:** RedisKVStorage, RedisDocStatusStorage, MilvusVectorDBStorage, QdrantVectorDBStorage, MongoKVStorage, MongoDocStatusStorage, MongoVectorDBStorage, MongoGraphStorage, PGGraphStorage。
+- **对于关系型数据库,数据隔离通过向表中添加 `workspace` 字段进行数据的逻辑隔离:** PGKVStorage, PGVectorStorage, PGDocStatusStorage。
+
+* **对于Neo4j图数据库,通过label来实现数据的逻辑隔离**:Neo4JStorage
+
+为了保持对遗留数据的兼容,在未配置工作空间时PostgreSQL的默认工作空间为`default`,Neo4j的默认工作空间为`base`。对于所有的外部存储,系统都提供了专用的工作空间环境变量,用于覆盖公共的 `WORKSPACE`环境变量配置。这些适用于指定存储类型的工作空间环境变量为:`REDIS_WORKSPACE`, `MILVUS_WORKSPACE`, `QDRANT_WORKSPACE`, `MONGODB_WORKSPACE`, `POSTGRES_WORKSPACE`, `NEO4J_WORKSPACE`。
+
## 编辑实体和关系
LightRAG现在支持全面的知识图谱管理功能,允许您在知识图谱中创建、编辑和删除实体和关系。
diff --git a/README.md b/README.md
index e812e8df..5fb6149b 100644
--- a/README.md
+++ b/README.md
@@ -153,7 +153,7 @@ curl https://raw.githubusercontent.com/gusye1234/nano-graphrag/main/tests/mock_d
python examples/lightrag_openai_demo.py
```
-For a streaming response implementation example, please see `examples/lightrag_openai_compatible_demo.py`. Prior to execution, ensure you modify the sample code’s LLM and embedding configurations accordingly.
+For a streaming response implementation example, please see `examples/lightrag_openai_compatible_demo.py`. Prior to execution, ensure you modify the sample code's LLM and embedding configurations accordingly.
**Note 1**: When running the demo program, please be aware that different test scripts may use different embedding models. If you switch to a different embedding model, you must clear the data directory (`./dickens`); otherwise, the program may encounter errors. If you wish to retain the LLM cache, you can preserve the `kv_store_llm_response_cache.json` file while clearing the data directory.
@@ -239,6 +239,7 @@ A full list of LightRAG init parameters:
| **Parameter** | **Type** | **Explanation** | **Default** |
|--------------|----------|-----------------|-------------|
| **working_dir** | `str` | Directory where the cache will be stored | `lightrag_cache+timestamp` |
+| **workspace** | str | Workspace name for data isolation between different LightRAG Instances | |
| **kv_storage** | `str` | Storage type for documents and text chunks. Supported types: `JsonKVStorage`,`PGKVStorage`,`RedisKVStorage`,`MongoKVStorage` | `JsonKVStorage` |
| **vector_storage** | `str` | Storage type for embedding vectors. Supported types: `NanoVectorDBStorage`,`PGVectorStorage`,`MilvusVectorDBStorage`,`ChromaVectorDBStorage`,`FaissVectorDBStorage`,`MongoVectorDBStorage`,`QdrantVectorDBStorage` | `NanoVectorDBStorage` |
| **graph_storage** | `str` | Storage type for graph edges and nodes. Supported types: `NetworkXStorage`,`Neo4JStorage`,`PGGraphStorage`,`AGEStorage` | `NetworkXStorage` |
@@ -300,6 +301,16 @@ class QueryParam:
top_k: int = int(os.getenv("TOP_K", "60"))
"""Number of top items to retrieve. Represents entities in 'local' mode and relationships in 'global' mode."""
+ chunk_top_k: int = int(os.getenv("CHUNK_TOP_K", "5"))
+ """Number of text chunks to retrieve initially from vector search.
+ If None, defaults to top_k value.
+ """
+
+ chunk_rerank_top_k: int = int(os.getenv("CHUNK_RERANK_TOP_K", "5"))
+ """Number of text chunks to keep after reranking.
+ If None, keeps all chunks returned from initial retrieval.
+ """
+
max_token_for_text_unit: int = int(os.getenv("MAX_TOKEN_TEXT_CHUNK", "4000"))
"""Maximum number of tokens allowed for each retrieved text chunk."""
@@ -860,6 +871,52 @@ rag = LightRAG(
+
+ Using Memgraph for Storage
+
+* Memgraph is a high-performance, in-memory graph database compatible with the Neo4j Bolt protocol.
+* You can run Memgraph locally using Docker for easy testing:
+* See: https://memgraph.com/download
+
+```python
+export MEMGRAPH_URI="bolt://localhost:7687"
+
+# Setup logger for LightRAG
+setup_logger("lightrag", level="INFO")
+
+# When you launch the project, override the default KG: NetworkX
+# by specifying kg="MemgraphStorage".
+
+# Note: Default settings use NetworkX
+# Initialize LightRAG with Memgraph implementation.
+async def initialize_rag():
+ rag = LightRAG(
+ working_dir=WORKING_DIR,
+ llm_model_func=gpt_4o_mini_complete, # Use gpt_4o_mini_complete LLM model
+ graph_storage="MemgraphStorage", #<-----------override KG default
+ )
+
+ # Initialize database connections
+ await rag.initialize_storages()
+ # Initialize pipeline status for document processing
+ await initialize_pipeline_status()
+
+ return rag
+```
+
+
+
+### Data Isolation Between LightRAG Instances
+
+The `workspace` parameter ensures data isolation between different LightRAG instances. Once initialized, the `workspace` is immutable and cannot be changed.Here is how workspaces are implemented for different types of storage:
+
+- **For local file-based databases, data isolation is achieved through workspace subdirectories:** `JsonKVStorage`, `JsonDocStatusStorage`, `NetworkXStorage`, `NanoVectorDBStorage`, `FaissVectorDBStorage`.
+- **For databases that store data in collections, it's done by adding a workspace prefix to the collection name:** `RedisKVStorage`, `RedisDocStatusStorage`, `MilvusVectorDBStorage`, `QdrantVectorDBStorage`, `MongoKVStorage`, `MongoDocStatusStorage`, `MongoVectorDBStorage`, `MongoGraphStorage`, `PGGraphStorage`.
+- **For relational databases, data isolation is achieved by adding a `workspace` field to the tables for logical data separation:** `PGKVStorage`, `PGVectorStorage`, `PGDocStatusStorage`.
+- **For the Neo4j graph database, logical data isolation is achieved through labels:** `Neo4JStorage`
+
+To maintain compatibility with legacy data, the default workspace for PostgreSQL is `default` and for Neo4j is `base` when no workspace is configured. For all external storages, the system provides dedicated workspace environment variables to override the common `WORKSPACE` environment variable configuration. These storage-specific workspace environment variables are: `REDIS_WORKSPACE`, `MILVUS_WORKSPACE`, `QDRANT_WORKSPACE`, `MONGODB_WORKSPACE`, `POSTGRES_WORKSPACE`, `NEO4J_WORKSPACE`.
+
## Edit Entities and Relations
LightRAG now supports comprehensive knowledge graph management capabilities, allowing you to create, edit, and delete entities and relationships within your knowledge graph.
diff --git a/config.ini.example b/config.ini.example
index 63d9c2c0..94d300a1 100644
--- a/config.ini.example
+++ b/config.ini.example
@@ -21,3 +21,6 @@ password = your_password
database = your_database
workspace = default # 可选,默认为default
max_connections = 12
+
+[memgraph]
+uri = bolt://localhost:7687
diff --git a/docs/rerank_integration.md b/docs/rerank_integration.md
new file mode 100644
index 00000000..fdaebfa5
--- /dev/null
+++ b/docs/rerank_integration.md
@@ -0,0 +1,275 @@
+# Rerank Integration in LightRAG
+
+This document explains how to configure and use the rerank functionality in LightRAG to improve retrieval quality.
+
+## Overview
+
+Reranking is an optional feature that improves the quality of retrieved documents by re-ordering them based on their relevance to the query. This is particularly useful when you want higher precision in document retrieval across all query modes (naive, local, global, hybrid, mix).
+
+## Architecture
+
+The rerank integration follows a simplified design pattern:
+
+- **Single Function Configuration**: All rerank settings (model, API keys, top_k, etc.) are contained within the rerank function
+- **Async Processing**: Non-blocking rerank operations
+- **Error Handling**: Graceful fallback to original results
+- **Optional Feature**: Can be enabled/disabled via configuration
+- **Code Reuse**: Single generic implementation for Jina/Cohere compatible APIs
+
+## Configuration
+
+### Environment Variables
+
+Set this variable in your `.env` file or environment:
+
+```bash
+# Enable/disable reranking
+ENABLE_RERANK=True
+```
+
+### Programmatic Configuration
+
+```python
+from lightrag import LightRAG
+from lightrag.rerank import custom_rerank, RerankModel
+
+# Method 1: Using a custom rerank function with all settings included
+async def my_rerank_func(query: str, documents: list, top_k: int = None, **kwargs):
+ return await custom_rerank(
+ query=query,
+ documents=documents,
+ model="BAAI/bge-reranker-v2-m3",
+ base_url="https://api.your-provider.com/v1/rerank",
+ api_key="your_api_key_here",
+ top_k=top_k or 10, # Handle top_k within the function
+ **kwargs
+ )
+
+rag = LightRAG(
+ working_dir="./rag_storage",
+ llm_model_func=your_llm_func,
+ embedding_func=your_embedding_func,
+ enable_rerank=True,
+ rerank_model_func=my_rerank_func,
+)
+
+# Method 2: Using RerankModel wrapper
+rerank_model = RerankModel(
+ rerank_func=custom_rerank,
+ kwargs={
+ "model": "BAAI/bge-reranker-v2-m3",
+ "base_url": "https://api.your-provider.com/v1/rerank",
+ "api_key": "your_api_key_here",
+ }
+)
+
+rag = LightRAG(
+ working_dir="./rag_storage",
+ llm_model_func=your_llm_func,
+ embedding_func=your_embedding_func,
+ enable_rerank=True,
+ rerank_model_func=rerank_model.rerank,
+)
+```
+
+## Supported Providers
+
+### 1. Custom/Generic API (Recommended)
+
+For Jina/Cohere compatible APIs:
+
+```python
+from lightrag.rerank import custom_rerank
+
+# Your custom API endpoint
+result = await custom_rerank(
+ query="your query",
+ documents=documents,
+ model="BAAI/bge-reranker-v2-m3",
+ base_url="https://api.your-provider.com/v1/rerank",
+ api_key="your_api_key_here",
+ top_k=10
+)
+```
+
+### 2. Jina AI
+
+```python
+from lightrag.rerank import jina_rerank
+
+result = await jina_rerank(
+ query="your query",
+ documents=documents,
+ model="BAAI/bge-reranker-v2-m3",
+ api_key="your_jina_api_key",
+ top_k=10
+)
+```
+
+### 3. Cohere
+
+```python
+from lightrag.rerank import cohere_rerank
+
+result = await cohere_rerank(
+ query="your query",
+ documents=documents,
+ model="rerank-english-v2.0",
+ api_key="your_cohere_api_key",
+ top_k=10
+)
+```
+
+## Integration Points
+
+Reranking is automatically applied at these key retrieval stages:
+
+1. **Naive Mode**: After vector similarity search in `_get_vector_context`
+2. **Local Mode**: After entity retrieval in `_get_node_data`
+3. **Global Mode**: After relationship retrieval in `_get_edge_data`
+4. **Hybrid/Mix Modes**: Applied to all relevant components
+
+## Configuration Parameters
+
+| Parameter | Type | Default | Description |
+|-----------|------|---------|-------------|
+| `enable_rerank` | bool | False | Enable/disable reranking |
+| `rerank_model_func` | callable | None | Custom rerank function containing all configurations (model, API keys, top_k, etc.) |
+
+## Example Usage
+
+### Basic Usage
+
+```python
+import asyncio
+from lightrag import LightRAG, QueryParam
+from lightrag.llm.openai import gpt_4o_mini_complete, openai_embedding
+from lightrag.kg.shared_storage import initialize_pipeline_status
+from lightrag.rerank import jina_rerank
+
+async def my_rerank_func(query: str, documents: list, top_k: int = None, **kwargs):
+ """Custom rerank function with all settings included"""
+ return await jina_rerank(
+ query=query,
+ documents=documents,
+ model="BAAI/bge-reranker-v2-m3",
+ api_key="your_jina_api_key_here",
+ top_k=top_k or 10, # Default top_k if not provided
+ **kwargs
+ )
+
+async def main():
+ # Initialize with rerank enabled
+ rag = LightRAG(
+ working_dir="./rag_storage",
+ llm_model_func=gpt_4o_mini_complete,
+ embedding_func=openai_embedding,
+ enable_rerank=True,
+ rerank_model_func=my_rerank_func,
+ )
+
+ await rag.initialize_storages()
+ await initialize_pipeline_status()
+
+ # Insert documents
+ await rag.ainsert([
+ "Document 1 content...",
+ "Document 2 content...",
+ ])
+
+ # Query with rerank (automatically applied)
+ result = await rag.aquery(
+ "Your question here",
+ param=QueryParam(mode="hybrid", top_k=5) # This top_k is passed to rerank function
+ )
+
+ print(result)
+
+asyncio.run(main())
+```
+
+### Direct Rerank Usage
+
+```python
+from lightrag.rerank import custom_rerank
+
+async def test_rerank():
+ documents = [
+ {"content": "Text about topic A"},
+ {"content": "Text about topic B"},
+ {"content": "Text about topic C"},
+ ]
+
+ reranked = await custom_rerank(
+ query="Tell me about topic A",
+ documents=documents,
+ model="BAAI/bge-reranker-v2-m3",
+ base_url="https://api.your-provider.com/v1/rerank",
+ api_key="your_api_key_here",
+ top_k=2
+ )
+
+ for doc in reranked:
+ print(f"Score: {doc.get('rerank_score')}, Content: {doc.get('content')}")
+```
+
+## Best Practices
+
+1. **Self-Contained Functions**: Include all necessary configurations (API keys, models, top_k handling) within your rerank function
+2. **Performance**: Use reranking selectively for better performance vs. quality tradeoff
+3. **API Limits**: Monitor API usage and implement rate limiting within your rerank function
+4. **Fallback**: Always handle rerank failures gracefully (returns original results)
+5. **Top-k Handling**: Handle top_k parameter appropriately within your rerank function
+6. **Cost Management**: Consider rerank API costs in your budget planning
+
+## Troubleshooting
+
+### Common Issues
+
+1. **API Key Missing**: Ensure API keys are properly configured within your rerank function
+2. **Network Issues**: Check API endpoints and network connectivity
+3. **Model Errors**: Verify the rerank model name is supported by your API
+4. **Document Format**: Ensure documents have `content` or `text` fields
+
+### Debug Mode
+
+Enable debug logging to see rerank operations:
+
+```python
+import logging
+logging.getLogger("lightrag.rerank").setLevel(logging.DEBUG)
+```
+
+### Error Handling
+
+The rerank integration includes automatic fallback:
+
+```python
+# If rerank fails, original documents are returned
+# No exceptions are raised to the user
+# Errors are logged for debugging
+```
+
+## API Compatibility
+
+The generic rerank API expects this response format:
+
+```json
+{
+ "results": [
+ {
+ "index": 0,
+ "relevance_score": 0.95
+ },
+ {
+ "index": 2,
+ "relevance_score": 0.87
+ }
+ ]
+}
+```
+
+This is compatible with:
+- Jina AI Rerank API
+- Cohere Rerank API
+- Custom APIs following the same format
diff --git a/env.example b/env.example
index f759ea92..4515fe34 100644
--- a/env.example
+++ b/env.example
@@ -42,13 +42,31 @@ OLLAMA_EMULATING_MODEL_TAG=latest
### Logfile location (defaults to current working directory)
# LOG_DIR=/path/to/log/directory
-### Settings for RAG query
+### RAG Configuration
+### Chunk size for document splitting, 500~1500 is recommended
+# CHUNK_SIZE=1200
+# CHUNK_OVERLAP_SIZE=100
+# MAX_TOKEN_SUMMARY=500
+
+### RAG Query Configuration
# HISTORY_TURNS=3
-# COSINE_THRESHOLD=0.2
-# TOP_K=60
-# MAX_TOKEN_TEXT_CHUNK=4000
+# MAX_TOKEN_TEXT_CHUNK=6000
# MAX_TOKEN_RELATION_DESC=4000
# MAX_TOKEN_ENTITY_DESC=4000
+# COSINE_THRESHOLD=0.2
+### Number of entities or relations to retrieve from KG
+# TOP_K=60
+### Number of text chunks to retrieve initially from vector search
+# CHUNK_TOP_K=5
+
+### Rerank Configuration
+# ENABLE_RERANK=False
+### Number of text chunks to keep after reranking (should be <= CHUNK_TOP_K)
+# CHUNK_RERANK_TOP_K=5
+### Rerank model configuration (required when ENABLE_RERANK=True)
+# RERANK_MODEL=BAAI/bge-reranker-v2-m3
+# RERANK_BINDING_HOST=https://api.your-rerank-provider.com/v1/rerank
+# RERANK_BINDING_API_KEY=your_rerank_api_key_here
### Entity and relation summarization configuration
### Language: English, Chinese, French, German ...
@@ -62,9 +80,6 @@ SUMMARY_LANGUAGE=English
### Number of parallel processing documents(Less than MAX_ASYNC/2 is recommended)
# MAX_PARALLEL_INSERT=2
-### Chunk size for document splitting, 500~1500 is recommended
-# CHUNK_SIZE=1200
-# CHUNK_OVERLAP_SIZE=100
### LLM Configuration
ENABLE_LLM_CACHE=true
@@ -134,13 +149,14 @@ EMBEDDING_BINDING_HOST=http://localhost:11434
# LIGHTRAG_VECTOR_STORAGE=QdrantVectorDBStorage
### Graph Storage (Recommended for production deployment)
# LIGHTRAG_GRAPH_STORAGE=Neo4JStorage
+# LIGHTRAG_GRAPH_STORAGE=MemgraphStorage
####################################################################
### Default workspace for all storage types
### For the purpose of isolation of data for each LightRAG instance
### Valid characters: a-z, A-Z, 0-9, and _
####################################################################
-# WORKSPACE=doc—
+# WORKSPACE=space1
### PostgreSQL Configuration
POSTGRES_HOST=localhost
@@ -179,3 +195,10 @@ QDRANT_URL=http://localhost:6333
### Redis
REDIS_URI=redis://localhost:6379
# REDIS_WORKSPACE=forced_workspace_name
+
+### Memgraph Configuration
+MEMGRAPH_URI=bolt://localhost:7687
+MEMGRAPH_USERNAME=
+MEMGRAPH_PASSWORD=
+MEMGRAPH_DATABASE=memgraph
+# MEMGRAPH_WORKSPACE=forced_workspace_name
diff --git a/examples/rerank_example.py b/examples/rerank_example.py
new file mode 100644
index 00000000..e0e361a5
--- /dev/null
+++ b/examples/rerank_example.py
@@ -0,0 +1,233 @@
+"""
+LightRAG Rerank Integration Example
+
+This example demonstrates how to use rerank functionality with LightRAG
+to improve retrieval quality across different query modes.
+
+Configuration Required:
+1. Set your LLM API key and base URL in llm_model_func()
+2. Set your embedding API key and base URL in embedding_func()
+3. Set your rerank API key and base URL in the rerank configuration
+4. Or use environment variables (.env file):
+ - ENABLE_RERANK=True
+"""
+
+import asyncio
+import os
+import numpy as np
+
+from lightrag import LightRAG, QueryParam
+from lightrag.rerank import custom_rerank, RerankModel
+from lightrag.llm.openai import openai_complete_if_cache, openai_embed
+from lightrag.utils import EmbeddingFunc, setup_logger
+from lightrag.kg.shared_storage import initialize_pipeline_status
+
+# Set up your working directory
+WORKING_DIR = "./test_rerank"
+setup_logger("test_rerank")
+
+if not os.path.exists(WORKING_DIR):
+ os.mkdir(WORKING_DIR)
+
+
+async def llm_model_func(
+ prompt, system_prompt=None, history_messages=[], **kwargs
+) -> str:
+ return await openai_complete_if_cache(
+ "gpt-4o-mini",
+ prompt,
+ system_prompt=system_prompt,
+ history_messages=history_messages,
+ api_key="your_llm_api_key_here",
+ base_url="https://api.your-llm-provider.com/v1",
+ **kwargs,
+ )
+
+
+async def embedding_func(texts: list[str]) -> np.ndarray:
+ return await openai_embed(
+ texts,
+ model="text-embedding-3-large",
+ api_key="your_embedding_api_key_here",
+ base_url="https://api.your-embedding-provider.com/v1",
+ )
+
+
+async def my_rerank_func(query: str, documents: list, top_k: int = None, **kwargs):
+ """Custom rerank function with all settings included"""
+ return await custom_rerank(
+ query=query,
+ documents=documents,
+ model="BAAI/bge-reranker-v2-m3",
+ base_url="https://api.your-rerank-provider.com/v1/rerank",
+ api_key="your_rerank_api_key_here",
+ top_k=top_k or 10, # Default top_k if not provided
+ **kwargs,
+ )
+
+
+async def create_rag_with_rerank():
+ """Create LightRAG instance with rerank configuration"""
+
+ # Get embedding dimension
+ test_embedding = await embedding_func(["test"])
+ embedding_dim = test_embedding.shape[1]
+ print(f"Detected embedding dimension: {embedding_dim}")
+
+ # Method 1: Using custom rerank function
+ rag = LightRAG(
+ working_dir=WORKING_DIR,
+ llm_model_func=llm_model_func,
+ embedding_func=EmbeddingFunc(
+ embedding_dim=embedding_dim,
+ max_token_size=8192,
+ func=embedding_func,
+ ),
+ # Simplified Rerank Configuration
+ enable_rerank=True,
+ rerank_model_func=my_rerank_func,
+ )
+
+ await rag.initialize_storages()
+ await initialize_pipeline_status()
+
+ return rag
+
+
+async def create_rag_with_rerank_model():
+ """Alternative: Create LightRAG instance using RerankModel wrapper"""
+
+ # Get embedding dimension
+ test_embedding = await embedding_func(["test"])
+ embedding_dim = test_embedding.shape[1]
+ print(f"Detected embedding dimension: {embedding_dim}")
+
+ # Method 2: Using RerankModel wrapper
+ rerank_model = RerankModel(
+ rerank_func=custom_rerank,
+ kwargs={
+ "model": "BAAI/bge-reranker-v2-m3",
+ "base_url": "https://api.your-rerank-provider.com/v1/rerank",
+ "api_key": "your_rerank_api_key_here",
+ },
+ )
+
+ rag = LightRAG(
+ working_dir=WORKING_DIR,
+ llm_model_func=llm_model_func,
+ embedding_func=EmbeddingFunc(
+ embedding_dim=embedding_dim,
+ max_token_size=8192,
+ func=embedding_func,
+ ),
+ enable_rerank=True,
+ rerank_model_func=rerank_model.rerank,
+ )
+
+ await rag.initialize_storages()
+ await initialize_pipeline_status()
+
+ return rag
+
+
+async def test_rerank_with_different_topk():
+ """
+ Test rerank functionality with different top_k settings
+ """
+ print("🚀 Setting up LightRAG with Rerank functionality...")
+
+ rag = await create_rag_with_rerank()
+
+ # Insert sample documents
+ sample_docs = [
+ "Reranking improves retrieval quality by re-ordering documents based on relevance.",
+ "LightRAG is a powerful retrieval-augmented generation system with multiple query modes.",
+ "Vector databases enable efficient similarity search in high-dimensional embedding spaces.",
+ "Natural language processing has evolved with large language models and transformers.",
+ "Machine learning algorithms can learn patterns from data without explicit programming.",
+ ]
+
+ print("📄 Inserting sample documents...")
+ await rag.ainsert(sample_docs)
+
+ query = "How does reranking improve retrieval quality?"
+ print(f"\n🔍 Testing query: '{query}'")
+ print("=" * 80)
+
+ # Test different top_k values to show parameter priority
+ top_k_values = [2, 5, 10]
+
+ for top_k in top_k_values:
+ print(f"\n📊 Testing with QueryParam(top_k={top_k}):")
+
+ # Test naive mode with specific top_k
+ result = await rag.aquery(query, param=QueryParam(mode="naive", top_k=top_k))
+ print(f" Result length: {len(result)} characters")
+ print(f" Preview: {result[:100]}...")
+
+
+async def test_direct_rerank():
+ """Test rerank function directly"""
+ print("\n🔧 Direct Rerank API Test")
+ print("=" * 40)
+
+ documents = [
+ {"content": "Reranking significantly improves retrieval quality"},
+ {"content": "LightRAG supports advanced reranking capabilities"},
+ {"content": "Vector search finds semantically similar documents"},
+ {"content": "Natural language processing with modern transformers"},
+ {"content": "The quick brown fox jumps over the lazy dog"},
+ ]
+
+ query = "rerank improve quality"
+ print(f"Query: '{query}'")
+ print(f"Documents: {len(documents)}")
+
+ try:
+ reranked_docs = await custom_rerank(
+ query=query,
+ documents=documents,
+ model="BAAI/bge-reranker-v2-m3",
+ base_url="https://api.your-rerank-provider.com/v1/rerank",
+ api_key="your_rerank_api_key_here",
+ top_k=3,
+ )
+
+ print("\n✅ Rerank Results:")
+ for i, doc in enumerate(reranked_docs):
+ score = doc.get("rerank_score", "N/A")
+ content = doc.get("content", "")[:60]
+ print(f" {i+1}. Score: {score:.4f} | {content}...")
+
+ except Exception as e:
+ print(f"❌ Rerank failed: {e}")
+
+
+async def main():
+ """Main example function"""
+ print("🎯 LightRAG Rerank Integration Example")
+ print("=" * 60)
+
+ try:
+ # Test rerank with different top_k values
+ await test_rerank_with_different_topk()
+
+ # Test direct rerank
+ await test_direct_rerank()
+
+ print("\n✅ Example completed successfully!")
+ print("\n💡 Key Points:")
+ print(" ✓ All rerank configurations are contained within rerank_model_func")
+ print(" ✓ Rerank improves document relevance ordering")
+ print(" ✓ Configure API keys within your rerank function")
+ print(" ✓ Monitor API usage and costs when using rerank services")
+
+ except Exception as e:
+ print(f"\n❌ Example failed: {e}")
+ import traceback
+
+ traceback.print_exc()
+
+
+if __name__ == "__main__":
+ asyncio.run(main())
diff --git a/lightrag/__init__.py b/lightrag/__init__.py
index 392b3f60..e72f906a 100644
--- a/lightrag/__init__.py
+++ b/lightrag/__init__.py
@@ -1,5 +1,5 @@
from .lightrag import LightRAG as LightRAG, QueryParam as QueryParam
-__version__ = "1.3.10"
+__version__ = "1.4.0"
__author__ = "Zirui Guo"
__url__ = "https://github.com/HKUDS/LightRAG"
diff --git a/lightrag/api/config.py b/lightrag/api/config.py
index ad0e670b..70147bde 100644
--- a/lightrag/api/config.py
+++ b/lightrag/api/config.py
@@ -165,6 +165,24 @@ def parse_args() -> argparse.Namespace:
default=get_env_value("TOP_K", 60, int),
help="Number of most similar results to return (default: from env or 60)",
)
+ parser.add_argument(
+ "--chunk-top-k",
+ type=int,
+ default=get_env_value("CHUNK_TOP_K", 15, int),
+ help="Number of text chunks to retrieve initially from vector search (default: from env or 15)",
+ )
+ parser.add_argument(
+ "--chunk-rerank-top-k",
+ type=int,
+ default=get_env_value("CHUNK_RERANK_TOP_K", 5, int),
+ help="Number of text chunks to keep after reranking (default: from env or 5)",
+ )
+ parser.add_argument(
+ "--enable-rerank",
+ action="store_true",
+ default=get_env_value("ENABLE_RERANK", False, bool),
+ help="Enable rerank functionality (default: from env or False)",
+ )
parser.add_argument(
"--cosine-threshold",
type=float,
@@ -295,6 +313,11 @@ def parse_args() -> argparse.Namespace:
args.guest_token_expire_hours = get_env_value("GUEST_TOKEN_EXPIRE_HOURS", 24, int)
args.jwt_algorithm = get_env_value("JWT_ALGORITHM", "HS256")
+ # Rerank model configuration
+ args.rerank_model = get_env_value("RERANK_MODEL", "BAAI/bge-reranker-v2-m3")
+ args.rerank_binding_host = get_env_value("RERANK_BINDING_HOST", None)
+ args.rerank_binding_api_key = get_env_value("RERANK_BINDING_API_KEY", None)
+
ollama_server_infos.LIGHTRAG_MODEL = args.simulated_model_name
return args
diff --git a/lightrag/api/lightrag_server.py b/lightrag/api/lightrag_server.py
index cd87af22..b43c66d9 100644
--- a/lightrag/api/lightrag_server.py
+++ b/lightrag/api/lightrag_server.py
@@ -291,6 +291,32 @@ def create_app(args):
),
)
+ # Configure rerank function if enabled
+ rerank_model_func = None
+ if args.enable_rerank and args.rerank_binding_api_key and args.rerank_binding_host:
+ from lightrag.rerank import custom_rerank
+
+ async def server_rerank_func(
+ query: str, documents: list, top_k: int = None, **kwargs
+ ):
+ """Server rerank function with configuration from environment variables"""
+ return await custom_rerank(
+ query=query,
+ documents=documents,
+ model=args.rerank_model,
+ base_url=args.rerank_binding_host,
+ api_key=args.rerank_binding_api_key,
+ top_k=top_k,
+ **kwargs,
+ )
+
+ rerank_model_func = server_rerank_func
+ logger.info(f"Rerank enabled with model: {args.rerank_model}")
+ elif args.enable_rerank:
+ logger.warning(
+ "Rerank enabled but RERANK_BINDING_API_KEY or RERANK_BINDING_HOST not configured. Rerank will be disabled."
+ )
+
# Initialize RAG
if args.llm_binding in ["lollms", "ollama", "openai"]:
rag = LightRAG(
@@ -324,6 +350,8 @@ def create_app(args):
},
enable_llm_cache_for_entity_extract=args.enable_llm_cache_for_extract,
enable_llm_cache=args.enable_llm_cache,
+ enable_rerank=args.enable_rerank,
+ rerank_model_func=rerank_model_func,
auto_manage_storages_states=False,
max_parallel_insert=args.max_parallel_insert,
max_graph_nodes=args.max_graph_nodes,
@@ -352,6 +380,8 @@ def create_app(args):
},
enable_llm_cache_for_entity_extract=args.enable_llm_cache_for_extract,
enable_llm_cache=args.enable_llm_cache,
+ enable_rerank=args.enable_rerank,
+ rerank_model_func=rerank_model_func,
auto_manage_storages_states=False,
max_parallel_insert=args.max_parallel_insert,
max_graph_nodes=args.max_graph_nodes,
@@ -478,6 +508,12 @@ def create_app(args):
"enable_llm_cache": args.enable_llm_cache,
"workspace": args.workspace,
"max_graph_nodes": args.max_graph_nodes,
+ # Rerank configuration
+ "enable_rerank": args.enable_rerank,
+ "rerank_model": args.rerank_model if args.enable_rerank else None,
+ "rerank_binding_host": args.rerank_binding_host
+ if args.enable_rerank
+ else None,
},
"auth_mode": auth_mode,
"pipeline_busy": pipeline_status.get("busy", False),
diff --git a/lightrag/api/routers/query_routes.py b/lightrag/api/routers/query_routes.py
index 69aa32d8..0a0c6227 100644
--- a/lightrag/api/routers/query_routes.py
+++ b/lightrag/api/routers/query_routes.py
@@ -49,6 +49,18 @@ class QueryRequest(BaseModel):
description="Number of top items to retrieve. Represents entities in 'local' mode and relationships in 'global' mode.",
)
+ chunk_top_k: Optional[int] = Field(
+ ge=1,
+ default=None,
+ description="Number of text chunks to retrieve initially from vector search.",
+ )
+
+ chunk_rerank_top_k: Optional[int] = Field(
+ ge=1,
+ default=None,
+ description="Number of text chunks to keep after reranking.",
+ )
+
max_token_for_text_unit: Optional[int] = Field(
gt=1,
default=None,
diff --git a/lightrag/base.py b/lightrag/base.py
index 57cb2ac6..97564ac2 100644
--- a/lightrag/base.py
+++ b/lightrag/base.py
@@ -60,7 +60,17 @@ class QueryParam:
top_k: int = int(os.getenv("TOP_K", "60"))
"""Number of top items to retrieve. Represents entities in 'local' mode and relationships in 'global' mode."""
- max_token_for_text_unit: int = int(os.getenv("MAX_TOKEN_TEXT_CHUNK", "4000"))
+ chunk_top_k: int = int(os.getenv("CHUNK_TOP_K", "5"))
+ """Number of text chunks to retrieve initially from vector search.
+ If None, defaults to top_k value.
+ """
+
+ chunk_rerank_top_k: int = int(os.getenv("CHUNK_RERANK_TOP_K", "5"))
+ """Number of text chunks to keep after reranking.
+ If None, keeps all chunks returned from initial retrieval.
+ """
+
+ max_token_for_text_unit: int = int(os.getenv("MAX_TOKEN_TEXT_CHUNK", "6000"))
"""Maximum number of tokens allowed for each retrieved text chunk."""
max_token_for_global_context: int = int(
@@ -280,21 +290,6 @@ class BaseKVStorage(StorageNameSpace, ABC):
False: if the cache drop failed, or the cache mode is not supported
"""
- # async def drop_cache_by_chunk_ids(self, chunk_ids: list[str] | None = None) -> bool:
- # """Delete specific cache records from storage by chunk IDs
-
- # Importance notes for in-memory storage:
- # 1. Changes will be persisted to disk during the next index_done_callback
- # 2. update flags to notify other processes that data persistence is needed
-
- # Args:
- # chunk_ids (list[str]): List of chunk IDs to be dropped from storage
-
- # Returns:
- # True: if the cache drop successfully
- # False: if the cache drop failed, or the operation is not supported
- # """
-
@dataclass
class BaseGraphStorage(StorageNameSpace, ABC):
diff --git a/lightrag/kg/__init__.py b/lightrag/kg/__init__.py
index 1f5fd56f..b2a93e82 100644
--- a/lightrag/kg/__init__.py
+++ b/lightrag/kg/__init__.py
@@ -15,6 +15,7 @@ STORAGE_IMPLEMENTATIONS = {
"Neo4JStorage",
"PGGraphStorage",
"MongoGraphStorage",
+ "MemgraphStorage",
# "AGEStorage",
# "TiDBGraphStorage",
# "GremlinStorage",
@@ -57,6 +58,7 @@ STORAGE_ENV_REQUIREMENTS: dict[str, list[str]] = {
"NetworkXStorage": [],
"Neo4JStorage": ["NEO4J_URI", "NEO4J_USERNAME", "NEO4J_PASSWORD"],
"MongoGraphStorage": [],
+ "MemgraphStorage": ["MEMGRAPH_URI"],
# "TiDBGraphStorage": ["TIDB_USER", "TIDB_PASSWORD", "TIDB_DATABASE"],
"AGEStorage": [
"AGE_POSTGRES_DB",
@@ -111,6 +113,7 @@ STORAGES = {
"PGDocStatusStorage": ".kg.postgres_impl",
"FaissVectorDBStorage": ".kg.faiss_impl",
"QdrantVectorDBStorage": ".kg.qdrant_impl",
+ "MemgraphStorage": ".kg.memgraph_impl",
}
diff --git a/lightrag/kg/memgraph_impl.py b/lightrag/kg/memgraph_impl.py
new file mode 100644
index 00000000..8c6d6574
--- /dev/null
+++ b/lightrag/kg/memgraph_impl.py
@@ -0,0 +1,906 @@
+import os
+from dataclasses import dataclass
+from typing import final
+import configparser
+
+from ..utils import logger
+from ..base import BaseGraphStorage
+from ..types import KnowledgeGraph, KnowledgeGraphNode, KnowledgeGraphEdge
+from ..constants import GRAPH_FIELD_SEP
+import pipmaster as pm
+
+if not pm.is_installed("neo4j"):
+ pm.install("neo4j")
+
+from neo4j import (
+ AsyncGraphDatabase,
+ AsyncManagedTransaction,
+)
+
+from dotenv import load_dotenv
+
+# use the .env that is inside the current folder
+load_dotenv(dotenv_path=".env", override=False)
+
+MAX_GRAPH_NODES = int(os.getenv("MAX_GRAPH_NODES", 1000))
+
+config = configparser.ConfigParser()
+config.read("config.ini", "utf-8")
+
+
+@final
+@dataclass
+class MemgraphStorage(BaseGraphStorage):
+ def __init__(self, namespace, global_config, embedding_func, workspace=None):
+ memgraph_workspace = os.environ.get("MEMGRAPH_WORKSPACE")
+ if memgraph_workspace and memgraph_workspace.strip():
+ workspace = memgraph_workspace
+ super().__init__(
+ namespace=namespace,
+ workspace=workspace or "",
+ global_config=global_config,
+ embedding_func=embedding_func,
+ )
+ self._driver = None
+
+ def _get_workspace_label(self) -> str:
+ """Get workspace label, return 'base' for compatibility when workspace is empty"""
+ workspace = getattr(self, "workspace", None)
+ return workspace if workspace else "base"
+
+ async def initialize(self):
+ URI = os.environ.get(
+ "MEMGRAPH_URI",
+ config.get("memgraph", "uri", fallback="bolt://localhost:7687"),
+ )
+ USERNAME = os.environ.get(
+ "MEMGRAPH_USERNAME", config.get("memgraph", "username", fallback="")
+ )
+ PASSWORD = os.environ.get(
+ "MEMGRAPH_PASSWORD", config.get("memgraph", "password", fallback="")
+ )
+ DATABASE = os.environ.get(
+ "MEMGRAPH_DATABASE", config.get("memgraph", "database", fallback="memgraph")
+ )
+
+ self._driver = AsyncGraphDatabase.driver(
+ URI,
+ auth=(USERNAME, PASSWORD),
+ )
+ self._DATABASE = DATABASE
+ try:
+ async with self._driver.session(database=DATABASE) as session:
+ # Create index for base nodes on entity_id if it doesn't exist
+ try:
+ workspace_label = self._get_workspace_label()
+ await session.run(
+ f"""CREATE INDEX ON :{workspace_label}(entity_id)"""
+ )
+ logger.info(
+ f"Created index on :{workspace_label}(entity_id) in Memgraph."
+ )
+ except Exception as e:
+ # Index may already exist, which is not an error
+ logger.warning(
+ f"Index creation on :{workspace_label}(entity_id) may have failed or already exists: {e}"
+ )
+ await session.run("RETURN 1")
+ logger.info(f"Connected to Memgraph at {URI}")
+ except Exception as e:
+ logger.error(f"Failed to connect to Memgraph at {URI}: {e}")
+ raise
+
+ async def finalize(self):
+ if self._driver is not None:
+ await self._driver.close()
+ self._driver = None
+
+ async def __aexit__(self, exc_type, exc, tb):
+ await self.finalize()
+
+ async def index_done_callback(self):
+ # Memgraph handles persistence automatically
+ pass
+
+ async def has_node(self, node_id: str) -> bool:
+ """
+ Check if a node exists in the graph.
+
+ Args:
+ node_id: The ID of the node to check.
+
+ Returns:
+ bool: True if the node exists, False otherwise.
+
+ Raises:
+ Exception: If there is an error checking the node existence.
+ """
+ if self._driver is None:
+ raise RuntimeError(
+ "Memgraph driver is not initialized. Call 'await initialize()' first."
+ )
+ async with self._driver.session(
+ database=self._DATABASE, default_access_mode="READ"
+ ) as session:
+ try:
+ workspace_label = self._get_workspace_label()
+ query = f"MATCH (n:`{workspace_label}` {{entity_id: $entity_id}}) RETURN count(n) > 0 AS node_exists"
+ result = await session.run(query, entity_id=node_id)
+ single_result = await result.single()
+ await result.consume() # Ensure result is fully consumed
+ return (
+ single_result["node_exists"] if single_result is not None else False
+ )
+ except Exception as e:
+ logger.error(f"Error checking node existence for {node_id}: {str(e)}")
+ await result.consume() # Ensure the result is consumed even on error
+ raise
+
+ async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
+ """
+ Check if an edge exists between two nodes in the graph.
+
+ Args:
+ source_node_id: The ID of the source node.
+ target_node_id: The ID of the target node.
+
+ Returns:
+ bool: True if the edge exists, False otherwise.
+
+ Raises:
+ Exception: If there is an error checking the edge existence.
+ """
+ if self._driver is None:
+ raise RuntimeError(
+ "Memgraph driver is not initialized. Call 'await initialize()' first."
+ )
+ async with self._driver.session(
+ database=self._DATABASE, default_access_mode="READ"
+ ) as session:
+ try:
+ workspace_label = self._get_workspace_label()
+ query = (
+ f"MATCH (a:`{workspace_label}` {{entity_id: $source_entity_id}})-[r]-(b:`{workspace_label}` {{entity_id: $target_entity_id}}) "
+ "RETURN COUNT(r) > 0 AS edgeExists"
+ )
+ result = await session.run(
+ query,
+ source_entity_id=source_node_id,
+ target_entity_id=target_node_id,
+ ) # type: ignore
+ single_result = await result.single()
+ await result.consume() # Ensure result is fully consumed
+ return (
+ single_result["edgeExists"] if single_result is not None else False
+ )
+ except Exception as e:
+ logger.error(
+ f"Error checking edge existence between {source_node_id} and {target_node_id}: {str(e)}"
+ )
+ await result.consume() # Ensure the result is consumed even on error
+ raise
+
+ async def get_node(self, node_id: str) -> dict[str, str] | None:
+ """Get node by its label identifier, return only node properties
+
+ Args:
+ node_id: The node label to look up
+
+ Returns:
+ dict: Node properties if found
+ None: If node not found
+
+ Raises:
+ Exception: If there is an error executing the query
+ """
+ if self._driver is None:
+ raise RuntimeError(
+ "Memgraph driver is not initialized. Call 'await initialize()' first."
+ )
+ async with self._driver.session(
+ database=self._DATABASE, default_access_mode="READ"
+ ) as session:
+ try:
+ workspace_label = self._get_workspace_label()
+ query = (
+ f"MATCH (n:`{workspace_label}` {{entity_id: $entity_id}}) RETURN n"
+ )
+ result = await session.run(query, entity_id=node_id)
+ try:
+ records = await result.fetch(
+ 2
+ ) # Get 2 records for duplication check
+
+ if len(records) > 1:
+ logger.warning(
+ f"Multiple nodes found with label '{node_id}'. Using first node."
+ )
+ if records:
+ node = records[0]["n"]
+ node_dict = dict(node)
+ # Remove workspace label from labels list if it exists
+ if "labels" in node_dict:
+ node_dict["labels"] = [
+ label
+ for label in node_dict["labels"]
+ if label != workspace_label
+ ]
+ return node_dict
+ return None
+ finally:
+ await result.consume() # Ensure result is fully consumed
+ except Exception as e:
+ logger.error(f"Error getting node for {node_id}: {str(e)}")
+ raise
+
+ async def node_degree(self, node_id: str) -> int:
+ """Get the degree (number of relationships) of a node with the given label.
+ If multiple nodes have the same label, returns the degree of the first node.
+ If no node is found, returns 0.
+
+ Args:
+ node_id: The label of the node
+
+ Returns:
+ int: The number of relationships the node has, or 0 if no node found
+
+ Raises:
+ Exception: If there is an error executing the query
+ """
+ if self._driver is None:
+ raise RuntimeError(
+ "Memgraph driver is not initialized. Call 'await initialize()' first."
+ )
+ async with self._driver.session(
+ database=self._DATABASE, default_access_mode="READ"
+ ) as session:
+ try:
+ workspace_label = self._get_workspace_label()
+ query = f"""
+ MATCH (n:`{workspace_label}` {{entity_id: $entity_id}})
+ OPTIONAL MATCH (n)-[r]-()
+ RETURN COUNT(r) AS degree
+ """
+ result = await session.run(query, entity_id=node_id)
+ try:
+ record = await result.single()
+
+ if not record:
+ logger.warning(f"No node found with label '{node_id}'")
+ return 0
+
+ degree = record["degree"]
+ return degree
+ finally:
+ await result.consume() # Ensure result is fully consumed
+ except Exception as e:
+ logger.error(f"Error getting node degree for {node_id}: {str(e)}")
+ raise
+
+ async def get_all_labels(self) -> list[str]:
+ """
+ Get all existing node labels in the database
+ Returns:
+ ["Person", "Company", ...] # Alphabetically sorted label list
+
+ Raises:
+ Exception: If there is an error executing the query
+ """
+ if self._driver is None:
+ raise RuntimeError(
+ "Memgraph driver is not initialized. Call 'await initialize()' first."
+ )
+ async with self._driver.session(
+ database=self._DATABASE, default_access_mode="READ"
+ ) as session:
+ try:
+ workspace_label = self._get_workspace_label()
+ query = f"""
+ MATCH (n:`{workspace_label}`)
+ WHERE n.entity_id IS NOT NULL
+ RETURN DISTINCT n.entity_id AS label
+ ORDER BY label
+ """
+ result = await session.run(query)
+ labels = []
+ async for record in result:
+ labels.append(record["label"])
+ await result.consume()
+ return labels
+ except Exception as e:
+ logger.error(f"Error getting all labels: {str(e)}")
+ await result.consume() # Ensure the result is consumed even on error
+ raise
+
+ async def get_node_edges(self, source_node_id: str) -> list[tuple[str, str]] | None:
+ """Retrieves all edges (relationships) for a particular node identified by its label.
+
+ Args:
+ source_node_id: Label of the node to get edges for
+
+ Returns:
+ list[tuple[str, str]]: List of (source_label, target_label) tuples representing edges
+ None: If no edges found
+
+ Raises:
+ Exception: If there is an error executing the query
+ """
+ if self._driver is None:
+ raise RuntimeError(
+ "Memgraph driver is not initialized. Call 'await initialize()' first."
+ )
+ try:
+ async with self._driver.session(
+ database=self._DATABASE, default_access_mode="READ"
+ ) as session:
+ try:
+ workspace_label = self._get_workspace_label()
+ query = f"""MATCH (n:`{workspace_label}` {{entity_id: $entity_id}})
+ OPTIONAL MATCH (n)-[r]-(connected:`{workspace_label}`)
+ WHERE connected.entity_id IS NOT NULL
+ RETURN n, r, connected"""
+ results = await session.run(query, entity_id=source_node_id)
+
+ edges = []
+ async for record in results:
+ source_node = record["n"]
+ connected_node = record["connected"]
+
+ # Skip if either node is None
+ if not source_node or not connected_node:
+ continue
+
+ source_label = (
+ source_node.get("entity_id")
+ if source_node.get("entity_id")
+ else None
+ )
+ target_label = (
+ connected_node.get("entity_id")
+ if connected_node.get("entity_id")
+ else None
+ )
+
+ if source_label and target_label:
+ edges.append((source_label, target_label))
+
+ await results.consume() # Ensure results are consumed
+ return edges
+ except Exception as e:
+ logger.error(
+ f"Error getting edges for node {source_node_id}: {str(e)}"
+ )
+ await results.consume() # Ensure results are consumed even on error
+ raise
+ except Exception as e:
+ logger.error(f"Error in get_node_edges for {source_node_id}: {str(e)}")
+ raise
+
+ async def get_edge(
+ self, source_node_id: str, target_node_id: str
+ ) -> dict[str, str] | None:
+ """Get edge properties between two nodes.
+
+ Args:
+ source_node_id: Label of the source node
+ target_node_id: Label of the target node
+
+ Returns:
+ dict: Edge properties if found, default properties if not found or on error
+
+ Raises:
+ Exception: If there is an error executing the query
+ """
+ if self._driver is None:
+ raise RuntimeError(
+ "Memgraph driver is not initialized. Call 'await initialize()' first."
+ )
+ async with self._driver.session(
+ database=self._DATABASE, default_access_mode="READ"
+ ) as session:
+ try:
+ workspace_label = self._get_workspace_label()
+ query = f"""
+ MATCH (start:`{workspace_label}` {{entity_id: $source_entity_id}})-[r]-(end:`{workspace_label}` {{entity_id: $target_entity_id}})
+ RETURN properties(r) as edge_properties
+ """
+ result = await session.run(
+ query,
+ source_entity_id=source_node_id,
+ target_entity_id=target_node_id,
+ )
+ records = await result.fetch(2)
+ await result.consume()
+ if records:
+ edge_result = dict(records[0]["edge_properties"])
+ for key, default_value in {
+ "weight": 0.0,
+ "source_id": None,
+ "description": None,
+ "keywords": None,
+ }.items():
+ if key not in edge_result:
+ edge_result[key] = default_value
+ logger.warning(
+ f"Edge between {source_node_id} and {target_node_id} is missing property: {key}. Using default value: {default_value}"
+ )
+ return edge_result
+ return None
+ except Exception as e:
+ logger.error(
+ f"Error getting edge between {source_node_id} and {target_node_id}: {str(e)}"
+ )
+ await result.consume() # Ensure the result is consumed even on error
+ raise
+
+ async def upsert_node(self, node_id: str, node_data: dict[str, str]) -> None:
+ """
+ Upsert a node in the Neo4j database.
+
+ Args:
+ node_id: The unique identifier for the node (used as label)
+ node_data: Dictionary of node properties
+ """
+ if self._driver is None:
+ raise RuntimeError(
+ "Memgraph driver is not initialized. Call 'await initialize()' first."
+ )
+ properties = node_data
+ entity_type = properties["entity_type"]
+ if "entity_id" not in properties:
+ raise ValueError("Neo4j: node properties must contain an 'entity_id' field")
+
+ try:
+ async with self._driver.session(database=self._DATABASE) as session:
+ workspace_label = self._get_workspace_label()
+
+ async def execute_upsert(tx: AsyncManagedTransaction):
+ query = f"""
+ MERGE (n:`{workspace_label}` {{entity_id: $entity_id}})
+ SET n += $properties
+ SET n:`{entity_type}`
+ """
+ result = await tx.run(
+ query, entity_id=node_id, properties=properties
+ )
+ await result.consume() # Ensure result is fully consumed
+
+ await session.execute_write(execute_upsert)
+ except Exception as e:
+ logger.error(f"Error during upsert: {str(e)}")
+ raise
+
+ async def upsert_edge(
+ self, source_node_id: str, target_node_id: str, edge_data: dict[str, str]
+ ) -> None:
+ """
+ Upsert an edge and its properties between two nodes identified by their labels.
+ Ensures both source and target nodes exist and are unique before creating the edge.
+ Uses entity_id property to uniquely identify nodes.
+
+ Args:
+ source_node_id (str): Label of the source node (used as identifier)
+ target_node_id (str): Label of the target node (used as identifier)
+ edge_data (dict): Dictionary of properties to set on the edge
+
+ Raises:
+ Exception: If there is an error executing the query
+ """
+ if self._driver is None:
+ raise RuntimeError(
+ "Memgraph driver is not initialized. Call 'await initialize()' first."
+ )
+ try:
+ edge_properties = edge_data
+ async with self._driver.session(database=self._DATABASE) as session:
+
+ async def execute_upsert(tx: AsyncManagedTransaction):
+ workspace_label = self._get_workspace_label()
+ query = f"""
+ MATCH (source:`{workspace_label}` {{entity_id: $source_entity_id}})
+ WITH source
+ MATCH (target:`{workspace_label}` {{entity_id: $target_entity_id}})
+ MERGE (source)-[r:DIRECTED]-(target)
+ SET r += $properties
+ RETURN r, source, target
+ """
+ result = await tx.run(
+ query,
+ source_entity_id=source_node_id,
+ target_entity_id=target_node_id,
+ properties=edge_properties,
+ )
+ try:
+ await result.fetch(2)
+ finally:
+ await result.consume() # Ensure result is consumed
+
+ await session.execute_write(execute_upsert)
+ except Exception as e:
+ logger.error(f"Error during edge upsert: {str(e)}")
+ raise
+
+ async def delete_node(self, node_id: str) -> None:
+ """Delete a node with the specified label
+
+ Args:
+ node_id: The label of the node to delete
+
+ Raises:
+ Exception: If there is an error executing the query
+ """
+ if self._driver is None:
+ raise RuntimeError(
+ "Memgraph driver is not initialized. Call 'await initialize()' first."
+ )
+
+ async def _do_delete(tx: AsyncManagedTransaction):
+ workspace_label = self._get_workspace_label()
+ query = f"""
+ MATCH (n:`{workspace_label}` {{entity_id: $entity_id}})
+ DETACH DELETE n
+ """
+ result = await tx.run(query, entity_id=node_id)
+ logger.debug(f"Deleted node with label {node_id}")
+ await result.consume()
+
+ try:
+ async with self._driver.session(database=self._DATABASE) as session:
+ await session.execute_write(_do_delete)
+ except Exception as e:
+ logger.error(f"Error during node deletion: {str(e)}")
+ raise
+
+ async def remove_nodes(self, nodes: list[str]):
+ """Delete multiple nodes
+
+ Args:
+ nodes: List of node labels to be deleted
+ """
+ if self._driver is None:
+ raise RuntimeError(
+ "Memgraph driver is not initialized. Call 'await initialize()' first."
+ )
+ for node in nodes:
+ await self.delete_node(node)
+
+ async def remove_edges(self, edges: list[tuple[str, str]]):
+ """Delete multiple edges
+
+ Args:
+ edges: List of edges to be deleted, each edge is a (source, target) tuple
+
+ Raises:
+ Exception: If there is an error executing the query
+ """
+ if self._driver is None:
+ raise RuntimeError(
+ "Memgraph driver is not initialized. Call 'await initialize()' first."
+ )
+ for source, target in edges:
+
+ async def _do_delete_edge(tx: AsyncManagedTransaction):
+ workspace_label = self._get_workspace_label()
+ query = f"""
+ MATCH (source:`{workspace_label}` {{entity_id: $source_entity_id}})-[r]-(target:`{workspace_label}` {{entity_id: $target_entity_id}})
+ DELETE r
+ """
+ result = await tx.run(
+ query, source_entity_id=source, target_entity_id=target
+ )
+ logger.debug(f"Deleted edge from '{source}' to '{target}'")
+ await result.consume() # Ensure result is fully consumed
+
+ try:
+ async with self._driver.session(database=self._DATABASE) as session:
+ await session.execute_write(_do_delete_edge)
+ except Exception as e:
+ logger.error(f"Error during edge deletion: {str(e)}")
+ raise
+
+ async def drop(self) -> dict[str, str]:
+ """Drop all data from the current workspace and clean up resources
+
+ This method will delete all nodes and relationships in the Memgraph database.
+
+ Returns:
+ dict[str, str]: Operation status and message
+ - On success: {"status": "success", "message": "data dropped"}
+ - On failure: {"status": "error", "message": ""}
+
+ Raises:
+ Exception: If there is an error executing the query
+ """
+ if self._driver is None:
+ raise RuntimeError(
+ "Memgraph driver is not initialized. Call 'await initialize()' first."
+ )
+ try:
+ async with self._driver.session(database=self._DATABASE) as session:
+ workspace_label = self._get_workspace_label()
+ query = f"MATCH (n:`{workspace_label}`) DETACH DELETE n"
+ result = await session.run(query)
+ await result.consume()
+ logger.info(
+ f"Dropped workspace {workspace_label} from Memgraph database {self._DATABASE}"
+ )
+ return {"status": "success", "message": "workspace data dropped"}
+ except Exception as e:
+ logger.error(
+ f"Error dropping workspace {workspace_label} from Memgraph database {self._DATABASE}: {e}"
+ )
+ return {"status": "error", "message": str(e)}
+
+ async def edge_degree(self, src_id: str, tgt_id: str) -> int:
+ """Get the total degree (sum of relationships) of two nodes.
+
+ Args:
+ src_id: Label of the source node
+ tgt_id: Label of the target node
+
+ Returns:
+ int: Sum of the degrees of both nodes
+ """
+ if self._driver is None:
+ raise RuntimeError(
+ "Memgraph driver is not initialized. Call 'await initialize()' first."
+ )
+ src_degree = await self.node_degree(src_id)
+ trg_degree = await self.node_degree(tgt_id)
+
+ # Convert None to 0 for addition
+ src_degree = 0 if src_degree is None else src_degree
+ trg_degree = 0 if trg_degree is None else trg_degree
+
+ degrees = int(src_degree) + int(trg_degree)
+ return degrees
+
+ async def get_nodes_by_chunk_ids(self, chunk_ids: list[str]) -> list[dict]:
+ """Get all nodes that are associated with the given chunk_ids.
+
+ Args:
+ chunk_ids: List of chunk IDs to find associated nodes for
+
+ Returns:
+ list[dict]: A list of nodes, where each node is a dictionary of its properties.
+ An empty list if no matching nodes are found.
+ """
+ if self._driver is None:
+ raise RuntimeError(
+ "Memgraph driver is not initialized. Call 'await initialize()' first."
+ )
+ workspace_label = self._get_workspace_label()
+ async with self._driver.session(
+ database=self._DATABASE, default_access_mode="READ"
+ ) as session:
+ query = f"""
+ UNWIND $chunk_ids AS chunk_id
+ MATCH (n:`{workspace_label}`)
+ WHERE n.source_id IS NOT NULL AND chunk_id IN split(n.source_id, $sep)
+ RETURN DISTINCT n
+ """
+ result = await session.run(query, chunk_ids=chunk_ids, sep=GRAPH_FIELD_SEP)
+ nodes = []
+ async for record in result:
+ node = record["n"]
+ node_dict = dict(node)
+ node_dict["id"] = node_dict.get("entity_id")
+ nodes.append(node_dict)
+ await result.consume()
+ return nodes
+
+ async def get_edges_by_chunk_ids(self, chunk_ids: list[str]) -> list[dict]:
+ """Get all edges that are associated with the given chunk_ids.
+
+ Args:
+ chunk_ids: List of chunk IDs to find associated edges for
+
+ Returns:
+ list[dict]: A list of edges, where each edge is a dictionary of its properties.
+ An empty list if no matching edges are found.
+ """
+ if self._driver is None:
+ raise RuntimeError(
+ "Memgraph driver is not initialized. Call 'await initialize()' first."
+ )
+ workspace_label = self._get_workspace_label()
+ async with self._driver.session(
+ database=self._DATABASE, default_access_mode="READ"
+ ) as session:
+ query = f"""
+ UNWIND $chunk_ids AS chunk_id
+ MATCH (a:`{workspace_label}`)-[r]-(b:`{workspace_label}`)
+ WHERE r.source_id IS NOT NULL AND chunk_id IN split(r.source_id, $sep)
+ WITH a, b, r, a.entity_id AS source_id, b.entity_id AS target_id
+ // Ensure we only return each unique edge once by ordering the source and target
+ WITH a, b, r,
+ CASE WHEN source_id <= target_id THEN source_id ELSE target_id END AS ordered_source,
+ CASE WHEN source_id <= target_id THEN target_id ELSE source_id END AS ordered_target
+ RETURN DISTINCT ordered_source AS source, ordered_target AS target, properties(r) AS properties
+ """
+ result = await session.run(query, chunk_ids=chunk_ids, sep=GRAPH_FIELD_SEP)
+ edges = []
+ async for record in result:
+ edge_properties = record["properties"]
+ edge_properties["source"] = record["source"]
+ edge_properties["target"] = record["target"]
+ edges.append(edge_properties)
+ await result.consume()
+ return edges
+
+ async def get_knowledge_graph(
+ self,
+ node_label: str,
+ max_depth: int = 3,
+ max_nodes: int = MAX_GRAPH_NODES,
+ ) -> KnowledgeGraph:
+ """
+ Retrieve a connected subgraph of nodes where the label includes the specified `node_label`.
+
+ Args:
+ node_label: Label of the starting node, * means all nodes
+ max_depth: Maximum depth of the subgraph, Defaults to 3
+ max_nodes: Maxiumu nodes to return by BFS, Defaults to 1000
+
+ Returns:
+ KnowledgeGraph object containing nodes and edges, with an is_truncated flag
+ indicating whether the graph was truncated due to max_nodes limit
+
+ Raises:
+ Exception: If there is an error executing the query
+ """
+ if self._driver is None:
+ raise RuntimeError(
+ "Memgraph driver is not initialized. Call 'await initialize()' first."
+ )
+
+ result = KnowledgeGraph()
+ seen_nodes = set()
+ seen_edges = set()
+ workspace_label = self._get_workspace_label()
+ async with self._driver.session(
+ database=self._DATABASE, default_access_mode="READ"
+ ) as session:
+ try:
+ if node_label == "*":
+ # First check if database has any nodes
+ count_query = "MATCH (n) RETURN count(n) as total"
+ count_result = None
+ total_count = 0
+ try:
+ count_result = await session.run(count_query)
+ count_record = await count_result.single()
+ if count_record:
+ total_count = count_record["total"]
+ if total_count == 0:
+ logger.debug("No nodes found in database")
+ return result
+ if total_count > max_nodes:
+ result.is_truncated = True
+ logger.info(
+ f"Graph truncated: {total_count} nodes found, limited to {max_nodes}"
+ )
+ finally:
+ if count_result:
+ await count_result.consume()
+
+ # Run the main query to get nodes with highest degree
+ main_query = f"""
+ MATCH (n:`{workspace_label}`)
+ OPTIONAL MATCH (n)-[r]-()
+ WITH n, COALESCE(count(r), 0) AS degree
+ ORDER BY degree DESC
+ LIMIT $max_nodes
+ WITH collect(n) AS kept_nodes
+ MATCH (a)-[r]-(b)
+ WHERE a IN kept_nodes AND b IN kept_nodes
+ RETURN [node IN kept_nodes | {{node: node}}] AS node_info,
+ collect(DISTINCT r) AS relationships
+ """
+ result_set = None
+ try:
+ result_set = await session.run(
+ main_query, {"max_nodes": max_nodes}
+ )
+ record = await result_set.single()
+ if not record:
+ logger.debug("No record returned from main query")
+ return result
+ finally:
+ if result_set:
+ await result_set.consume()
+
+ else:
+ bfs_query = f"""
+ MATCH (start:`{workspace_label}`)
+ WHERE start.entity_id = $entity_id
+ WITH start
+ CALL {{
+ WITH start
+ MATCH path = (start)-[*0..{max_depth}]-(node)
+ WITH nodes(path) AS path_nodes, relationships(path) AS path_rels
+ UNWIND path_nodes AS n
+ WITH collect(DISTINCT n) AS all_nodes, collect(DISTINCT path_rels) AS all_rel_lists
+ WITH all_nodes, reduce(r = [], x IN all_rel_lists | r + x) AS all_rels
+ RETURN all_nodes, all_rels
+ }}
+ WITH all_nodes AS nodes, all_rels AS relationships, size(all_nodes) AS total_nodes
+ WITH
+ CASE
+ WHEN total_nodes <= {max_nodes} THEN nodes
+ ELSE nodes[0..{max_nodes}]
+ END AS limited_nodes,
+ relationships,
+ total_nodes,
+ total_nodes > {max_nodes} AS is_truncated
+ RETURN
+ [node IN limited_nodes | {{node: node}}] AS node_info,
+ relationships,
+ total_nodes,
+ is_truncated
+ """
+ result_set = None
+ try:
+ result_set = await session.run(
+ bfs_query,
+ {
+ "entity_id": node_label,
+ },
+ )
+ record = await result_set.single()
+ if not record:
+ logger.debug(f"No nodes found for entity_id: {node_label}")
+ return result
+
+ # Check if the query indicates truncation
+ if "is_truncated" in record and record["is_truncated"]:
+ result.is_truncated = True
+ logger.info(
+ f"Graph truncated: breadth-first search limited to {max_nodes} nodes"
+ )
+
+ finally:
+ if result_set:
+ await result_set.consume()
+
+ # Process the record if it exists
+ if record and record["node_info"]:
+ for node_info in record["node_info"]:
+ node = node_info["node"]
+ node_id = node.id
+ if node_id not in seen_nodes:
+ seen_nodes.add(node_id)
+ result.nodes.append(
+ KnowledgeGraphNode(
+ id=f"{node_id}",
+ labels=[node.get("entity_id")],
+ properties=dict(node),
+ )
+ )
+
+ for rel in record["relationships"]:
+ edge_id = rel.id
+ if edge_id not in seen_edges:
+ seen_edges.add(edge_id)
+ start = rel.start_node
+ end = rel.end_node
+ result.edges.append(
+ KnowledgeGraphEdge(
+ id=f"{edge_id}",
+ type=rel.type,
+ source=f"{start.id}",
+ target=f"{end.id}",
+ properties=dict(rel),
+ )
+ )
+
+ logger.info(
+ f"Subgraph query successful | Node count: {len(result.nodes)} | Edge count: {len(result.edges)}"
+ )
+
+ except Exception as e:
+ logger.error(f"Error getting knowledge graph: {str(e)}")
+ # Return empty but properly initialized KnowledgeGraph on error
+ return KnowledgeGraph()
+
+ return result
diff --git a/lightrag/lightrag.py b/lightrag/lightrag.py
index 1f61a42e..bc3c289a 100644
--- a/lightrag/lightrag.py
+++ b/lightrag/lightrag.py
@@ -240,6 +240,17 @@ class LightRAG:
llm_model_kwargs: dict[str, Any] = field(default_factory=dict)
"""Additional keyword arguments passed to the LLM model function."""
+ # Rerank Configuration
+ # ---
+
+ enable_rerank: bool = field(
+ default=bool(os.getenv("ENABLE_RERANK", "False").lower() == "true")
+ )
+ """Enable reranking for improved retrieval quality. Defaults to False."""
+
+ rerank_model_func: Callable[..., object] | None = field(default=None)
+ """Function for reranking retrieved documents. All rerank configurations (model name, API keys, top_k, etc.) should be included in this function. Optional."""
+
# Storage
# ---
@@ -447,6 +458,14 @@ class LightRAG:
)
)
+ # Init Rerank
+ if self.enable_rerank and self.rerank_model_func:
+ logger.info("Rerank model initialized for improved retrieval quality")
+ elif self.enable_rerank and not self.rerank_model_func:
+ logger.warning(
+ "Rerank is enabled but no rerank_model_func provided. Reranking will be skipped."
+ )
+
self._storages_status = StoragesStatus.CREATED
if self.auto_manage_storages_states:
@@ -900,9 +919,15 @@ class LightRAG:
# Get first document's file path and total count for job name
first_doc_id, first_doc = next(iter(to_process_docs.items()))
first_doc_path = first_doc.file_path
- path_prefix = first_doc_path[:20] + (
- "..." if len(first_doc_path) > 20 else ""
- )
+
+ # Handle cases where first_doc_path is None
+ if first_doc_path:
+ path_prefix = first_doc_path[:20] + (
+ "..." if len(first_doc_path) > 20 else ""
+ )
+ else:
+ path_prefix = "unknown_source"
+
total_files = len(to_process_docs)
job_name = f"{path_prefix}[{total_files} files]"
pipeline_status["job_name"] = job_name
diff --git a/lightrag/operate.py b/lightrag/operate.py
index 4e219cf8..be4499ab 100644
--- a/lightrag/operate.py
+++ b/lightrag/operate.py
@@ -1527,6 +1527,7 @@ async def kg_query(
# Build context
context = await _build_query_context(
+ query,
ll_keywords_str,
hl_keywords_str,
knowledge_graph_inst,
@@ -1746,84 +1747,52 @@ async def _get_vector_context(
query: str,
chunks_vdb: BaseVectorStorage,
query_param: QueryParam,
- tokenizer: Tokenizer,
-) -> tuple[list, list, list] | None:
+) -> list[dict]:
"""
- Retrieve vector context from the vector database.
+ Retrieve text chunks from the vector database without reranking or truncation.
- This function performs vector search to find relevant text chunks for a query,
- formats them with file path and creation time information.
+ This function performs vector search to find relevant text chunks for a query.
+ Reranking and truncation will be handled later in the unified processing.
Args:
query: The query string to search for
chunks_vdb: Vector database containing document chunks
- query_param: Query parameters including top_k and ids
- tokenizer: Tokenizer for counting tokens
+ query_param: Query parameters including chunk_top_k and ids
Returns:
- Tuple (empty_entities, empty_relations, text_units) for combine_contexts,
- compatible with _get_edge_data and _get_node_data format
+ List of text chunks with metadata
"""
try:
- results = await chunks_vdb.query(
- query, top_k=query_param.top_k, ids=query_param.ids
- )
+ # Use chunk_top_k if specified, otherwise fall back to top_k
+ search_top_k = query_param.chunk_top_k or query_param.top_k
+
+ results = await chunks_vdb.query(query, top_k=search_top_k, ids=query_param.ids)
if not results:
- return [], [], []
+ return []
valid_chunks = []
for result in results:
if "content" in result:
- # Directly use content from chunks_vdb.query result
- chunk_with_time = {
+ chunk_with_metadata = {
"content": result["content"],
"created_at": result.get("created_at", None),
"file_path": result.get("file_path", "unknown_source"),
+ "source_type": "vector", # Mark the source type
}
- valid_chunks.append(chunk_with_time)
+ valid_chunks.append(chunk_with_metadata)
- if not valid_chunks:
- return [], [], []
-
- maybe_trun_chunks = truncate_list_by_token_size(
- valid_chunks,
- key=lambda x: x["content"],
- max_token_size=query_param.max_token_for_text_unit,
- tokenizer=tokenizer,
- )
-
- logger.debug(
- f"Truncate chunks from {len(valid_chunks)} to {len(maybe_trun_chunks)} (max tokens:{query_param.max_token_for_text_unit})"
- )
logger.info(
- f"Query chunks: {len(maybe_trun_chunks)} chunks, top_k: {query_param.top_k}"
+ f"Naive query: {len(valid_chunks)} chunks (chunk_top_k: {search_top_k})"
)
+ return valid_chunks
- if not maybe_trun_chunks:
- return [], [], []
-
- # Create empty entities and relations contexts
- entities_context = []
- relations_context = []
-
- # Create text_units_context directly as a list of dictionaries
- text_units_context = []
- for i, chunk in enumerate(maybe_trun_chunks):
- text_units_context.append(
- {
- "id": i + 1,
- "content": chunk["content"],
- "file_path": chunk["file_path"],
- }
- )
-
- return entities_context, relations_context, text_units_context
except Exception as e:
logger.error(f"Error in _get_vector_context: {e}")
- return [], [], []
+ return []
async def _build_query_context(
+ query: str,
ll_keywords: str,
hl_keywords: str,
knowledge_graph_inst: BaseGraphStorage,
@@ -1831,27 +1800,36 @@ async def _build_query_context(
relationships_vdb: BaseVectorStorage,
text_chunks_db: BaseKVStorage,
query_param: QueryParam,
- chunks_vdb: BaseVectorStorage = None, # Add chunks_vdb parameter for mix mode
+ chunks_vdb: BaseVectorStorage = None,
):
logger.info(f"Process {os.getpid()} building query context...")
- # Handle local and global modes as before
+ # Collect all chunks from different sources
+ all_chunks = []
+ entities_context = []
+ relations_context = []
+
+ # Handle local and global modes
if query_param.mode == "local":
- entities_context, relations_context, text_units_context = await _get_node_data(
+ entities_context, relations_context, entity_chunks = await _get_node_data(
ll_keywords,
knowledge_graph_inst,
entities_vdb,
text_chunks_db,
query_param,
)
+ all_chunks.extend(entity_chunks)
+
elif query_param.mode == "global":
- entities_context, relations_context, text_units_context = await _get_edge_data(
+ entities_context, relations_context, relationship_chunks = await _get_edge_data(
hl_keywords,
knowledge_graph_inst,
relationships_vdb,
text_chunks_db,
query_param,
)
+ all_chunks.extend(relationship_chunks)
+
else: # hybrid or mix mode
ll_data = await _get_node_data(
ll_keywords,
@@ -1868,61 +1846,58 @@ async def _build_query_context(
query_param,
)
- (
- ll_entities_context,
- ll_relations_context,
- ll_text_units_context,
- ) = ll_data
+ (ll_entities_context, ll_relations_context, ll_chunks) = ll_data
+ (hl_entities_context, hl_relations_context, hl_chunks) = hl_data
- (
- hl_entities_context,
- hl_relations_context,
- hl_text_units_context,
- ) = hl_data
+ # Collect chunks from entity and relationship sources
+ all_chunks.extend(ll_chunks)
+ all_chunks.extend(hl_chunks)
- # Initialize vector data with empty lists
- vector_entities_context, vector_relations_context, vector_text_units_context = (
- [],
- [],
- [],
- )
-
- # Only get vector data if in mix mode
- if query_param.mode == "mix" and hasattr(query_param, "original_query"):
- # Get tokenizer from text_chunks_db
- tokenizer = text_chunks_db.global_config.get("tokenizer")
-
- # Get vector context in triple format
- vector_data = await _get_vector_context(
- query_param.original_query, # We need to pass the original query
+ # Get vector chunks if in mix mode
+ if query_param.mode == "mix" and chunks_vdb:
+ vector_chunks = await _get_vector_context(
+ query,
chunks_vdb,
query_param,
- tokenizer,
)
+ all_chunks.extend(vector_chunks)
- # If vector_data is not None, unpack it
- if vector_data is not None:
- (
- vector_entities_context,
- vector_relations_context,
- vector_text_units_context,
- ) = vector_data
-
- # Combine and deduplicate the entities, relationships, and sources
+ # Combine entities and relations contexts
entities_context = process_combine_contexts(
- hl_entities_context, ll_entities_context, vector_entities_context
+ hl_entities_context, ll_entities_context
)
relations_context = process_combine_contexts(
- hl_relations_context, ll_relations_context, vector_relations_context
+ hl_relations_context, ll_relations_context
)
- text_units_context = process_combine_contexts(
- hl_text_units_context, ll_text_units_context, vector_text_units_context
+
+ # Process all chunks uniformly: deduplication, reranking, and token truncation
+ processed_chunks = await process_chunks_unified(
+ query=query,
+ chunks=all_chunks,
+ query_param=query_param,
+ global_config=text_chunks_db.global_config,
+ source_type="mixed",
+ )
+
+ # Build final text_units_context from processed chunks
+ text_units_context = []
+ for i, chunk in enumerate(processed_chunks):
+ text_units_context.append(
+ {
+ "id": i + 1,
+ "content": chunk["content"],
+ "file_path": chunk.get("file_path", "unknown_source"),
+ }
)
+
+ logger.info(
+ f"Final context: {len(entities_context)} entities, {len(relations_context)} relations, {len(text_units_context)} chunks"
+ )
+
# not necessary to use LLM to generate a response
if not entities_context and not relations_context:
return None
- # 转换为 JSON 字符串
entities_str = json.dumps(entities_context, ensure_ascii=False)
relations_str = json.dumps(relations_context, ensure_ascii=False)
text_units_str = json.dumps(text_units_context, ensure_ascii=False)
@@ -2069,16 +2044,7 @@ async def _get_node_data(
}
)
- text_units_context = []
- for i, t in enumerate(use_text_units):
- text_units_context.append(
- {
- "id": i + 1,
- "content": t["content"],
- "file_path": t.get("file_path", "unknown_source"),
- }
- )
- return entities_context, relations_context, text_units_context
+ return entities_context, relations_context, use_text_units
async def _find_most_related_text_unit_from_entities(
@@ -2167,23 +2133,21 @@ async def _find_most_related_text_unit_from_entities(
logger.warning("No valid text units found")
return []
- tokenizer: Tokenizer = text_chunks_db.global_config.get("tokenizer")
+ # Sort by relation counts and order, but don't truncate
all_text_units = sorted(
all_text_units, key=lambda x: (x["order"], -x["relation_counts"])
)
- all_text_units = truncate_list_by_token_size(
- all_text_units,
- key=lambda x: x["data"]["content"],
- max_token_size=query_param.max_token_for_text_unit,
- tokenizer=tokenizer,
- )
- logger.debug(
- f"Truncate chunks from {len(all_text_units_lookup)} to {len(all_text_units)} (max tokens:{query_param.max_token_for_text_unit})"
- )
+ logger.debug(f"Found {len(all_text_units)} entity-related chunks")
- all_text_units = [t["data"] for t in all_text_units]
- return all_text_units
+ # Add source type marking and return chunk data
+ result_chunks = []
+ for t in all_text_units:
+ chunk_data = t["data"].copy()
+ chunk_data["source_type"] = "entity"
+ result_chunks.append(chunk_data)
+
+ return result_chunks
async def _find_most_related_edges_from_entities(
@@ -2485,21 +2449,16 @@ async def _find_related_text_unit_from_relationships(
logger.warning("No valid text chunks after filtering")
return []
- tokenizer: Tokenizer = text_chunks_db.global_config.get("tokenizer")
- truncated_text_units = truncate_list_by_token_size(
- valid_text_units,
- key=lambda x: x["data"]["content"],
- max_token_size=query_param.max_token_for_text_unit,
- tokenizer=tokenizer,
- )
+ logger.debug(f"Found {len(valid_text_units)} relationship-related chunks")
- logger.debug(
- f"Truncate chunks from {len(valid_text_units)} to {len(truncated_text_units)} (max tokens:{query_param.max_token_for_text_unit})"
- )
+ # Add source type marking and return chunk data
+ result_chunks = []
+ for t in valid_text_units:
+ chunk_data = t["data"].copy()
+ chunk_data["source_type"] = "relationship"
+ result_chunks.append(chunk_data)
- all_text_units: list[TextChunkSchema] = [t["data"] for t in truncated_text_units]
-
- return all_text_units
+ return result_chunks
async def naive_query(
@@ -2527,12 +2486,32 @@ async def naive_query(
tokenizer: Tokenizer = global_config["tokenizer"]
- _, _, text_units_context = await _get_vector_context(
- query, chunks_vdb, query_param, tokenizer
+ chunks = await _get_vector_context(query, chunks_vdb, query_param)
+
+ if chunks is None or len(chunks) == 0:
+ return PROMPTS["fail_response"]
+
+ # Process chunks using unified processing
+ processed_chunks = await process_chunks_unified(
+ query=query,
+ chunks=chunks,
+ query_param=query_param,
+ global_config=global_config,
+ source_type="vector",
)
- if text_units_context is None or len(text_units_context) == 0:
- return PROMPTS["fail_response"]
+ logger.info(f"Final context: {len(processed_chunks)} chunks")
+
+ # Build text_units_context from processed chunks
+ text_units_context = []
+ for i, chunk in enumerate(processed_chunks):
+ text_units_context.append(
+ {
+ "id": i + 1,
+ "content": chunk["content"],
+ "file_path": chunk.get("file_path", "unknown_source"),
+ }
+ )
text_units_str = json.dumps(text_units_context, ensure_ascii=False)
if query_param.only_need_context:
@@ -2658,6 +2637,7 @@ async def kg_query_with_keywords(
hl_keywords_str = ", ".join(hl_keywords) if hl_keywords else ""
context = await _build_query_context(
+ query,
ll_keywords_str,
hl_keywords_str,
knowledge_graph_inst,
@@ -2780,8 +2760,6 @@ async def query_with_keywords(
f"{prompt}\n\n### Keywords\n\n{keywords_str}\n\n### Query\n\n{query}"
)
- param.original_query = query
-
# Use appropriate query method based on mode
if param.mode in ["local", "global", "hybrid", "mix"]:
return await kg_query_with_keywords(
@@ -2808,3 +2786,131 @@ async def query_with_keywords(
)
else:
raise ValueError(f"Unknown mode {param.mode}")
+
+
+async def apply_rerank_if_enabled(
+ query: str,
+ retrieved_docs: list[dict],
+ global_config: dict,
+ top_k: int = None,
+) -> list[dict]:
+ """
+ Apply reranking to retrieved documents if rerank is enabled.
+
+ Args:
+ query: The search query
+ retrieved_docs: List of retrieved documents
+ global_config: Global configuration containing rerank settings
+ top_k: Number of top documents to return after reranking
+
+ Returns:
+ Reranked documents if rerank is enabled, otherwise original documents
+ """
+ if not global_config.get("enable_rerank", False) or not retrieved_docs:
+ return retrieved_docs
+
+ rerank_func = global_config.get("rerank_model_func")
+ if not rerank_func:
+ logger.debug(
+ "Rerank is enabled but no rerank function provided, skipping rerank"
+ )
+ return retrieved_docs
+
+ try:
+ logger.debug(
+ f"Applying rerank to {len(retrieved_docs)} documents, returning top {top_k}"
+ )
+
+ # Apply reranking - let rerank_model_func handle top_k internally
+ reranked_docs = await rerank_func(
+ query=query,
+ documents=retrieved_docs,
+ top_k=top_k,
+ )
+ if reranked_docs and len(reranked_docs) > 0:
+ if len(reranked_docs) > top_k:
+ reranked_docs = reranked_docs[:top_k]
+ logger.info(
+ f"Successfully reranked {len(retrieved_docs)} documents to {len(reranked_docs)}"
+ )
+ return reranked_docs
+ else:
+ logger.warning("Rerank returned empty results, using original documents")
+ return retrieved_docs
+
+ except Exception as e:
+ logger.error(f"Error during reranking: {e}, using original documents")
+ return retrieved_docs
+
+
+async def process_chunks_unified(
+ query: str,
+ chunks: list[dict],
+ query_param: QueryParam,
+ global_config: dict,
+ source_type: str = "mixed",
+) -> list[dict]:
+ """
+ Unified processing for text chunks: deduplication, chunk_top_k limiting, reranking, and token truncation.
+
+ Args:
+ query: Search query for reranking
+ chunks: List of text chunks to process
+ query_param: Query parameters containing configuration
+ global_config: Global configuration dictionary
+ source_type: Source type for logging ("vector", "entity", "relationship", "mixed")
+
+ Returns:
+ Processed and filtered list of text chunks
+ """
+ if not chunks:
+ return []
+
+ # 1. Deduplication based on content
+ seen_content = set()
+ unique_chunks = []
+ for chunk in chunks:
+ content = chunk.get("content", "")
+ if content and content not in seen_content:
+ seen_content.add(content)
+ unique_chunks.append(chunk)
+
+ logger.debug(
+ f"Deduplication: {len(unique_chunks)} chunks (original: {len(chunks)})"
+ )
+
+ # 2. Apply reranking if enabled and query is provided
+ if global_config.get("enable_rerank", False) and query and unique_chunks:
+ rerank_top_k = query_param.chunk_rerank_top_k or len(unique_chunks)
+ unique_chunks = await apply_rerank_if_enabled(
+ query=query,
+ retrieved_docs=unique_chunks,
+ global_config=global_config,
+ top_k=rerank_top_k,
+ )
+ logger.debug(f"Rerank: {len(unique_chunks)} chunks (source: {source_type})")
+
+ # 3. Apply chunk_top_k limiting if specified
+ if query_param.chunk_top_k is not None and query_param.chunk_top_k > 0:
+ if len(unique_chunks) > query_param.chunk_top_k:
+ unique_chunks = unique_chunks[: query_param.chunk_top_k]
+ logger.debug(
+ f"Chunk top-k limiting: kept {len(unique_chunks)} chunks (chunk_top_k={query_param.chunk_top_k})"
+ )
+
+ # 4. Token-based final truncation
+ tokenizer = global_config.get("tokenizer")
+ if tokenizer and unique_chunks:
+ original_count = len(unique_chunks)
+ unique_chunks = truncate_list_by_token_size(
+ unique_chunks,
+ key=lambda x: x.get("content", ""),
+ max_token_size=query_param.max_token_for_text_unit,
+ tokenizer=tokenizer,
+ )
+ logger.debug(
+ f"Token truncation: {len(unique_chunks)} chunks from {original_count} "
+ f"(max tokens: {query_param.max_token_for_text_unit}, source: {source_type})"
+ )
+
+ return unique_chunks
diff --git a/lightrag/rerank.py b/lightrag/rerank.py
new file mode 100644
index 00000000..59719bc9
--- /dev/null
+++ b/lightrag/rerank.py
@@ -0,0 +1,321 @@
+from __future__ import annotations
+
+import os
+import aiohttp
+from typing import Callable, Any, List, Dict, Optional
+from pydantic import BaseModel, Field
+
+from .utils import logger
+
+
+class RerankModel(BaseModel):
+ """
+ Pydantic model class for defining a custom rerank model.
+
+ This class provides a convenient wrapper for rerank functions, allowing you to
+ encapsulate all rerank configurations (API keys, model settings, etc.) in one place.
+
+ Attributes:
+ rerank_func (Callable[[Any], List[Dict]]): A callable function that reranks documents.
+ The function should take query and documents as input and return reranked results.
+ kwargs (Dict[str, Any]): A dictionary that contains the arguments to pass to the callable function.
+ This should include all necessary configurations such as model name, API key, base_url, etc.
+
+ Example usage:
+ Rerank model example with Jina:
+ ```python
+ rerank_model = RerankModel(
+ rerank_func=jina_rerank,
+ kwargs={
+ "model": "BAAI/bge-reranker-v2-m3",
+ "api_key": "your_api_key_here",
+ "base_url": "https://api.jina.ai/v1/rerank"
+ }
+ )
+
+ # Use in LightRAG
+ rag = LightRAG(
+ enable_rerank=True,
+ rerank_model_func=rerank_model.rerank,
+ # ... other configurations
+ )
+ ```
+
+ Or define a custom function directly:
+ ```python
+ async def my_rerank_func(query: str, documents: list, top_k: int = None, **kwargs):
+ return await jina_rerank(
+ query=query,
+ documents=documents,
+ model="BAAI/bge-reranker-v2-m3",
+ api_key="your_api_key_here",
+ top_k=top_k or 10,
+ **kwargs
+ )
+
+ rag = LightRAG(
+ enable_rerank=True,
+ rerank_model_func=my_rerank_func,
+ # ... other configurations
+ )
+ ```
+ """
+
+ rerank_func: Callable[[Any], List[Dict]]
+ kwargs: Dict[str, Any] = Field(default_factory=dict)
+
+ async def rerank(
+ self,
+ query: str,
+ documents: List[Dict[str, Any]],
+ top_k: Optional[int] = None,
+ **extra_kwargs,
+ ) -> List[Dict[str, Any]]:
+ """Rerank documents using the configured model function."""
+ # Merge extra kwargs with model kwargs
+ kwargs = {**self.kwargs, **extra_kwargs}
+ return await self.rerank_func(
+ query=query, documents=documents, top_k=top_k, **kwargs
+ )
+
+
+class MultiRerankModel(BaseModel):
+ """Multiple rerank models for different modes/scenarios."""
+
+ # Primary rerank model (used if mode-specific models are not defined)
+ rerank_model: Optional[RerankModel] = None
+
+ # Mode-specific rerank models
+ entity_rerank_model: Optional[RerankModel] = None
+ relation_rerank_model: Optional[RerankModel] = None
+ chunk_rerank_model: Optional[RerankModel] = None
+
+ async def rerank(
+ self,
+ query: str,
+ documents: List[Dict[str, Any]],
+ mode: str = "default",
+ top_k: Optional[int] = None,
+ **kwargs,
+ ) -> List[Dict[str, Any]]:
+ """Rerank using the appropriate model based on mode."""
+
+ # Select model based on mode
+ if mode == "entity" and self.entity_rerank_model:
+ model = self.entity_rerank_model
+ elif mode == "relation" and self.relation_rerank_model:
+ model = self.relation_rerank_model
+ elif mode == "chunk" and self.chunk_rerank_model:
+ model = self.chunk_rerank_model
+ elif self.rerank_model:
+ model = self.rerank_model
+ else:
+ logger.warning(f"No rerank model available for mode: {mode}")
+ return documents
+
+ return await model.rerank(query, documents, top_k, **kwargs)
+
+
+async def generic_rerank_api(
+ query: str,
+ documents: List[Dict[str, Any]],
+ model: str,
+ base_url: str,
+ api_key: str,
+ top_k: Optional[int] = None,
+ **kwargs,
+) -> List[Dict[str, Any]]:
+ """
+ Generic rerank function that works with Jina/Cohere compatible APIs.
+
+ Args:
+ query: The search query
+ documents: List of documents to rerank
+ model: Model identifier
+ base_url: API endpoint URL
+ api_key: API authentication key
+ top_k: Number of top results to return
+ **kwargs: Additional API-specific parameters
+
+ Returns:
+ List of reranked documents with relevance scores
+ """
+ if not api_key:
+ logger.warning("No API key provided for rerank service")
+ return documents
+
+ if not documents:
+ return documents
+
+ # Prepare documents for reranking - handle both text and dict formats
+ prepared_docs = []
+ for doc in documents:
+ if isinstance(doc, dict):
+ # Use 'content' field if available, otherwise use 'text' or convert to string
+ text = doc.get("content") or doc.get("text") or str(doc)
+ else:
+ text = str(doc)
+ prepared_docs.append(text)
+
+ # Prepare request
+ headers = {"Content-Type": "application/json", "Authorization": f"Bearer {api_key}"}
+
+ data = {"model": model, "query": query, "documents": prepared_docs, **kwargs}
+
+ if top_k is not None:
+ data["top_k"] = min(top_k, len(prepared_docs))
+
+ try:
+ async with aiohttp.ClientSession() as session:
+ async with session.post(base_url, headers=headers, json=data) as response:
+ if response.status != 200:
+ error_text = await response.text()
+ logger.error(f"Rerank API error {response.status}: {error_text}")
+ return documents
+
+ result = await response.json()
+
+ # Extract reranked results
+ if "results" in result:
+ # Standard format: results contain index and relevance_score
+ reranked_docs = []
+ for item in result["results"]:
+ if "index" in item:
+ doc_idx = item["index"]
+ if 0 <= doc_idx < len(documents):
+ reranked_doc = documents[doc_idx].copy()
+ if "relevance_score" in item:
+ reranked_doc["rerank_score"] = item[
+ "relevance_score"
+ ]
+ reranked_docs.append(reranked_doc)
+ return reranked_docs
+ else:
+ logger.warning("Unexpected rerank API response format")
+ return documents
+
+ except Exception as e:
+ logger.error(f"Error during reranking: {e}")
+ return documents
+
+
+async def jina_rerank(
+ query: str,
+ documents: List[Dict[str, Any]],
+ model: str = "BAAI/bge-reranker-v2-m3",
+ top_k: Optional[int] = None,
+ base_url: str = "https://api.jina.ai/v1/rerank",
+ api_key: Optional[str] = None,
+ **kwargs,
+) -> List[Dict[str, Any]]:
+ """
+ Rerank documents using Jina AI API.
+
+ Args:
+ query: The search query
+ documents: List of documents to rerank
+ model: Jina rerank model name
+ top_k: Number of top results to return
+ base_url: Jina API endpoint
+ api_key: Jina API key
+ **kwargs: Additional parameters
+
+ Returns:
+ List of reranked documents with relevance scores
+ """
+ if api_key is None:
+ api_key = os.getenv("JINA_API_KEY") or os.getenv("RERANK_API_KEY")
+
+ return await generic_rerank_api(
+ query=query,
+ documents=documents,
+ model=model,
+ base_url=base_url,
+ api_key=api_key,
+ top_k=top_k,
+ **kwargs,
+ )
+
+
+async def cohere_rerank(
+ query: str,
+ documents: List[Dict[str, Any]],
+ model: str = "rerank-english-v2.0",
+ top_k: Optional[int] = None,
+ base_url: str = "https://api.cohere.ai/v1/rerank",
+ api_key: Optional[str] = None,
+ **kwargs,
+) -> List[Dict[str, Any]]:
+ """
+ Rerank documents using Cohere API.
+
+ Args:
+ query: The search query
+ documents: List of documents to rerank
+ model: Cohere rerank model name
+ top_k: Number of top results to return
+ base_url: Cohere API endpoint
+ api_key: Cohere API key
+ **kwargs: Additional parameters
+
+ Returns:
+ List of reranked documents with relevance scores
+ """
+ if api_key is None:
+ api_key = os.getenv("COHERE_API_KEY") or os.getenv("RERANK_API_KEY")
+
+ return await generic_rerank_api(
+ query=query,
+ documents=documents,
+ model=model,
+ base_url=base_url,
+ api_key=api_key,
+ top_k=top_k,
+ **kwargs,
+ )
+
+
+# Convenience function for custom API endpoints
+async def custom_rerank(
+ query: str,
+ documents: List[Dict[str, Any]],
+ model: str,
+ base_url: str,
+ api_key: str,
+ top_k: Optional[int] = None,
+ **kwargs,
+) -> List[Dict[str, Any]]:
+ """
+ Rerank documents using a custom API endpoint.
+ This is useful for self-hosted or custom rerank services.
+ """
+ return await generic_rerank_api(
+ query=query,
+ documents=documents,
+ model=model,
+ base_url=base_url,
+ api_key=api_key,
+ top_k=top_k,
+ **kwargs,
+ )
+
+
+if __name__ == "__main__":
+ import asyncio
+
+ async def main():
+ # Example usage
+ docs = [
+ {"content": "The capital of France is Paris."},
+ {"content": "Tokyo is the capital of Japan."},
+ {"content": "London is the capital of England."},
+ ]
+
+ query = "What is the capital of France?"
+
+ result = await jina_rerank(
+ query=query, documents=docs, top_k=2, api_key="your-api-key-here"
+ )
+ print(result)
+
+ asyncio.run(main())
diff --git a/lightrag_webui/src/stores/settings.ts b/lightrag_webui/src/stores/settings.ts
index 203502dc..5942ddca 100644
--- a/lightrag_webui/src/stores/settings.ts
+++ b/lightrag_webui/src/stores/settings.ts
@@ -111,7 +111,7 @@ const useSettingsStoreBase = create()(
mode: 'global',
response_type: 'Multiple Paragraphs',
top_k: 10,
- max_token_for_text_unit: 4000,
+ max_token_for_text_unit: 6000,
max_token_for_global_context: 4000,
max_token_for_local_context: 4000,
only_need_context: false,
diff --git a/tests/test_graph_storage.py b/tests/test_graph_storage.py
index 258c8795..62f658ff 100644
--- a/tests/test_graph_storage.py
+++ b/tests/test_graph_storage.py
@@ -10,6 +10,7 @@
- Neo4JStorage
- MongoDBStorage
- PGGraphStorage
+- MemgraphStorage
"""
import asyncio