From dd425e55135350c93e95f209065eb78c178eff16 Mon Sep 17 00:00:00 2001 From: ben moussa anouar <127153341+anouar-bm@users.noreply.github.com> Date: Sun, 2 Nov 2025 18:03:54 +0100 Subject: [PATCH] Update lightrag/evaluation/eval_rag_quality.py for launguage Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com> (cherry picked from commit 98f0464a31afc07b3b6e4e7004b6f0e28678ca7c) --- lightrag/evaluation/eval_rag_quality.py | 261 +++++++++--------------- 1 file changed, 100 insertions(+), 161 deletions(-) diff --git a/lightrag/evaluation/eval_rag_quality.py b/lightrag/evaluation/eval_rag_quality.py index b5e25c42..35947615 100644 --- a/lightrag/evaluation/eval_rag_quality.py +++ b/lightrag/evaluation/eval_rag_quality.py @@ -21,7 +21,6 @@ Results are saved to: lightrag/evaluation/results/ import asyncio import csv import json -import math import os import sys import time @@ -31,17 +30,22 @@ from typing import Any, Dict, List import httpx from dotenv import load_dotenv -from lightrag.utils import logger # Add parent directory to path sys.path.insert(0, str(Path(__file__).parent.parent.parent)) -# use the .env that is inside the current folder -# allows to use different .env file for each lightrag instance -# the OS environment variables take precedence over the .env file -load_dotenv(dotenv_path=".env", override=False) +# Load .env from project root +project_root = Path(__file__).parent.parent.parent +load_dotenv(project_root / ".env") + +# Setup OpenAI API key (required for RAGAS evaluation) +# Use LLM_BINDING_API_KEY if OPENAI_API_KEY is not set +if "OPENAI_API_KEY" not in os.environ: + if "LLM_BINDING_API_KEY" in os.environ: + os.environ["OPENAI_API_KEY"] = os.environ["LLM_BINDING_API_KEY"] + else: + os.environ["OPENAI_API_KEY"] = input("Enter your OpenAI API key: ") -# Conditional imports - will raise ImportError if dependencies not installed try: from datasets import Dataset from ragas import evaluate @@ -51,22 +55,10 @@ try: context_recall, faithfulness, ) - - RAGAS_AVAILABLE = True -except ImportError: - RAGAS_AVAILABLE = False - Dataset = None - evaluate = None - - -CONNECT_TIMEOUT_SECONDS = 180.0 -READ_TIMEOUT_SECONDS = 300.0 -TOTAL_TIMEOUT_SECONDS = 180.0 - - -def _is_nan(value: Any) -> bool: - """Return True when value is a float NaN.""" - return isinstance(value, float) and math.isnan(value) +except ImportError as e: + print(f"āŒ RAGAS import error: {e}") + print(" Install with: pip install ragas datasets") + sys.exit(1) class RAGEvaluator: @@ -80,39 +72,7 @@ class RAGEvaluator: test_dataset_path: Path to test dataset JSON file rag_api_url: Base URL of LightRAG API (e.g., http://localhost:9621) If None, will try to read from environment or use default - - Raises: - ImportError: If ragas or datasets packages are not installed - ValueError: If LLM_BINDING is not set to 'openai' - EnvironmentError: If LLM_BINDING_API_KEY is not set """ - # Validate RAGAS dependencies are installed - if not RAGAS_AVAILABLE: - raise ImportError( - "RAGAS dependencies not installed. " - "Install with: pip install ragas datasets" - ) - - # Validate LLM_BINDING is set to openai (required for RAGAS) - llm_binding = os.getenv("LLM_BINDING", "").lower() - if llm_binding != "openai": - raise ValueError( - f"LLM_BINDING must be set to 'openai' for RAGAS evaluation. " - f"Current value: '{llm_binding or '(not set)'}'" - ) - - # Validate LLM_BINDING_API_KEY exists - llm_binding_key = os.getenv("LLM_BINDING_API_KEY") - if not llm_binding_key: - raise EnvironmentError( - "LLM_BINDING_API_KEY environment variable is not set. " - "This is required for RAGAS evaluation." - ) - - # Set OPENAI_API_KEY from LLM_BINDING_API_KEY for RAGAS - os.environ["OPENAI_API_KEY"] = llm_binding_key - logger.info("āœ… LLM_BINDING: openai") - if test_dataset_path is None: test_dataset_path = Path(__file__).parent / "sample_dataset.json" @@ -166,19 +126,10 @@ class RAGEvaluator: "top_k": 10, } - # Get API key from environment for authentication - api_key = os.getenv("LIGHTRAG_API_KEY") - - # Prepare headers with optional authentication - headers = {} - if api_key: - headers["X-API-Key"] = api_key - # Single optimized API call - gets both answer AND chunk content response = await client.post( f"{self.rag_api_url}/query", json=payload, - headers=headers if headers else None, ) response.raise_for_status() result = response.json() @@ -187,31 +138,17 @@ class RAGEvaluator: references = result.get("references", []) # DEBUG: Inspect the API response - logger.debug("šŸ” References Count: %s", len(references)) + print(f" šŸ” References Count: {len(references)}") if references: first_ref = references[0] - logger.debug("šŸ” First Reference Keys: %s", list(first_ref.keys())) + print(f" šŸ” First Reference Keys: {list(first_ref.keys())}") if "content" in first_ref: - content_preview = first_ref["content"] - if isinstance(content_preview, list) and content_preview: - logger.debug( - "šŸ” Content Preview (first chunk): %s...", - content_preview[0][:100], - ) - elif isinstance(content_preview, str): - logger.debug("šŸ” Content Preview: %s...", content_preview[:100]) + print(f" šŸ” Content Preview: {first_ref['content'][:100]}...") # Extract chunk content from enriched references - # Note: content is now a list of chunks per reference (one file may have multiple chunks) - contexts = [] - for ref in references: - content = ref.get("content", []) - if isinstance(content, list): - # Flatten the list: each chunk becomes a separate context - contexts.extend(content) - elif isinstance(content, str): - # Backward compatibility: if content is still a string (shouldn't happen) - contexts.append(content) + contexts = [ + ref.get("content", "") for ref in references if ref.get("content") + ] return { "answer": answer, @@ -257,13 +194,11 @@ class RAGEvaluator: Returns: Evaluation result dictionary """ - total_cases = len(self.test_cases) - async with semaphore: question = test_case["question"] ground_truth = test_case["ground_truth"] - logger.info("[%s/%s] Evaluating: %s...", idx, total_cases, question[:60]) + print(f"[{idx}/{len(self.test_cases)}] Evaluating: {question[:60]}...") # Generate RAG response by calling actual LightRAG API rag_response = await self.generate_rag_response( @@ -274,13 +209,11 @@ class RAGEvaluator: retrieved_contexts = rag_response["contexts"] # DEBUG: Print what was actually retrieved - logger.debug("šŸ“ Retrieved %s contexts", len(retrieved_contexts)) + print(f" šŸ“ Retrieved {len(retrieved_contexts)} contexts") if retrieved_contexts: - logger.debug( - "šŸ“„ First context preview: %s...", retrieved_contexts[0][:100] - ) + print(f" šŸ“„ First context preview: {retrieved_contexts[0][:100]}...") else: - logger.warning("āš ļø No contexts retrieved!") + print(" āš ļø WARNING: No contexts retrieved!") # Prepare dataset for RAGAS evaluation with CORRECT contexts eval_dataset = Dataset.from_dict( @@ -338,16 +271,20 @@ class RAGEvaluator: ragas_score = sum(metrics.values()) / len(metrics) if metrics else 0 result["ragas_score"] = round(ragas_score, 4) - logger.info("āœ… Faithfulness: %.4f", metrics["faithfulness"]) - logger.info("āœ… Answer Relevance: %.4f", metrics["answer_relevance"]) - logger.info("āœ… Context Recall: %.4f", metrics["context_recall"]) - logger.info("āœ… Context Precision: %.4f", metrics["context_precision"]) - logger.info("šŸ“Š RAGAS Score: %.4f", result["ragas_score"]) + # Print metrics + print(f" āœ… Faithfulness: {metrics['faithfulness']:.4f}") + print(f" āœ… Answer Relevance: {metrics['answer_relevance']:.4f}") + print(f" āœ… Context Recall: {metrics['context_recall']:.4f}") + print(f" āœ… Context Precision: {metrics['context_precision']:.4f}") + print(f" šŸ“Š RAGAS Score: {result['ragas_score']:.4f}\n") return result except Exception as e: - logger.exception("āŒ Error evaluating: %s", e) + import traceback + + print(f" āŒ Error evaluating: {str(e)}") + print(f" šŸ” Full traceback:\n{traceback.format_exc()}\n") return { "question": question, "error": str(e), @@ -366,22 +303,17 @@ class RAGEvaluator: # Get MAX_ASYNC from environment (default to 4 if not set) max_async = int(os.getenv("MAX_ASYNC", "4")) - logger.info("") - logger.info("%s", "=" * 70) - logger.info("šŸš€ Starting RAGAS Evaluation of Portfolio RAG System") - logger.info("šŸ”§ Parallel evaluations: %s", max_async) - logger.info("%s", "=" * 70) + print("\n" + "=" * 70) + print("šŸš€ Starting RAGAS Evaluation of Portfolio RAG System") + print(f"šŸ”§ Parallel evaluations: {max_async}") + print("=" * 70 + "\n") # Create semaphore to limit concurrent evaluations semaphore = asyncio.Semaphore(max_async) # Create shared HTTP client with connection pooling and proper timeouts # Timeout: 3 minutes for connect, 5 minutes for read (LLM can be slow) - timeout = httpx.Timeout( - TOTAL_TIMEOUT_SECONDS, - connect=CONNECT_TIMEOUT_SECONDS, - read=READ_TIMEOUT_SECONDS, - ) + timeout = httpx.Timeout(180.0, connect=180.0, read=300.0) limits = httpx.Limits( max_connections=max_async * 2, # Allow some buffer max_keepalive_connections=max_async, @@ -486,6 +418,8 @@ class RAGEvaluator: } # Calculate averages for each metric (handling NaN values) + import math + metrics_sum = { "faithfulness": 0.0, "answer_relevance": 0.0, @@ -498,23 +432,39 @@ class RAGEvaluator: metrics = result.get("metrics", {}) # Skip NaN values when summing faithfulness = metrics.get("faithfulness", 0) - if not _is_nan(faithfulness): + if ( + not math.isnan(faithfulness) + if isinstance(faithfulness, float) + else True + ): metrics_sum["faithfulness"] += faithfulness answer_relevance = metrics.get("answer_relevance", 0) - if not _is_nan(answer_relevance): + if ( + not math.isnan(answer_relevance) + if isinstance(answer_relevance, float) + else True + ): metrics_sum["answer_relevance"] += answer_relevance context_recall = metrics.get("context_recall", 0) - if not _is_nan(context_recall): + if ( + not math.isnan(context_recall) + if isinstance(context_recall, float) + else True + ): metrics_sum["context_recall"] += context_recall context_precision = metrics.get("context_precision", 0) - if not _is_nan(context_precision): + if ( + not math.isnan(context_precision) + if isinstance(context_precision, float) + else True + ): metrics_sum["context_precision"] += context_precision ragas_score = result.get("ragas_score", 0) - if not _is_nan(ragas_score): + if not math.isnan(ragas_score) if isinstance(ragas_score, float) else True: metrics_sum["ragas_score"] += ragas_score # Calculate averages @@ -523,13 +473,13 @@ class RAGEvaluator: for k, v in metrics_sum.items(): avg_val = v / n if n > 0 else 0 # Handle NaN in average - avg_metrics[k] = round(avg_val, 4) if not _is_nan(avg_val) else 0.0 + avg_metrics[k] = round(avg_val, 4) if not math.isnan(avg_val) else 0.0 # Find min and max RAGAS scores (filter out NaN) ragas_scores = [] for r in valid_results: score = r.get("ragas_score", 0) - if _is_nan(score): + if isinstance(score, float) and math.isnan(score): continue # Skip NaN values ragas_scores.append(score) @@ -575,53 +525,43 @@ class RAGEvaluator: ) with open(json_path, "w") as f: json.dump(summary, f, indent=2) - logger.info("āœ… JSON results saved to: %s", json_path) + print(f"āœ… JSON results saved to: {json_path}") # Export to CSV csv_path = self._export_to_csv(results) - logger.info("āœ… CSV results saved to: %s", csv_path) + print(f"āœ… CSV results saved to: {csv_path}") # Print summary - logger.info("") - logger.info("%s", "=" * 70) - logger.info("šŸ“Š EVALUATION COMPLETE") - logger.info("%s", "=" * 70) - logger.info("Total Tests: %s", len(results)) - logger.info("Successful: %s", benchmark_stats["successful_tests"]) - logger.info("Failed: %s", benchmark_stats["failed_tests"]) - logger.info("Success Rate: %.2f%%", benchmark_stats["success_rate"]) - logger.info("Elapsed Time: %.2f seconds", elapsed_time) - logger.info("Avg Time/Test: %.2f seconds", elapsed_time / len(results)) + print("\n" + "=" * 70) + print("šŸ“Š EVALUATION COMPLETE") + print("=" * 70) + print(f"Total Tests: {len(results)}") + print(f"Successful: {benchmark_stats['successful_tests']}") + print(f"Failed: {benchmark_stats['failed_tests']}") + print(f"Success Rate: {benchmark_stats['success_rate']:.2f}%") + print(f"Elapsed Time: {elapsed_time:.2f} seconds") + print(f"Avg Time/Test: {elapsed_time / len(results):.2f} seconds") # Print benchmark metrics - logger.info("") - logger.info("%s", "=" * 70) - logger.info("šŸ“ˆ BENCHMARK RESULTS (Average)") - logger.info("%s", "=" * 70) + print("\n" + "=" * 70) + print("šŸ“ˆ BENCHMARK RESULTS (Averages)") + print("=" * 70) avg = benchmark_stats["average_metrics"] - logger.info("Average Faithfulness: %.4f", avg["faithfulness"]) - logger.info("Average Answer Relevance: %.4f", avg["answer_relevance"]) - logger.info("Average Context Recall: %.4f", avg["context_recall"]) - logger.info("Average Context Precision: %.4f", avg["context_precision"]) - logger.info("Average RAGAS Score: %.4f", avg["ragas_score"]) - logger.info("") - logger.info( - "Min RAGAS Score: %.4f", - benchmark_stats["min_ragas_score"], - ) - logger.info( - "Max RAGAS Score: %.4f", - benchmark_stats["max_ragas_score"], - ) + print(f"Average Faithfulness: {avg['faithfulness']:.4f}") + print(f"Average Answer Relevance: {avg['answer_relevance']:.4f}") + print(f"Average Context Recall: {avg['context_recall']:.4f}") + print(f"Average Context Precision: {avg['context_precision']:.4f}") + print(f"Average RAGAS Score: {avg['ragas_score']:.4f}") + print(f"\nMin RAGAS Score: {benchmark_stats['min_ragas_score']:.4f}") + print(f"Max RAGAS Score: {benchmark_stats['max_ragas_score']:.4f}") - logger.info("") - logger.info("%s", "=" * 70) - logger.info("šŸ“ GENERATED FILES") - logger.info("%s", "=" * 70) - logger.info("Results Dir: %s", self.results_dir.absolute()) - logger.info(" • CSV: %s", csv_path.name) - logger.info(" • JSON: %s", json_path.name) - logger.info("%s", "=" * 70) + print("\n" + "=" * 70) + print("šŸ“ GENERATED FILES") + print("=" * 70) + print(f"Results Dir: {self.results_dir.absolute()}") + print(f" • CSV: {csv_path.name}") + print(f" • JSON: {json_path.name}") + print("=" * 70 + "\n") return summary @@ -641,20 +581,19 @@ async def main(): if len(sys.argv) > 1: rag_api_url = sys.argv[1] - logger.info("") - logger.info("%s", "=" * 70) - logger.info("šŸ” RAGAS Evaluation - Using Real LightRAG API") - logger.info("%s", "=" * 70) + print("\n" + "=" * 70) + print("šŸ” RAGAS Evaluation - Using Real LightRAG API") + print("=" * 70) if rag_api_url: - logger.info("šŸ“” RAG API URL: %s", rag_api_url) + print(f"šŸ“” RAG API URL: {rag_api_url}") else: - logger.info("šŸ“” RAG API URL: http://localhost:9621 (default)") - logger.info("%s", "=" * 70) + print("šŸ“” RAG API URL: http://localhost:9621 (default)") + print("=" * 70 + "\n") evaluator = RAGEvaluator(rag_api_url=rag_api_url) await evaluator.run() except Exception as e: - logger.exception("āŒ Error: %s", e) + print(f"\nāŒ Error: {str(e)}\n") sys.exit(1)