cherry-pick de4ed736
This commit is contained in:
parent
395b76cdc9
commit
da7683a001
3 changed files with 673 additions and 3 deletions
|
|
@ -89,6 +89,7 @@ class LLMConfigCache:
|
|||
# Initialize configurations based on binding conditions
|
||||
self.openai_llm_options = None
|
||||
self.gemini_llm_options = None
|
||||
self.gemini_embedding_options = None
|
||||
self.ollama_llm_options = None
|
||||
self.ollama_embedding_options = None
|
||||
|
||||
|
|
@ -135,6 +136,23 @@ class LLMConfigCache:
|
|||
)
|
||||
self.ollama_embedding_options = {}
|
||||
|
||||
# Only initialize and log Gemini Embedding options when using Gemini Embedding binding
|
||||
if args.embedding_binding == "gemini":
|
||||
try:
|
||||
from lightrag.llm.binding_options import GeminiEmbeddingOptions
|
||||
|
||||
self.gemini_embedding_options = GeminiEmbeddingOptions.options_dict(
|
||||
args
|
||||
)
|
||||
logger.info(
|
||||
f"Gemini Embedding Options: {self.gemini_embedding_options}"
|
||||
)
|
||||
except ImportError:
|
||||
logger.warning(
|
||||
"GeminiEmbeddingOptions not available, using default configuration"
|
||||
)
|
||||
self.gemini_embedding_options = {}
|
||||
|
||||
|
||||
def check_frontend_build():
|
||||
"""Check if frontend is built and optionally check if source is up-to-date
|
||||
|
|
@ -296,6 +314,7 @@ def create_app(args):
|
|||
"azure_openai",
|
||||
"aws_bedrock",
|
||||
"jina",
|
||||
"gemini",
|
||||
]:
|
||||
raise Exception("embedding binding not supported")
|
||||
|
||||
|
|
@ -646,6 +665,26 @@ def create_app(args):
|
|||
return await jina_embed(
|
||||
texts, embedding_dim=embedding_dim, base_url=host, api_key=api_key
|
||||
)
|
||||
elif binding == "gemini":
|
||||
from lightrag.llm.gemini import gemini_embed
|
||||
|
||||
# Use pre-processed configuration if available, otherwise fallback to dynamic parsing
|
||||
if config_cache.gemini_embedding_options is not None:
|
||||
gemini_options = config_cache.gemini_embedding_options
|
||||
else:
|
||||
# Fallback for cases where config cache wasn't initialized properly
|
||||
from lightrag.llm.binding_options import GeminiEmbeddingOptions
|
||||
|
||||
gemini_options = GeminiEmbeddingOptions.options_dict(args)
|
||||
|
||||
return await gemini_embed(
|
||||
texts,
|
||||
model=model,
|
||||
base_url=host,
|
||||
api_key=api_key,
|
||||
embedding_dim=embedding_dim,
|
||||
task_type=gemini_options.get("task_type", "RETRIEVAL_DOCUMENT"),
|
||||
)
|
||||
else: # openai and compatible
|
||||
from lightrag.llm.openai import openai_embed
|
||||
|
||||
|
|
|
|||
|
|
@ -9,12 +9,26 @@ from argparse import ArgumentParser, Namespace
|
|||
import argparse
|
||||
import json
|
||||
from dataclasses import asdict, dataclass, field
|
||||
from typing import Any, ClassVar, List
|
||||
from typing import Any, ClassVar, List, get_args, get_origin
|
||||
|
||||
from lightrag.utils import get_env_value
|
||||
from lightrag.constants import DEFAULT_TEMPERATURE
|
||||
|
||||
|
||||
def _resolve_optional_type(field_type: Any) -> Any:
|
||||
"""Return the concrete type for Optional/Union annotations."""
|
||||
origin = get_origin(field_type)
|
||||
if origin in (list, dict, tuple):
|
||||
return field_type
|
||||
|
||||
args = get_args(field_type)
|
||||
if args:
|
||||
non_none_args = [arg for arg in args if arg is not type(None)]
|
||||
if len(non_none_args) == 1:
|
||||
return non_none_args[0]
|
||||
return field_type
|
||||
|
||||
|
||||
# =============================================================================
|
||||
# BindingOptions Base Class
|
||||
# =============================================================================
|
||||
|
|
@ -177,9 +191,13 @@ class BindingOptions:
|
|||
help=arg_item["help"],
|
||||
)
|
||||
else:
|
||||
resolved_type = arg_item["type"]
|
||||
if resolved_type is not None:
|
||||
resolved_type = _resolve_optional_type(resolved_type)
|
||||
|
||||
group.add_argument(
|
||||
f"--{arg_item['argname']}",
|
||||
type=arg_item["type"],
|
||||
type=resolved_type,
|
||||
default=get_env_value(f"{arg_item['env_name']}", argparse.SUPPRESS),
|
||||
help=arg_item["help"],
|
||||
)
|
||||
|
|
@ -210,7 +228,7 @@ class BindingOptions:
|
|||
argdef = {
|
||||
"argname": f"{args_prefix}-{field.name}",
|
||||
"env_name": f"{env_var_prefix}{field.name.upper()}",
|
||||
"type": field.type,
|
||||
"type": _resolve_optional_type(field.type),
|
||||
"default": default_value,
|
||||
"help": f"{cls._binding_name} -- " + help.get(field.name, ""),
|
||||
}
|
||||
|
|
@ -454,6 +472,55 @@ class OllamaLLMOptions(_OllamaOptionsMixin, BindingOptions):
|
|||
_binding_name: ClassVar[str] = "ollama_llm"
|
||||
|
||||
|
||||
# =============================================================================
|
||||
# Binding Options for Gemini
|
||||
# =============================================================================
|
||||
@dataclass
|
||||
class GeminiLLMOptions(BindingOptions):
|
||||
"""Options for Google Gemini models."""
|
||||
|
||||
_binding_name: ClassVar[str] = "gemini_llm"
|
||||
|
||||
temperature: float = DEFAULT_TEMPERATURE
|
||||
top_p: float = 0.95
|
||||
top_k: int = 40
|
||||
max_output_tokens: int | None = None
|
||||
candidate_count: int = 1
|
||||
presence_penalty: float = 0.0
|
||||
frequency_penalty: float = 0.0
|
||||
stop_sequences: List[str] = field(default_factory=list)
|
||||
seed: int | None = None
|
||||
thinking_config: dict | None = None
|
||||
safety_settings: dict | None = None
|
||||
|
||||
_help: ClassVar[dict[str, str]] = {
|
||||
"temperature": "Controls randomness (0.0-2.0, higher = more creative)",
|
||||
"top_p": "Nucleus sampling parameter (0.0-1.0)",
|
||||
"top_k": "Limits sampling to the top K tokens (1 disables the limit)",
|
||||
"max_output_tokens": "Maximum tokens generated in the response",
|
||||
"candidate_count": "Number of candidates returned per request",
|
||||
"presence_penalty": "Penalty for token presence (-2.0 to 2.0)",
|
||||
"frequency_penalty": "Penalty for token frequency (-2.0 to 2.0)",
|
||||
"stop_sequences": "Stop sequences (JSON array of strings, e.g., '[\"END\"]')",
|
||||
"seed": "Random seed for reproducible generation (leave empty for random)",
|
||||
"thinking_config": "Thinking configuration (JSON dict, e.g., '{\"thinking_budget\": 1024}' or '{\"include_thoughts\": true}')",
|
||||
"safety_settings": "JSON object with Gemini safety settings overrides",
|
||||
}
|
||||
|
||||
|
||||
@dataclass
|
||||
class GeminiEmbeddingOptions(BindingOptions):
|
||||
"""Options for Google Gemini embedding models."""
|
||||
|
||||
_binding_name: ClassVar[str] = "gemini_embedding"
|
||||
|
||||
task_type: str = "RETRIEVAL_DOCUMENT"
|
||||
|
||||
_help: ClassVar[dict[str, str]] = {
|
||||
"task_type": "Task type for embedding optimization (RETRIEVAL_DOCUMENT, RETRIEVAL_QUERY, SEMANTIC_SIMILARITY, CLASSIFICATION, CLUSTERING, CODE_RETRIEVAL_QUERY, QUESTION_ANSWERING, FACT_VERIFICATION)",
|
||||
}
|
||||
|
||||
|
||||
# =============================================================================
|
||||
# Binding Options for OpenAI
|
||||
# =============================================================================
|
||||
|
|
|
|||
564
lightrag/llm/gemini.py
Normal file
564
lightrag/llm/gemini.py
Normal file
|
|
@ -0,0 +1,564 @@
|
|||
"""
|
||||
Gemini LLM binding for LightRAG.
|
||||
|
||||
This module provides asynchronous helpers that adapt Google's Gemini models
|
||||
to the same interface used by the rest of the LightRAG LLM bindings. The
|
||||
implementation mirrors the OpenAI helpers while relying on the official
|
||||
``google-genai`` client under the hood.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import asyncio
|
||||
import logging
|
||||
import os
|
||||
from collections.abc import AsyncIterator
|
||||
from functools import lru_cache
|
||||
from typing import Any
|
||||
|
||||
import numpy as np
|
||||
from tenacity import (
|
||||
retry,
|
||||
stop_after_attempt,
|
||||
wait_exponential,
|
||||
retry_if_exception_type,
|
||||
)
|
||||
|
||||
from lightrag.utils import (
|
||||
logger,
|
||||
remove_think_tags,
|
||||
safe_unicode_decode,
|
||||
wrap_embedding_func_with_attrs,
|
||||
)
|
||||
|
||||
import pipmaster as pm
|
||||
|
||||
# Install the Google Gemini client on demand
|
||||
if not pm.is_installed("google-genai"):
|
||||
pm.install("google-genai")
|
||||
|
||||
from google import genai # type: ignore
|
||||
from google.genai import types # type: ignore
|
||||
|
||||
DEFAULT_GEMINI_ENDPOINT = "https://generativelanguage.googleapis.com"
|
||||
|
||||
LOG = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@lru_cache(maxsize=8)
|
||||
def _get_gemini_client(
|
||||
api_key: str, base_url: str | None, timeout: int | None = None
|
||||
) -> genai.Client:
|
||||
"""
|
||||
Create (or fetch cached) Gemini client.
|
||||
|
||||
Args:
|
||||
api_key: Google Gemini API key.
|
||||
base_url: Optional custom API endpoint.
|
||||
timeout: Optional request timeout in milliseconds.
|
||||
|
||||
Returns:
|
||||
genai.Client: Configured Gemini client instance.
|
||||
"""
|
||||
client_kwargs: dict[str, Any] = {"api_key": api_key}
|
||||
|
||||
if base_url and base_url != DEFAULT_GEMINI_ENDPOINT or timeout is not None:
|
||||
try:
|
||||
http_options_kwargs = {}
|
||||
if base_url and base_url != DEFAULT_GEMINI_ENDPOINT:
|
||||
http_options_kwargs["api_endpoint"] = base_url
|
||||
if timeout is not None:
|
||||
http_options_kwargs["timeout"] = timeout
|
||||
|
||||
client_kwargs["http_options"] = types.HttpOptions(**http_options_kwargs)
|
||||
except Exception as exc: # pragma: no cover - defensive
|
||||
LOG.warning("Failed to apply custom Gemini http_options: %s", exc)
|
||||
|
||||
try:
|
||||
return genai.Client(**client_kwargs)
|
||||
except TypeError:
|
||||
# Older google-genai releases don't accept http_options; retry without it.
|
||||
client_kwargs.pop("http_options", None)
|
||||
return genai.Client(**client_kwargs)
|
||||
|
||||
|
||||
def _ensure_api_key(api_key: str | None) -> str:
|
||||
key = api_key or os.getenv("LLM_BINDING_API_KEY") or os.getenv("GEMINI_API_KEY")
|
||||
if not key:
|
||||
raise ValueError(
|
||||
"Gemini API key not provided. "
|
||||
"Set LLM_BINDING_API_KEY or GEMINI_API_KEY in the environment."
|
||||
)
|
||||
return key
|
||||
|
||||
|
||||
def _build_generation_config(
|
||||
base_config: dict[str, Any] | None,
|
||||
system_prompt: str | None,
|
||||
keyword_extraction: bool,
|
||||
) -> types.GenerateContentConfig | None:
|
||||
config_data = dict(base_config or {})
|
||||
|
||||
if system_prompt:
|
||||
if config_data.get("system_instruction"):
|
||||
config_data["system_instruction"] = (
|
||||
f"{config_data['system_instruction']}\n{system_prompt}"
|
||||
)
|
||||
else:
|
||||
config_data["system_instruction"] = system_prompt
|
||||
|
||||
if keyword_extraction and not config_data.get("response_mime_type"):
|
||||
config_data["response_mime_type"] = "application/json"
|
||||
|
||||
# Remove entries that are explicitly set to None to avoid type errors
|
||||
sanitized = {
|
||||
key: value
|
||||
for key, value in config_data.items()
|
||||
if value is not None and value != ""
|
||||
}
|
||||
|
||||
if not sanitized:
|
||||
return None
|
||||
|
||||
return types.GenerateContentConfig(**sanitized)
|
||||
|
||||
|
||||
def _format_history_messages(history_messages: list[dict[str, Any]] | None) -> str:
|
||||
if not history_messages:
|
||||
return ""
|
||||
|
||||
history_lines: list[str] = []
|
||||
for message in history_messages:
|
||||
role = message.get("role", "user")
|
||||
content = message.get("content", "")
|
||||
history_lines.append(f"[{role}] {content}")
|
||||
|
||||
return "\n".join(history_lines)
|
||||
|
||||
|
||||
def _extract_response_text(
|
||||
response: Any, extract_thoughts: bool = False
|
||||
) -> tuple[str, str]:
|
||||
"""
|
||||
Extract text content from Gemini response, separating regular content from thoughts.
|
||||
|
||||
Args:
|
||||
response: Gemini API response object
|
||||
extract_thoughts: Whether to extract thought content separately
|
||||
|
||||
Returns:
|
||||
Tuple of (regular_text, thought_text)
|
||||
"""
|
||||
candidates = getattr(response, "candidates", None)
|
||||
if not candidates:
|
||||
return ("", "")
|
||||
|
||||
regular_parts: list[str] = []
|
||||
thought_parts: list[str] = []
|
||||
|
||||
for candidate in candidates:
|
||||
if not getattr(candidate, "content", None):
|
||||
continue
|
||||
# Use 'or []' to handle None values from parts attribute
|
||||
for part in getattr(candidate.content, "parts", None) or []:
|
||||
text = getattr(part, "text", None)
|
||||
if not text:
|
||||
continue
|
||||
|
||||
# Check if this part is thought content using the 'thought' attribute
|
||||
is_thought = getattr(part, "thought", False)
|
||||
|
||||
if is_thought and extract_thoughts:
|
||||
thought_parts.append(text)
|
||||
elif not is_thought:
|
||||
regular_parts.append(text)
|
||||
|
||||
return ("\n".join(regular_parts), "\n".join(thought_parts))
|
||||
|
||||
|
||||
async def gemini_complete_if_cache(
|
||||
model: str,
|
||||
prompt: str,
|
||||
system_prompt: str | None = None,
|
||||
history_messages: list[dict[str, Any]] | None = None,
|
||||
enable_cot: bool = False,
|
||||
base_url: str | None = None,
|
||||
api_key: str | None = None,
|
||||
token_tracker: Any | None = None,
|
||||
stream: bool | None = None,
|
||||
keyword_extraction: bool = False,
|
||||
generation_config: dict[str, Any] | None = None,
|
||||
timeout: int | None = None,
|
||||
**_: Any,
|
||||
) -> str | AsyncIterator[str]:
|
||||
"""
|
||||
Complete a prompt using Gemini's API with Chain of Thought (COT) support.
|
||||
|
||||
This function supports automatic integration of reasoning content from Gemini models
|
||||
that provide Chain of Thought capabilities via the thinking_config API feature.
|
||||
|
||||
COT Integration:
|
||||
- When enable_cot=True: Thought content is wrapped in <think>...</think> tags
|
||||
- When enable_cot=False: Thought content is filtered out, only regular content returned
|
||||
- Thought content is identified by the 'thought' attribute on response parts
|
||||
- Requires thinking_config to be enabled in generation_config for API to return thoughts
|
||||
|
||||
Args:
|
||||
model: The Gemini model to use.
|
||||
prompt: The prompt to complete.
|
||||
system_prompt: Optional system prompt to include.
|
||||
history_messages: Optional list of previous messages in the conversation.
|
||||
api_key: Optional Gemini API key. If None, uses environment variable.
|
||||
base_url: Optional custom API endpoint.
|
||||
generation_config: Optional generation configuration dict.
|
||||
keyword_extraction: Whether to use JSON response format.
|
||||
token_tracker: Optional token usage tracker for monitoring API usage.
|
||||
stream: Whether to stream the response.
|
||||
hashing_kv: Storage interface (for interface parity with other bindings).
|
||||
enable_cot: Whether to include Chain of Thought content in the response.
|
||||
timeout: Request timeout in seconds (will be converted to milliseconds for Gemini API).
|
||||
**_: Additional keyword arguments (ignored).
|
||||
|
||||
Returns:
|
||||
The completed text (with COT content if enable_cot=True) or an async iterator
|
||||
of text chunks if streaming. COT content is wrapped in <think>...</think> tags.
|
||||
|
||||
Raises:
|
||||
RuntimeError: If the response from Gemini is empty.
|
||||
ValueError: If API key is not provided or configured.
|
||||
"""
|
||||
loop = asyncio.get_running_loop()
|
||||
|
||||
key = _ensure_api_key(api_key)
|
||||
# Convert timeout from seconds to milliseconds for Gemini API
|
||||
timeout_ms = timeout * 1000 if timeout else None
|
||||
client = _get_gemini_client(key, base_url, timeout_ms)
|
||||
|
||||
history_block = _format_history_messages(history_messages)
|
||||
prompt_sections = []
|
||||
if history_block:
|
||||
prompt_sections.append(history_block)
|
||||
prompt_sections.append(f"[user] {prompt}")
|
||||
combined_prompt = "\n".join(prompt_sections)
|
||||
|
||||
config_obj = _build_generation_config(
|
||||
generation_config,
|
||||
system_prompt=system_prompt,
|
||||
keyword_extraction=keyword_extraction,
|
||||
)
|
||||
|
||||
request_kwargs: dict[str, Any] = {
|
||||
"model": model,
|
||||
"contents": [combined_prompt],
|
||||
}
|
||||
if config_obj is not None:
|
||||
request_kwargs["config"] = config_obj
|
||||
|
||||
def _call_model():
|
||||
return client.models.generate_content(**request_kwargs)
|
||||
|
||||
if stream:
|
||||
queue: asyncio.Queue[Any] = asyncio.Queue()
|
||||
usage_container: dict[str, Any] = {}
|
||||
|
||||
def _stream_model() -> None:
|
||||
# COT state tracking for streaming
|
||||
cot_active = False
|
||||
cot_started = False
|
||||
initial_content_seen = False
|
||||
|
||||
try:
|
||||
stream_kwargs = dict(request_kwargs)
|
||||
stream_iterator = client.models.generate_content_stream(**stream_kwargs)
|
||||
for chunk in stream_iterator:
|
||||
usage = getattr(chunk, "usage_metadata", None)
|
||||
if usage is not None:
|
||||
usage_container["usage"] = usage
|
||||
|
||||
# Extract both regular and thought content
|
||||
regular_text, thought_text = _extract_response_text(
|
||||
chunk, extract_thoughts=True
|
||||
)
|
||||
|
||||
if enable_cot:
|
||||
# Process regular content
|
||||
if regular_text:
|
||||
if not initial_content_seen:
|
||||
initial_content_seen = True
|
||||
|
||||
# Close COT section if it was active
|
||||
if cot_active:
|
||||
loop.call_soon_threadsafe(queue.put_nowait, "</think>")
|
||||
cot_active = False
|
||||
|
||||
# Send regular content
|
||||
loop.call_soon_threadsafe(queue.put_nowait, regular_text)
|
||||
|
||||
# Process thought content
|
||||
if thought_text:
|
||||
if not initial_content_seen and not cot_started:
|
||||
# Start COT section
|
||||
loop.call_soon_threadsafe(queue.put_nowait, "<think>")
|
||||
cot_active = True
|
||||
cot_started = True
|
||||
|
||||
# Send thought content if COT is active
|
||||
if cot_active:
|
||||
loop.call_soon_threadsafe(
|
||||
queue.put_nowait, thought_text
|
||||
)
|
||||
else:
|
||||
# COT disabled - only send regular content
|
||||
if regular_text:
|
||||
loop.call_soon_threadsafe(queue.put_nowait, regular_text)
|
||||
|
||||
# Ensure COT is properly closed if still active
|
||||
if cot_active:
|
||||
loop.call_soon_threadsafe(queue.put_nowait, "</think>")
|
||||
|
||||
loop.call_soon_threadsafe(queue.put_nowait, None)
|
||||
except Exception as exc: # pragma: no cover - surface runtime issues
|
||||
# Try to close COT tag before reporting error
|
||||
if cot_active:
|
||||
try:
|
||||
loop.call_soon_threadsafe(queue.put_nowait, "</think>")
|
||||
except Exception:
|
||||
pass
|
||||
loop.call_soon_threadsafe(queue.put_nowait, exc)
|
||||
|
||||
loop.run_in_executor(None, _stream_model)
|
||||
|
||||
async def _async_stream() -> AsyncIterator[str]:
|
||||
try:
|
||||
while True:
|
||||
item = await queue.get()
|
||||
if item is None:
|
||||
break
|
||||
if isinstance(item, Exception):
|
||||
raise item
|
||||
|
||||
chunk_text = str(item)
|
||||
if "\\u" in chunk_text:
|
||||
chunk_text = safe_unicode_decode(chunk_text.encode("utf-8"))
|
||||
|
||||
# Yield the chunk directly without filtering
|
||||
# COT filtering is already handled in _stream_model()
|
||||
yield chunk_text
|
||||
finally:
|
||||
usage = usage_container.get("usage")
|
||||
if token_tracker and usage:
|
||||
token_tracker.add_usage(
|
||||
{
|
||||
"prompt_tokens": getattr(usage, "prompt_token_count", 0),
|
||||
"completion_tokens": getattr(
|
||||
usage, "candidates_token_count", 0
|
||||
),
|
||||
"total_tokens": getattr(usage, "total_token_count", 0),
|
||||
}
|
||||
)
|
||||
|
||||
return _async_stream()
|
||||
|
||||
response = await asyncio.to_thread(_call_model)
|
||||
|
||||
# Extract both regular text and thought text
|
||||
regular_text, thought_text = _extract_response_text(response, extract_thoughts=True)
|
||||
|
||||
# Apply COT filtering logic based on enable_cot parameter
|
||||
if enable_cot:
|
||||
# Include thought content wrapped in <think> tags
|
||||
if thought_text and thought_text.strip():
|
||||
if not regular_text or regular_text.strip() == "":
|
||||
# Only thought content available
|
||||
final_text = f"<think>{thought_text}</think>"
|
||||
else:
|
||||
# Both content types present: prepend thought to regular content
|
||||
final_text = f"<think>{thought_text}</think>{regular_text}"
|
||||
else:
|
||||
# No thought content, use regular content only
|
||||
final_text = regular_text or ""
|
||||
else:
|
||||
# Filter out thought content, return only regular content
|
||||
final_text = regular_text or ""
|
||||
|
||||
if not final_text:
|
||||
raise RuntimeError("Gemini response did not contain any text content.")
|
||||
|
||||
if "\\u" in final_text:
|
||||
final_text = safe_unicode_decode(final_text.encode("utf-8"))
|
||||
|
||||
final_text = remove_think_tags(final_text)
|
||||
|
||||
usage = getattr(response, "usage_metadata", None)
|
||||
if token_tracker and usage:
|
||||
token_tracker.add_usage(
|
||||
{
|
||||
"prompt_tokens": getattr(usage, "prompt_token_count", 0),
|
||||
"completion_tokens": getattr(usage, "candidates_token_count", 0),
|
||||
"total_tokens": getattr(usage, "total_token_count", 0),
|
||||
}
|
||||
)
|
||||
|
||||
logger.debug("Gemini response length: %s", len(final_text))
|
||||
return final_text
|
||||
|
||||
|
||||
async def gemini_model_complete(
|
||||
prompt: str,
|
||||
system_prompt: str | None = None,
|
||||
history_messages: list[dict[str, Any]] | None = None,
|
||||
keyword_extraction: bool = False,
|
||||
**kwargs: Any,
|
||||
) -> str | AsyncIterator[str]:
|
||||
hashing_kv = kwargs.get("hashing_kv")
|
||||
model_name = None
|
||||
if hashing_kv is not None:
|
||||
model_name = hashing_kv.global_config.get("llm_model_name")
|
||||
if model_name is None:
|
||||
model_name = kwargs.pop("model_name", None)
|
||||
if model_name is None:
|
||||
raise ValueError("Gemini model name not provided in configuration.")
|
||||
|
||||
return await gemini_complete_if_cache(
|
||||
model_name,
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
keyword_extraction=keyword_extraction,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
@wrap_embedding_func_with_attrs(embedding_dim=1536)
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=60),
|
||||
retry=(
|
||||
retry_if_exception_type(Exception) # Gemini uses generic exceptions
|
||||
),
|
||||
)
|
||||
async def gemini_embed(
|
||||
texts: list[str],
|
||||
model: str = "gemini-embedding-001",
|
||||
base_url: str | None = None,
|
||||
api_key: str | None = None,
|
||||
embedding_dim: int | None = None,
|
||||
task_type: str = "RETRIEVAL_DOCUMENT",
|
||||
timeout: int | None = None,
|
||||
token_tracker: Any | None = None,
|
||||
) -> np.ndarray:
|
||||
"""Generate embeddings for a list of texts using Gemini's API.
|
||||
|
||||
This function uses Google's Gemini embedding model to generate text embeddings.
|
||||
It supports dynamic dimension control and automatic normalization for dimensions
|
||||
less than 3072.
|
||||
|
||||
Args:
|
||||
texts: List of texts to embed.
|
||||
model: The Gemini embedding model to use. Default is "gemini-embedding-001".
|
||||
base_url: Optional custom API endpoint.
|
||||
api_key: Optional Gemini API key. If None, uses environment variables.
|
||||
embedding_dim: Optional embedding dimension for dynamic dimension reduction.
|
||||
**IMPORTANT**: This parameter is automatically injected by the EmbeddingFunc wrapper.
|
||||
Do NOT manually pass this parameter when calling the function directly.
|
||||
The dimension is controlled by the @wrap_embedding_func_with_attrs decorator
|
||||
or the EMBEDDING_DIM environment variable.
|
||||
Supported range: 128-3072. Recommended values: 768, 1536, 3072.
|
||||
task_type: Task type for embedding optimization. Default is "RETRIEVAL_DOCUMENT".
|
||||
Supported types: SEMANTIC_SIMILARITY, CLASSIFICATION, CLUSTERING,
|
||||
RETRIEVAL_DOCUMENT, RETRIEVAL_QUERY, CODE_RETRIEVAL_QUERY,
|
||||
QUESTION_ANSWERING, FACT_VERIFICATION.
|
||||
timeout: Request timeout in seconds (will be converted to milliseconds for Gemini API).
|
||||
token_tracker: Optional token usage tracker for monitoring API usage.
|
||||
|
||||
Returns:
|
||||
A numpy array of embeddings, one per input text. For dimensions < 3072,
|
||||
the embeddings are L2-normalized to ensure optimal semantic similarity performance.
|
||||
|
||||
Raises:
|
||||
ValueError: If API key is not provided or configured.
|
||||
RuntimeError: If the response from Gemini is invalid or empty.
|
||||
|
||||
Note:
|
||||
- For dimension 3072: Embeddings are already normalized by the API
|
||||
- For dimensions < 3072: Embeddings are L2-normalized after retrieval
|
||||
- Normalization ensures accurate semantic similarity via cosine distance
|
||||
"""
|
||||
loop = asyncio.get_running_loop()
|
||||
|
||||
key = _ensure_api_key(api_key)
|
||||
# Convert timeout from seconds to milliseconds for Gemini API
|
||||
timeout_ms = timeout * 1000 if timeout else None
|
||||
client = _get_gemini_client(key, base_url, timeout_ms)
|
||||
|
||||
# Prepare embedding configuration
|
||||
config_kwargs: dict[str, Any] = {}
|
||||
|
||||
# Add task_type to config
|
||||
if task_type:
|
||||
config_kwargs["task_type"] = task_type
|
||||
|
||||
# Add output_dimensionality if embedding_dim is provided
|
||||
if embedding_dim is not None:
|
||||
config_kwargs["output_dimensionality"] = embedding_dim
|
||||
|
||||
# Create config object if we have parameters
|
||||
config_obj = types.EmbedContentConfig(**config_kwargs) if config_kwargs else None
|
||||
|
||||
def _call_embed() -> Any:
|
||||
"""Call Gemini embedding API in executor thread."""
|
||||
request_kwargs: dict[str, Any] = {
|
||||
"model": model,
|
||||
"contents": texts,
|
||||
}
|
||||
if config_obj is not None:
|
||||
request_kwargs["config"] = config_obj
|
||||
|
||||
return client.models.embed_content(**request_kwargs)
|
||||
|
||||
# Execute API call in thread pool
|
||||
response = await loop.run_in_executor(None, _call_embed)
|
||||
|
||||
# Extract embeddings from response
|
||||
if not hasattr(response, "embeddings") or not response.embeddings:
|
||||
raise RuntimeError("Gemini response did not contain embeddings.")
|
||||
|
||||
# Convert embeddings to numpy array
|
||||
embeddings = np.array(
|
||||
[np.array(e.values, dtype=np.float32) for e in response.embeddings]
|
||||
)
|
||||
|
||||
# Apply L2 normalization for dimensions < 3072
|
||||
# The 3072 dimension embedding is already normalized by Gemini API
|
||||
if embedding_dim and embedding_dim < 3072:
|
||||
# Normalize each embedding vector to unit length
|
||||
norms = np.linalg.norm(embeddings, axis=1, keepdims=True)
|
||||
# Avoid division by zero
|
||||
norms = np.where(norms == 0, 1, norms)
|
||||
embeddings = embeddings / norms
|
||||
logger.debug(
|
||||
f"Applied L2 normalization to {len(embeddings)} embeddings of dimension {embedding_dim}"
|
||||
)
|
||||
|
||||
# Track token usage if tracker is provided
|
||||
# Note: Gemini embedding API may not provide usage metadata
|
||||
if token_tracker and hasattr(response, "usage_metadata"):
|
||||
usage = response.usage_metadata
|
||||
token_counts = {
|
||||
"prompt_tokens": getattr(usage, "prompt_token_count", 0),
|
||||
"total_tokens": getattr(usage, "total_token_count", 0),
|
||||
}
|
||||
token_tracker.add_usage(token_counts)
|
||||
|
||||
logger.debug(
|
||||
f"Generated {len(embeddings)} Gemini embeddings with dimension {embeddings.shape[1]}"
|
||||
)
|
||||
|
||||
return embeddings
|
||||
|
||||
|
||||
__all__ = [
|
||||
"gemini_complete_if_cache",
|
||||
"gemini_model_complete",
|
||||
"gemini_embed",
|
||||
]
|
||||
Loading…
Add table
Reference in a new issue